股市反馈交易行为特征分析(一)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
股市反馈交易行为特征分析(一)
摘要]本文以Shiller-Sentana-Wadhwani提出的理论模型为基础,使用非对称GARCH模型来拟和波动率的变化对上海证券市场上的反馈交易行为进行了实证检验。检验结论认为,在风险较低的时候,上海证券市场更多的表现出更多的负反馈交易行为,随着风险的增加,表现出正反馈的交易行为。该结论和唐或等人使用GARCH模型拟和市场波动率得到的结论有很大不同:他们认为随着风险的增加,市场更多地表现出正反馈交易行为。上海证券市场的这种反馈交易特征刚好能解释上海股市为何没有在短期内的急剧波动。
关键词]反馈交易行为;收益率序列相关;非对称GARCH模型;上海证券市场
一、引言
资本市场上存在这样一类交易者,他们根据资产过去的价格而不是对未来价格的预期来构建投资组合。这类投资者在行为金融中称为反馈交易者,根据对过去价格的不同反应分为正反馈交易者和负反馈交易者。在中国资本市场上存在“追涨杀跌”和“低买高卖”说法,前者对应于正反馈交易,后者对应于负反馈交易。
一般说来如果市场上存在足够多的反馈交易者,资本市场的收益将表现出自相关的特征。当有大量的正反馈交易者存在,股票价格相对于它的基础价值会被高估并表现出过高的波动率。因此当市场上存在大量的正反馈交易者的时候,市场会变得不稳定(Delongetal..1990);相反,如果市场上存在大量的负反馈交易者,相对于基础价值被低估的股票受到负反馈交易者的追捧,其价格会接近基础价值,当价格被高估时,大量的负反馈交易者抛出被高估的股票,使价格降低至接近基础价值的水平。因此,大量负反馈交易者的存在能够稳定市场,减少市场的波动。
sentana和Wadhwani(1992)扩展了Delong的分析逻辑,考察了反馈交易、收益率自相关和波动率能关系。他们在shiller(1984)的成果的基础上将三者的关系用Sh¨ler-Sentana—Wadhwani 模型的形式表述出来。Bohl和siklos(2004)基于shiller-Sentana—Wadhwani模型,用不同的GARCH模型来估计条件力差检验了成熟市场和新兴市场上的反馈交易。检验结论认为,在两个市场上都存在正反馈和负反馈交易行为,但反馈交易行为在新兴市场表现更为明显。在两个市场上,正反馈均随波动率的增加而增强,但新兴市场增强的程度要小一些。唐或等人(2001)也基于shiller-Sentana-Wadhwani模型验证了沪市上证综合指数日收益率自相关和反馈交易之间的关系。他们采用GARCH(1,1)来处理收益波动率的异方差性,实证结果表明沪市存在正反馈引起的序列自相关,且相关系数的绝对值随波动增大而增大。
二、反馈交易的理论模型
sentana和wadhwani(1992)在用投资者的反馈交易行为解释股票收益率的序列相关时,提出一个包含基于对股票基础价值的预期进行投资的交易者(SmartMoney)和反馈交易者的两群体的市场模型。假定第一个群体对资产的需求函数具有以下形式:
S,表示由第一类投资者(SmartMoney)持有的资产的比例。Et-1(rt)表示在t-1时刻对t时刻资产回报率rt的预期,是一个基于t-1时刻所有信息基础上的条件期望。α是无风险资产的收益率(Merton,1980),当期望收益率为a时,这类投资者不持有该资产。μt表示t时刻投资者持有风险资产的风险溢价,它是条件方差σt2的非降函数。
反馈交易者是根据过去资产的价格而不是对未来的预期来决定对该资产的持有量。假定当期t(期)的持有量由上期(t-1期)的收益水平来决定:Ft=γrt-1
(2)Ft表示反馈交易者的资产持有比例;γ>0表示反馈交易者是正反馈交易型,即“追涨杀跌”;当丫三、经济计量方法
在金融实证分析中发现,股票收益率的条件方差呈非对称分布,Glosten、Jagannathan和Runkle(1993)及Zakoian(1994)提出了描述这种波动性呈非对称的模型(TGARCH)。Engle(1993)认为取一阶的GARCH模型就能很好的描述收益率的条件波动特征。本文在实证分析中选择
TGARCH(1,1)来对收益率的条件方差建模。在检验中国资本市场反馈交易特征存在性方面,联合估计下面的模型:
h1,表示条件方差,εt服从均值为0,方差为h1的条件正态分布。在(6)式和(7)式中,条件方差是过去残差平方和过去条件方差的函数。方差方程的平稳性要求满足:β1β2和β3非负,β1+β2+β3<1和β1+β2≥0。但是结合回归模型,条件方差不但是残差平方和过去条件方差的函数,也间接是参数α1、α2和α3的函数。考虑到回归方程,条件方差的稳定性条件要更复杂。这个模型是TGARCH-M的变种形式,目前文献还没有给出这个模型条件方差平稳的分析性条件。β2度量了条件异方差非对称的程度,当该系数不为0时,表示上期正的残差和负的残差对当期的条件异方差有不通的影响,当该系数为0时,表明条件异方差不存在非对称现象,可以使用一般的GARCH模型来估计条件异方差。