异构技术在新型功能糖醇生产中的应用

异构技术在新型功能糖醇生产中的应用
异构技术在新型功能糖醇生产中的应用

异构技术在新型功能糖醇生产中的应用

糖是一种复杂的多元醇(醛或酮),在水溶液中,各种糖的存在形式都处于动态平衡之中。在一定的条件下,羟基在碳原子上的位置,也会发生变化。这种不改变糖的碳链,而改变其一部分羟基或羰基的位置的结构变化,叫做异构。

通过糖的异构,可以用普通糖为原料,制造许多新型的糖或糖醇,所以,异构是糖醇生产的一个重要工艺,在很多新型糖醇的生产中起着关键性作用。

如对六碳醛糖,有葡萄糖、半乳糖、甘露糖、阿卓糖、阿洛糖、古罗糖、塔洛糖、艾杜糖等八种;按其构型,又分为D-型与L-型,每一种构型,在环状结构时,又分为α-型与β-型;就是说,分子式为C6H12O6的六碳醛糖,一共有16种同分异构体,32种构型。

而对五碳醛糖,对应于C5H10O5这个分子式,一共有4种同分异构体,即木糖、阿拉伯糖、核糖、来苏糖等四种异构体,对应又分别有D-、L-构型,α型与β-型,共有16种。

目前,规模化生产只有几种,即葡萄糖、果糖、木糖,其中果葡糖浆与木糖进入我们生活不到20年,结晶果糖不到10 年,但都呈现极大的发展势头。

糖类的异构,根据异构剂种类的不同,可以分为化学异构和酶法异构,化学异构是指异构反应在化学试剂的作用下进行,酶法异构是指异构反应在生物酶的催化作用下进行,以下分别进行介绍。

1 化学异构

化学异构是最原始的异构方法,一般反应条件比较剧烈,副反应较严重,产生的色素也较多,但是化学异构反应周期短,成本低,产量高,是目前最有效地异构方法。

1.1 化学异构技术在甘露糖生产中的应用

1972年,Bilik申请了一份捷克专利,介绍了葡萄糖在20%左右浓度下,加入少量钼催化剂时,可以部分转变为甘露糖。1972年以来,有很多专利介绍了葡萄糖差相异构生产甘露糖的技术,葡萄糖在六价钼的催化作用下,达到平衡时甘露糖的收率最高为33%。

葡萄糖与甘露糖都是D-六碳糖,它们的第3、4、5位不对称碳原子上的结

构都一样,只是第2位的碳原子上的羟基呈左右镜像对称。在六价钼酸离子存在的情况下,它们在水溶液中互变,并且达到一定的平衡。这种在某一碳位置上的立体互变异构,叫做差相异构。差相异构是分子异构的一种,许多糖在一定条件下都可进行差相异构。

1.2 化学异构技术在乳果糖生产中的应用

1895年,Lobry de Bruyn和Van Ekenstein发现还原性糖在碱性溶液中会发生异构反应生成非还原性糖,此类反应被称为Lobry de Bruyn-Van Ekenstein反应。乳果糖的制备正是利用这一反应原理。

早期研究中较多使用的异构剂是强碱性试剂,如Ca(OH)2、NaOH、KOH及强有机碱类如叔胺等。这类强碱性试剂作用于乳糖,生成乳果糖的同时,两种糖的降解严重,并且还生成大量的色素,这不仅降低了乳果糖的产率,也给糖浆的净化与进一步纯化结晶带来困难。

为了提高反应的产率,减少副产物的生成,人们相继开发出许多催化剂,如碱金属及碱土金属的亚硫酸盐、亚磷酸盐、磷酸盐,硼酸盐,四硼酸盐,金属镁的化合物等,通过对多种异构剂的筛选,大大提高了乳糖异构生产乳果糖的产率。

1.3化学异构技术在D-塔格糖生产中的应用

化学异构首先是以可溶性碱金属盐或碱土金属盐为异构剂,使D-半乳糖与金属氢氧化物发生异构化反应,生成金属氢氧化物-D-塔格糖复合物中间体沉淀。然后,以酸中和复合物中间体,得到 D-塔格糖终产物。D-半乳糖异构化是D-塔格糖化学合成反应的关键步骤。异构化反应应在碱性、低温条件下进行;酸中和的目的是生成不溶性金属盐,从而将D-塔格糖从复合物中间体中释放出来。据报道,化学法生产D-塔格糖在国外已经达到规模化生产水平,2005 年Arla food 公司年产量达到1200吨,而比利时的Nutrilab 公司2009 年产量达到10000 吨/年。

2 酶法异构

酶法异构是一种新型的异构方法,异构反应温和,副产物少,但是反应时间一般较长,成本高,产量低,目前只有少数几种产品酶法异构达到规模化生产水平。

2.1 酶法异构在果葡糖浆生产中的应用

果葡糖浆是酶法异构最成功的案例之一,采用葡萄糖异构酶能使部分葡萄糖转化为果糖,因此以葡萄糖为原料采用葡萄糖异构酶可以生产果葡糖浆,为了使这个酶成为一个有经济价值的商品,科研人员在增加葡萄糖异构酶的产量上做了很大努力。目前有工业生产价值的菌种很多:如凝结芽孢杆菌、米苏里游动放线菌、树枝状黄杆菌等。但是用游离酶生产果葡糖浆仍然有很多缺点,70年代初期又研究发展了固定化葡萄糖异构酶,而且很快商品化。固定化葡萄糖异构酶实现了果葡糖浆的连续化生产,能将40-45%的葡萄糖转化为果糖,提高了生产效率和产品质量,从而大大地推动了果葡糖浆工业的发展。

2.2 酶法异构在D-塔格糖生产中的应用

1993年,Cheetham等人首次报道了利用微生物的L-阿拉伯糖异构酶(L—arabinose,L-AI,EC5.3.1.4)活性,发酵D-半乳糖生产D-塔格糖的研究。随后,L-AI便成为了生物法生产D-塔格糖研究的热点。木糖异构酶的基因工程与分子改造研究的成功与突破也促使了L-AI等醛糖异构酶的分子生物学研究的开展。目前为止,L-AI基因工程、分子改造及酶反应生产D-塔格糖的研究大多是由韩国首尔大学Deok—Kun Oh研究组完成。该课题组报道,利用固定化L-AI(嗜热脂肪芽孢菌L-AI)的酶反应器连续反应,D-塔格糖的最大产量可达到230g/L,已达到工业化生产要求。

3 复合异构

除了单独利用化学法异构或是酶法异构生产新型糖醇外,甘露醇的生产需要综合利用以上两种异构方法,才能提高其收率。

当用葡萄糖生产甘露醇时,首先采用化学异构剂异构葡萄糖制备得到甘露糖,此步大约30%的葡萄糖转化为甘露糖,异构液中还有约70%为葡萄糖,1979年,美国专利将差相异构后的葡萄糖-甘露糖混合液在经过葡萄糖异构酶作用,混合液中70%左右的葡萄糖液,通过葡萄糖异构酶的作用,可以有40-45%转化为果糖。这样形成的葡萄糖-甘露糖-果糖混合液中,含有30%左右的甘露糖、28%左右的果糖、42%左右的葡萄糖。通过加氢,就可以得到约44%左右的甘露醇,56%左右的山梨醇,大大提高了甘露醇的收率。差相异构液中的甘露糖,不影响酶的异构,甘露糖在酶异构中也不发生变化。

综上,异构技术能为我们的功能糖醇产业带来很多具有良好功能特性的新产品,因此我们要充分利用好这一技术,不断探索,为我们的功能糖醇产业做出更大贡献,也更好的服务于人们的生活。

赤藓糖醇

一.赤藓糖醇国内外生产状况: 赤藓糖醇是一种带有清凉口感的填充型甜味剂,不仅拥有糖醇类产品的所有卓越功能,如防止龋齿、适宜糖尿病患者食用等特点,还独具低能量值和高耐受量的特性,属于填充型的功能性食糖替代品。生产厂家主要是日本Mitsubishi公司,于1990年已经完成工业化生产, 约占世界市场80%份额,其余被欧洲Cerestar和韩国Bolak等占有。我国赤藓糖醇的主要技术指标达到国际领先水平,具备工业化生产的成熟水平。 二.赤藓糖醇国内生产厂家: 1.山东保龄宝生物技术有限公司 2.广州施健生物科技有限公司 3.菏泽鑫友食品有限公司 4.南宁富谷科技有限公司 5.滨州三元生物科技有限公司 三.甘露醇市场价格: 29万/吨—35万/吨 四.赤藓糖醇的用途: 1.赤藓糖醇在食品中的应用 (1)糖果生产 赤藓糖醇具有吸湿性低、有清凉感、结晶性良好以及低热值、非致龋性等特性,加热不会引起美拉德反应。因此在一般食品加工条件下,几乎不会出现褐变或分解现象,十分适合应用于口香糖、糖果等忌

湿食品中。 (2)巧克力生产 精炼条件下,在巧克力浆料中加入赤藓糖醇,能使巧克力在80℃以上的环境中进行加工,大大缩短加工时间,又改善了产品的风味。由赤藓糖醇部分替代糖,能使巧克力的热量减少30%。 (3)乳制品、饮料以及酒的生产 发酵乳中添加10%赤藓糖醇,能延长产品的保质期。利用赤藓糖醇溶解时的吸热作用,可生产出自冷性的固体粉末饮料。计算值是10g 赤藓糖醇溶解于90g水中,温度下降约4. 8℃,在l00ml22℃的自来水中溶解17g赤藓糖醇时,实测约有6℃的冷却效果。在含酒精饮料中,由于糖类能促进酒精与水的结合,具有缓和酒精刺激性的效果。故可作为蒸馏酒的缓冲剂, 提高发酵产品的天然风味。除此之外,赤藓糖醇也广泛用于其他食品领域,如冰淇淋、糕点等等。 (4)保健类食品 赤藓糖醇具有不易被酶降解,不参与糖代谢,不导致血糖变化的特点,适合糖尿病患者保健食品的应用;代替蔗糖制成低能量值的保健食品,适合肥胖人群、高血压病人及心血管病人食用;食用后在肠道中的代谢特点,适合肠胃功能不调人群;利用抗龋齿功能,可制成对口腔健康有益的糖果和口香糖。 五.应用前景 赤藓糖醇除在食品工业中应用外,还可应用于医药、化妆品、化工等许多方面,其可部分替代甘油的作用生产化妆品,延缓化妆品变

木糖醇的特性及其在食品中的应用

木糖醇的特性及其在食品中的应用 摘要:木糖醇的理化性质类似于蔗糖,是一种应用广泛的甜味剂,其自身特有的功能赋予了它保健性.本文简单的介绍了木糖醇的理化性质;讨论了其在营养学、临床医学上的保健功能性;综述了其作为甜味剂在食品行业中的应用;介绍了其在食品中的检测方法;探讨了今后的研究前景;对木糖醇在食品中的应用提出了见解。 关键词:木糖醇,应用,特性,食品, 应用 木糖醇是一种白色粉末或白色晶体五碳糖醇,具有清凉甜味,甜度为蔗糖的0.65~1.05倍,入口后清凉似薄荷,没有杂味.熔点92~96摄氏度,能量低,其分子式为C5H12O5。它是联合国粮农组织和世界卫生组织食品添加剂联合专家委员会(JECFA)于上世纪七十年代批准为A类食品添加剂,并对ADI值不作规定的公认安全食品。国际食品法典委员会(CAC)于1999年6月通过为“在食品中可以按正常生产需要使用的食品添加剂”食用糖醇之一。由于它和其他糖醇比较,有较高的能量和甜度,经国内外研究证明,且具有防龋齿、改善糖尿病患者病情、消除血酮症、改善肝功能等某些特殊的生理功能。1999年,我国通过动物和人体试验,首次证明木糖醇和低聚糖一样,具有双岐杆菌的增殖功能,受到国内外各方关注。 一.木糖醇作为药物 1.木糖醇能提高肠内钙的吸收和体内钙保留率。 芬兰通过动物试验证明,木糖醇和钙的复合物,能提高肠内钙的吸收和使提高体内钙保留率。经12周研究结果确定,木糖醇和钙的最佳摩尔比为1:5。检验采用同位素45钙,来确认保留率的钙。 2.抑制和减少内耳的感染 美国小儿科医学院的一项最新医学研究表明:摄入甜味剂,可以抑制和减少内耳的感染。巳知木糖醇因能阻止突变链球茁的生长而可防龋齿,为探讨木糖醇对引起急性中耳炎的肺炎链球苗是否也有同样的作用,该研究对 857名儿童作了试验,让他们嚼服以木糖醇为基料的口香糖和胶质软糖,或服用木糖浆,结果发现减少了这类耳部感染的病例。 3.木糖醇护肤 日本报导,木糖醇作为医药制剂,和葡萄糖谷氨酸相同,能透过血脑屏障。作为降眼压常用甘露醇外,木糖醇、赤鲜醇也有此功效。日本资生堂公司宣布,经常期研究,据认为木糖醇不仅具有甘油相同的保湿和改善皮肤粗糙的效果,而且使用时不发粘,会令人奋感清爽。因此资生堂公司已开始大力研制配有木糖醇的护肤用品,准备今年生产出以爽身化妆水和乳液为基础的化妆晶。

海藻糖的特性及其应用

海藻糖的特性及其应用 彭亚锋,周耀斌,李勤,薛峰,冯俊 (上海市质量监督检验技术研究院/国家食品质量监督检验中心(上海),上海 200233) 摘 要:海藻糖是由两个葡萄糖分子以α,α,1,1-糖苷键构成的非还原性糖,自身性质非常稳定,具有独特的生物学特性、对生物抗脱水的保护作用、抗冷冻保护作用和抗高渗保护作用,同时赋予了防止淀粉老化、防止蛋白质变性、抑制脂类物质酸败、抑制鱼腥味的生成、矫正味道和矫正气味作用、抑制大米的米糠臭、保鲜、稳定物料中的超氧化物歧化酶、防蛀牙和补充能源等功能特性。而自然界中如蔗糖、葡萄糖等其它糖类,均不具备对多种生物活性物质具有神奇的保护作用这一功能;这一独特的功能特性,使得海藻糖除了可以作为蛋白质药物、酶、疫苗和其他生物制品的优良活性保护剂以外,还是保持细胞活性、保湿类化妆品的重要成分,更可作为防止食品劣化、保持食品新鲜风味、提升食品品质的独特食品配料,拓展了海藻糖作为天然食用甜味糖的功能。 关键词:海藻糖;特性;功能;应用;前景 中图分类号:TS20211 文献标识码:A 文章编号:1006-2513(2009)01-0065-05 App li ca ti o n p r o spect of treha l o se PENG Ya2feng,ZHO U Yao2b i n,L I Q i n g,XUE feng,FENG Jun (Shanghai I nstitute of Quality I ns pecti on and Technical Research/Nati onal Food Quality Supervisi on and I ns pecti on Center(Shanghai),Shanghai 200233) Abstract:Trehal ose is a non2reducing sugar for med by t w o glucose molecules bet w eenα,α-1,1-glycosidic bond and is one of the most stable sugars in the world.It can effectively p revent organis m da mage in freezing,drying and heating.It has s pecial bi ol ogic characteristic including dehydrati on t olerance,freezing t olerance and hypert onic t oler2 ance.It can als o p revent starch retr ogradati on,p r otein denaturati on,li p ids rancidity,fishy s mell inhibiti on,keep ing rice fresh and stabling S OD in the ra w material.It is als o an energy s ource as well as keep ing teeth fr o m decay.No oth2 er natural sugar can compete with trehal ose unique p r operties.It is now become a p r otective reagent in p r oducing medi2 cines,enzy me,vaccines and other bi o2p r oducts.It is als o an i m portant component of keep ing cell activity and cos metics moisture.Further more,trehal ose is a unique food ingredient which can avoid the f ood degradati on and keep the fresh flavor.A s a s weetener,trehal ose is widely used in f ood p r ocessing. Key words:trehal ose;p r operty;functi on;app licati on;p r os pect 海藻糖作为一种天然的糖类,最早发现海藻糖的是W igger,他在研究黑麦的麦角菌时,让溶液静置一段时间之后,发现在容器壁中形成一些无色、非还原性、微甜的糖晶体[1][2]。随后人们发现它在自然界的动植物和微生物中广泛存在, Elbein总结了各种生物中海藻糖的含量分布,近80种植物、藻类、真菌、酵母、细菌,昆虫到无脊椎动物都罗列其中[3]。经过100多年的研究,直到进入20世纪90年代,较大规模的工业化生产才得以实现。由于海藻糖的结构明显不同于其他低聚糖类,自然就赋予了它独特的理化性质与生物学特性,学术界对海藻糖的作用机理和应用 收稿日期:2008-11-17 作者简介:彭亚锋(1967-),男,高工,研究方向:食品加工与检验。

麦芽糖醇概况

麦芽糖醇概况1.1 麦芽糖醇的基本概况 麦芽糖醇:又称氢化麦芽糖; 化学名:4-O-a-D-葡萄糖基-D-葡萄醇 英文名称:Maltitol;Hydrogenated Maltose; 分子式:C 12H 24 O 11 ; 分子量:344.31 CAS 编号:585-88-6 图1.1 麦芽糖醇分子结构图 麦芽糖醇是以淀粉为主要原料,在高麦芽糖浆生产技术基础上发展起来的,较木糖醇、山梨糖醇使用更为广泛的一种功能性甜味剂。 以往人们食用的甜味剂基本上都是热量高、甜度大的糖类,易引起糖尿病、肥胖症、动脉硬化和心脏衰弱等疾病。麦芽糖醇甜度高、热量低、安全性好,原料也比较充足,制造工艺简单,具有其它甜味料所不具备的独特性能。 麦芽糖醇是以麦芽糖为原料加氢作用还原而得的一种新糖醇类化合物,属非消化性和非发酵性甜味剂,它有液体状和结晶状两种产品。 麦芽糖醇具有甜味高、热量低、安全性好、耐酸热性好、难发酵性强、保湿性良好、产品透明度高等特点。可广泛应用于焙烤食品、糖果、水果罐头、充气饮料、乳酸饮料、冰淇淋、儿童食品、老年食品及其功能性食品的生产中。欧、美、日等

国家麦芽糖醇现大量应用于无糖糖果、食品、饮料产品的生产及开发。按我国食品添加剂使用卫生标准,麦芽糖醇的最大使用量为“正常生产需要”,不作限制。但是与其它糖醇类甜味剂一样,也应避免一次使用量过多,以免引起肠胃不适。 1.2 麦芽糖醇基本理化性质 麦芽糖醇是由淀粉水解、氢化精制而得的一种双糖醇,为白色结晶粉末或无色透明的中性粘稠液体,易溶于水,甜度略低于蔗糖,其甜味柔和可口,具有非发醇性(可防蛀牙)、低热值(可防发胖)、粘度大(可作增稠剂)、耐热耐酸性好(可作安定剂)等特点,食用后不升高血糖值,是一种新型功能性甜味剂,广泛应用于食品加工、医药、保健品等领域。广泛用于食品、医药、化工等领域。 麦芽糖醇易溶于水和乙醇等溶剂,不溶于甲醇和乙醇,黏度适中;具有耐热性、耐酸性、保湿性和非发酵性等特点,基本上不起美拉德反应。晶体形式熔点为148~151℃,甜度为蔗糖的0.8~0.9倍,液体形式的甜度为蔗糖的0.6倍,其甜味柔和可口,无余味。 纯净的麦芽糖醇呈无色透明的晶体,熔点135~140℃,对热和酸都很稳定,极易溶于水,不易溶于甲醇或乙醇。麦芽糖醇的甜度与蔗糖相当,但甜味温和,清口无余味。麦芽糖醇吸湿性强,是各种食品良好的保湿剂,麦芽糖醇很难结晶,商品多为粉剂。麦芽糖醇粘度比山梨醇大两倍,冻结温度与蔗糖相近。 麦芽糖醇的理化性质及生理功能如下:

赤藓糖醇的特性及应用

赤藓糖醇的特性及应用:摘要:赤藓糖醇是一种低热量甜味剂,具有热值低、结晶性好、口感好、 无致龋性、对糖尿病人安全等特点,其应用前景极为广泛。本文主要论述了赤藓糖醇的性质、特性、生产及在食品工业中的应用。 关键词:赤藓糖醇;性质;特性;应用;生产 赤藓糖醇是一种采用生物技术生产的新型发酵型低热量甜味剂,1999年6月国际食品添加剂专家委员会(JECFA)批准赤藓糖醇作为食用甜味剂,且无需规定ADI值。目前,赤藓糖醇在美国、日本、澳大利亚、新西兰、新加坡、韩国、墨西哥等国已用于食品生产。2007年6月19日我国卫生部公告批准赤藓糖醇作为甜味剂应用于口香糖、固体饮料、调制乳等食品中。 1 赤藓糖醇的性质 赤藓糖醇在自然界分布十分广泛,海藻、蘑菇以及甜瓜、葡萄、桃等水果类中均含有赤藓糖醇。由于细菌、真菌和酵母也能产生赤藓糖醇,所以在发酵食品果酒、啤酒、酱油中也存在,另外还存在于人和哺乳动物的体液中。 赤藓糖醇为白色结晶的四碳多元醇类化合物,化学名称为1,2,3,4-丁四醇,分子式为C4H10O4,分子量122.12,熔点126℃,沸点329~331℃,溶解热-97.4J/g,其化学性质与山梨糖醇、甘露糖醇和木糖醇等糖醇相类似。 1.1 甜味纯正 赤藓糖醇与蔗糖的甜昧特性十分接近,爽净且无后苦味,甜度约为蔗糖的70%~80%。与其他甜味剂混合使用具有改善、协调味质作用,如赤藓糖醇与高甜味剂甜菊苷以1000:(1~7)混合使用,可有效掩盖甜菊苷的后苦味;将20%以上的赤藓糖醇与白砂糖并用,其后味和甜味比白砂糖更为理想;溶液中1%~3%的赤藓糖醇能有效掩饰刺激性口味,改善溶液的口感和风味。 1.2 稳定性高 赤藓糖醇在热、酸、碱条件下稳定,适用的酸碱范围为pH2~12,符合一般食品对酸碱的要求,由于不含羰基,所以在与氨基酸共存的情况下无美拉德反应发生。试验表明,赤藓糖醇在160℃高温条件下不会出现分解及热变色,避免高温加工过程食品出现的焦化。 1.3 结晶性好 赤藓糖醇吸湿性低,结晶性好,易粉碎制得粉状产品,其吸湿性在糖醇及蔗糖等甜味剂中是最小的。温度为20℃、相对湿度为90%的环境中,放置5d后的吸湿增重,麦芽糖约为17%,蔗糖约为10%,而赤藓糖醇仅为2%左右。 1.4 熔解热高 其溶解热为-97.4J/g,由于溶解热较大,溶于水时会吸收较多的能量,有很强的制冷作用。实验表明,将10g 赤藓糖醇溶解于90g水中,温度下降约4.8℃,用它添加生产的固体食品和糖果在食用时具有口感清凉特点。 2 赤藓糖醇的生物学特性 2.1 低能量值 赤藓糖醇分子能量值为1.67kJ/g,而木糖醇11.7 kJ/g,异麦芽酮糖醇8.36KJ/g,蔗糖16.72 kJ/g,故其热量值仅为蔗糖10%左右。同时由于赤藓糖醇分子小,被动扩散容易被小肠吸收,80%的赤藓糖醇可以进入血液循环,被人体吸收后的赤藓糖醇分子不能被机体内的酶系统分解,不为机体提供热量,不参与糖代谢引起血糖变化,只能透过肾脏从血液滤出,随尿液从人体排出。实验表明,一次性摄人赤藓糖醇25g,3h内有40%从尿液中排出,大约在24h内,有80%从尿液中排出,尿液总排出量达90%以上,没有被小肠摄入的20%赤藓糖醇进入大肠后,肠道细菌发酵成不饱和脂肪酸被机体利用的不到50%。因此被摄人赤藓糖醇中只有5%~10%能为人体提供能量,故赤藓糖醇的实际能量值仅为0.84KJ/g,是所有多元糖醇甜昧剂中能量最低的一种,也被称为“零”热值配料。 2.2 高耐受性,无毒副作用 赤藓糖醇的生物耐受性好,安全无毒,动物和临床实验中不会导致腹泻的山梨糖醇最大单次剂量是0.24g/kg 体重,而赤藓糖醇为0.80 g/kg体重,是木糖醇、麦芽糖醇、异麦芽糖醇和乳糖醇的2~3倍,甘露醇的3~4倍,与其他多元糖醇相比,赤藓糖醇在人体内的最大耐受量为50g/d。这是因为绝大部分赤藓糖醇能被小肠吸

海藻糖的特性及其应用

万方数据

万方数据

万方数据

万方数据

万方数据

海藻糖的特性及其应用 作者:彭亚锋, 周耀斌, 李勤, 薛峰, 冯俊, PENG Ya-feng, ZHOU Yao-bin, LI Qing,XUE feng, FENG Jun 作者单位:上海市质量监督检验技术研究院/国家食品质量监督检验中心(上海)上海,200233 刊名: 中国食品添加剂 英文刊名:CHINA FOOD ADDITIVES 年,卷(期):2009(1) 被引用次数:7次 参考文献(27条) 1.Harding T.S History of trehalose,its discovery and methods of preparation 1923 2.Koch E.M;F.C.Koch The presence of trehalose in yeast 1925 3.Elbein A.D The metabolism of a,a-trehalose 1974 4.程池天然生物保存物质--海藻糖的特性与应用 1996(01) 5.尤新功能性低聚糖生产与应用 2004 6.袁勤生海藻糖的应用研究进展[期刊论文]-食品与药品 2005(04) 7.聂凌鸿;宁正祥海藻糖的生物保护作用[期刊论文]-生命的化学 2001(03) 8.刘传斌;云战友;冯朴荪;苗蔚荣海藻糖在生物制品活性保护中的应用前景 1998(07) 9.于春燕;郎刚华;刘万顺海藻糖研究进展 2000(02) 10.姚汝华;周青峰海藻糖及其应用前景[期刊论文]-广州食品工业科技 1995(04) 11.马莺酶法合成海藻糖的研究[学位论文] 2003 12.张玉华;凌沛学;籍保平海藻糖的研究现状及其应用前景[期刊论文]-食品与药品 2005(03) 13.Peter Piper Differential role Hsps and trehalose in stresstolerance 1998(02) 14.黄成垠;安国瑞;王庆敏;戴秀玉 周坚海藻糖对医用诊断工具酶活性保护研究 1997(06) 15.杨小民;杨基础不同糖对纤维素酶保护的机理研究[期刊论文]-清华大学学报(自然科学版) 2000(02) 16.李晓东以淀粉为原料利用微生物酶生成海藻糖的新方法 2000(01) 17.涂国云海藻糖的性质、生产及应用[期刊论文]-山西食品工业 2003(03) 18.马春玲;王瑞明;刘建军海藻糖的性质及其生产 2003(03) 19.胡宗利;夏玉先;陈国平;蔡绍皙海藻糖的生产制备及其应用前景[期刊论文]-中国生物工程杂志 2004(04) 20.Crowe J.H Preservation of membranes in anhydrobiotic organism:the role of trehalose[外文期刊] 1984 21.Colaco C Food packaging and preservation 1994 22.Timasheff S N查看详情 1993 23.Mauro Sola-Penna;Jose Roberto Meyer-Fernandes Stabilization against thermal inactivation promoted by sugars on enzyme structure and function:why is trehalose more effective than other sugars[外文期刊] 1998(01) 24.Mike A Singer;Susan Lindquist The ying and yang of thermotolerance affecting trehalose 1998 25.Danforth Parker Miller Rational design of protective agents and processes for the stabilization of biologicals 2001 26.查看详情

木糖醇的特性及其应用

木糖醇的特性及其应用 食品科学与工程092班谢巧奇200916020210 摘要:本文介绍了木糖醇的化学组成、理化性质及合成方法,重点分析了木糖醇的功能特性和它在各行业中的应用,并对其在未来的发展做出了合理的展望。 关键字:木糖醇;特性;合成;应用 1前言 随着经济的发展,生活水平的提高,人们的食品消费观念发生了极大改变,越来越注重饮食对自身健康水平的影响,消费趋势逐渐从色、香、味均佳的食品转向具有合理营养和保健功能的功能性食品。由于木糖醇具有独特的生理功能——可以作为糖尿病、肥胖病、儿童龋齿、老年性缺钙、心脑血管病等病人的良好食疗添加剂,故木糖醇已被广泛应用于食品生产中,另外,由于木糖醇的各种生理功能,它在各个行业中的应用也甚为广泛。本文将阐述木糖醇的各种生理功能及其特性,分析其应用。 2木糖醇的化学组成 木糖醇(Xylitol),又称为戊五醇,是一种五碳糖醇。木糖醇的分子式为C5H12O5,分子量为152·15,外观为白色结晶状粉末,无臭味,沸点125℃(101·33 k Pa),熔点为92~96℃,易溶于水,溶解度169 g·(100 g水)-1(20℃),水解液pH=5~7[lg·(10 mL水)-1],溶解热-145·6 J·g-1,热能16.99 J·g-1[1]。 虽然早在1890年,德国科学家Fisher,Stahe和法国科学家Betrand就发现了木糖醇,然而在自然界植物中首次发现木糖醇却是在1943年。木糖醇虽广泛地存在于多种植物如草莓、李子、梨、桦树等之中,但数量却非常少,只有0.014 %~0.9 %,不能满足现代生活人们对木糖醇日益增长的需求。近年来,国内外科学工作者们对木糖醇的生产合成工艺进行了坚持不懈的研究与开发,并不断地取得突破性的进展,如采用先进的生物化学法,木糖醇收率可达80 %,纯度99 %;以麦秆为原料,采用高温水解法,收率为63 %;芬兰、瑞士等国家采用原料处理木糖醇的理化性质水解及水解产物浸渍的连续生产工艺,效率高,产品纯度高且成本低。这些日新月异的先进生产工艺技术为木糖醇得以满足不断扩大的全球市场创造了积极而主动的有利条件。 3木糖醇的理化性质 3.1 木糖醇的清凉感

海藻糖的特性及应用

海藻糖的特性及应用 海藻糖(Trehalose)是一种安全、可靠的天然糖类,1832年由Wiggers将其从黑麦的麦角菌中首次提取出来,随后的研究发现海藻糖在自然界中许多可食用动植物及微生物体内都广泛存在,如人们日常生活中食用的蘑菇类、海藻类、豆类、虾、面包、啤酒及酵母发酵食品中都有含量较高的海藻糖。 海藻糖是由两个葡萄糖分子以1,1-糖苷键构成的非还原性糖,有3种异构体即海藻糖(α,α)、异海藻糖(β,β)和新海藻糖(α,β),并对多种生物活性物质具有非特异性保护作用。科学家们发现,沙漠植物卷叶柏在干旱时几近枯死,遇水后却又可以奇迹般复活;高山植物复活草能够耐过冰雪严寒;一些昆虫在高寒、高温和干燥失水等条件下不冻结、不干死,就是它们体内的海藻糖创造的生命奇迹。海藻糖因此在科学界素有“生命之糖”的美誉。国际权威的《自然》杂志曾在2000年7月发表了对海藻糖进行评价的专文,文中指出:“对许多生命体而言,海藻糖的有与无,意味着生命或者死亡”。 海藻糖又称漏芦糖、蕈糖等。 作用 海藻糖对生物体具有神奇的保护作用,是因为海藻糖在高温、高寒、高渗透压及干燥失水等恶劣环境条件下在细胞表面能形成独特的保护膜,有效地保护蛋白质分子不变性失活,从而维持生命体的生命过程和生物特征。许多对外界恶劣环境表现出非凡抗逆耐受力的物种,都与它们体内存在大量的海藻糖有直接的关系。而自然界中如蔗糖、葡萄糖等其它糖类,均不具备这一功能。这一独特的功能特性,使得海藻糖除了可以作为蛋白质药物、酶、疫苗和其他生物制品的优良活性保护剂以外,还是保持细胞活性、保湿类化妆品的重要成分,更可作为防止食品劣化、保持食品新鲜风味、提升食品品质的独特食品配料,大大拓展了海藻糖作为天然食用甜味糖的功能。 生产工艺 海藻糖是运用当代最先进的生物工程技术和生产工艺,采用按国际制药标准建造的成套设备,以当地特有的不含转基因成分的天然木薯淀粉为原料,在国内首家以规模化形式生产海藻糖,产品指标达到国际同类产品标准。先进的生产工艺技术和完整的质量保证体系为国内外市场提供了种质量过硬、价格合理的海藻糖系列产品,使生物制剂、化妆品、烘焙产品、水产畜产加工、米面制品、饮料和糖果以及农林种植等各个行业广泛受惠。

赤藓糖醇与木糖醇特性研究对比

赤藓糖醇与木糖醇特性研究对比 发布时间:2012-8-3 阅读次数:192 字体大小: 【小】【中】【大】 本文通过与现在比较流行的木糖醇的一些特性进行对比,旨在为了更好的让企业和消费者了解赤藓糖醇的特性以及与其他糖醇相比具备的一些独特优势。 1理化性质对比 表1赤藓糖醇与木糖醇的理化性质对比 由表1中可以看出赤藓糖醇的吸湿性极低,即使在相对湿度90%以上环境中也不易吸湿,使得它十分适合于压片或是粉剂,如巧克力、口香糖或者一些医药片剂中;赤藓糖醇的清凉效果比木糖醇好一些,甜度比木糖醇稍低;渗透效果赤藓糖醇更好一些,如在罐头等食品中使用,由于渗透性的原因,赤藓糖醇更有优势。 2生理性质对比 表3赤藓糖醇与木糖醇的生理性质对比 血糖指数(GI):指参照食物(葡萄糖或白面包)摄入后血糖浓度的变化程度相比,含糖食物使血糖水平相对升高的相对能力;平均升胰岛素指数是用来衡量食物对体内血糖含量影响的指数。由表三可看出赤藓糖醇对血糖的影响比木糖醇的影响更小,并且几乎不参加新陈代谢,90%以尿液的形式排出体外,这种特性更适合于糖尿病人使用,并且耐受量比赤藓糖醇更大。赤藓糖醇的代谢热量值只有0-0.2Kcal/g,远低于木糖醇的代谢热量值,这一特性更适合于对“零热量”的需求的人群使用,如“零热量的饮料”等。3代谢途径对比

3.1赤藓糖醇的代谢 赤藓糖醇属于小分子物质,其很容易通过被动扩散被小肠吸收,其中90%赤藓糖醇进入血液循环,由于不能被机体内的任何酶系统消化降解,因此只能通过肾从血液中滤去,经尿排出体外。而另有10%直接进入大肠,代谢途径见图1。 赤藓糖醇在人体内代谢途径 点击此处查看全部新闻图片 进入大肠内的碳水化合物被肠道细菌发酵后产生挥发性脂肪酸CH4和H2。其中CH4和H2可溶解入血液中,并通过呼气排出。研究表明,摄入赤藓糖醇后,呼气中H2的数量并没增加。而摄入乳糖醇后,呼气中H2的数量明显增多。这表明,进入大肠中的少量赤藓糖醇很难被细菌发酵利用。 3.2木糖醇的代谢 人体摄入的木糖醇80%通过肝脏代谢,其余大部分被脑及心脏利用,很少量的参与皮下脂肪代谢。木糖醇被肝脏吸收之后,50%以上转变为葡萄糖,45%左右被氧化,其他很少一部分变成乳酸。根据示踪原子实验的相关报道,服用木糖醇之后12小时之内,50-60%的木糖醇转化为为CO2通过肺排出体外,通过尿液及粪便各排出2-10%,20-30%转化为糖原和中间产物。每克木糖醇全部代谢产生热量约为4.06千卡即17.05KJ/g。4木糖醇生理特性研究 4.1耐受量试验 JulieKreloff,M.S.,R.D.[2]报道,一次性食用30克或多于30克就会造成短期的腹泻和肠道不舒服。木糖醇的液体比粉末副作用更大,由于人吃的食物中含有大约15克左右的木糖醇,所以直接摄入的木糖醇含量要小于15-20克之间。 4.2血糖反应试验

麦芽糖醇功能

麦芽糖醇的应用 1、麦芽糖醇在食品工业中的应用 (1)制备无糖食品通过对糖尿病患者进行急性试验共38例, 服用麦芽糖醇餐后1h及2h的血糖和对照组相比无显著差异。4 例糖尿病患者, 每日服麦芽糖醇20g, 连续服用40d (二个疗程) , 检查血糖、血脂、肾功、肝功未见变化, 说明糖尿病患者可食用麦芽糖醇, 同时麦芽糖醇的甜度是蔗糖的80%~95% , 较其他糖醇高, 且甜昧特性接近于蔗糖,使它在无需改变传统工艺或配方的情况下, 就能直接替代蔗糖, 制造多种无糖食品。 无糖饼干在生产无糖饼干时, 它使用方便, 不用改变基于蔗糖的传统生产配方工艺,以重量比直接代替蔗糖使用, 无须改变原有的设备, 这样生产出来的饼干, 在面团黏度、烘烤参数、颜色、味道、体积及酥脆度等方面, 都与传统产品相似。 面包食品面包在人们饮食生活中占有重要地位, 深受人们的喜爱。目前, 世界各国都有以面包为主食的发展趋势, 如英国、美国、法国等发达国家, 人们的主食中2 /3 以上是面包。面包在我国也逐渐发展成为人们的主食, 当将麦芽糖醇加入面包中时, 由于麦芽糖醇难以被面包酵母、霉菌等菌类利用, 属于难发酵性糖质, 可以延长面包的保质期, 同时, 加入麦芽糖醇后,面包更加柔软, 口感细腻, 更能防止龋齿, 在肠胃内吸收缓慢, 抑制脂肪的形成, 促进钙的吸收, 非常适合肥胖和糖尿病患者等特殊人群食用, 所以无糖面包食品, 食用人群广泛, 市场潜力巨大。 (2)制备无糖糖果由于麦芽糖醇的风味口感好, 具有良好的保湿性和非结晶性, 同时甜味柔和纯正, 加热至150℃不着色, 与氨基酸一起加热不引起美拉德反应, 可用来制造各种糖果。 无糖硬糖麦芽糖醇具有抗结晶的特性, 可与结晶型糖醇如木糖醇等相配合生产无糖硬糖。无糖硬糖有水果风味型, 也有清凉薄荷型, 要求口感、甜度适中, 香味、风味突出。生产无糖硬糖不必选用结晶麦芽糖醇, 但麦芽糖醇含量不能太低, 要求在75%以上, 利用它的熬糖温度高、耐酸稳定性、抗结晶性和吸附保留香精风味能力强的特性, 可显著提高糖果质构的稳定性、光泽性, 有助糖

赤藓糖醇的研究进展及其应用

赤藓糖醇的研究进展及其应用 摘要:赤藓糖醇是一种低热量甜味剂,具有热值低、结晶性好、口感好、无致龋性、对糖尿病人安全等特点, 其应用前景极为广泛。本文主要论述了赤藓糖醇的性质、特性、生产及在食品工业中的应用。 关键词:赤藓糖醇;性质;特性;应用;生产 赤藓糖醇是一种采用生物技术生产的新型发酵型低热量甜味剂,1999年6月国际食品添加剂专家委员会(JECFA)批准赤藓糖醇作为食用甜味剂,且无需规定ADI值。目前,赤藓糖醇在美国、日本、澳大利亚、新西兰、新加坡、韩国、墨西哥等国已用于食品生产。2007年6月19日我国卫生部公告批准赤藓糖醇作为甜味剂应用于口香糖、固体饮料、调制乳等食品中。 1 赤藓糖醇的物理及甜味特性 赤藓糖醇在自然界分布十分广泛,海藻、蘑菇以及甜瓜、葡萄、桃等水果类中均含有赤藓糖醇。由于细菌、真菌和酵母也能产生赤藓糖醇,所以在发酵食品果酒、啤酒、酱油中也存在,另外还存在于人和哺乳动物的体液中。 Ergthritol化学名称为1, 2, 3, 4- 丁四醇, 英文名称为1, 2, 3, 4- Butanetetrol, 分子式为C4H10O4,分子量为122.12, 熔点118~122℃沸点329~331℃, 赤藓糖醇的结晶性好, 吸湿性低, 易于粉碎制得粉状产品。在相对湿度90%以上环境中也不吸湿; 赤藓糖醇对热和酸十分稳定, 在一般食品加工条件下, 几乎不会出现褐变或分解现象, 能耐硬糖生产时的高温煎煮而不褐变。赤藓糖醇属于填充型甜味剂, 溶于水时会吸收较多的能量, 溶解热- 97.4J/g, 使用时有一种凉爽的口感特性。其甜味纯正, 甜味特性良好, 与庶糖的甜味特性十分接近, 无不良后苦味。与糖精、阿斯巴甜、安赛蜜共用时的甜味特性也很好, 可掩盖强力甜味剂通常带有不良味感或风味。如赤藓糖醇与甜菊苷以1000: ( 1~7) 混合使用, 可掩盖甜菊苷的苦后味。 2 赤藓糖醇的代谢特性 虽然从结构上看赤藓糖醇是一种多羟基化合物, 但它的分子量很小, 所以在

麦芽糖醇

麦芽糖醇 标签:暂无标签 顶[0]分享到发表评论(0)编辑词条开心001人人网新浪微博 麦芽糖醇 麦芽糖醇是由麦芽糖氢化而得到的糖醇,它有液体状和结晶状两种产品。液体产品是由高麦芽糖醇结晶析出,即可制得结晶产品。作为麦芽糖醇的原料,麦芽糖的含量要达到60%以上为好,否则氢化后总醇中麦芽糖醇不到50%,就不能叫麦芽糖醇。麦芽糖醇氢化的主要流程如下:备料——调pH——进料反应——过滤脱色——离子交换——蒸发浓缩——成品。 目录 ?? 简介 ?? 生理学特性 ?? 生产工艺 ?? 糖浆制备 [显示全部] 简介编辑本段回目录 麦芽糖醇 麦芽糖醇 分子式:C12H24O11 分子量:344.31 生理学特性编辑本段回目录

麦芽糖醇 非腐蚀性:麦芽糖醇不是产酸的基质,几乎完全不会导致细菌合成不溶性聚糖,所以麦芽糖醇是极难形成龋齿的非腐蚀性新糖质。 促进钙的吸收:通过动物实验表明麦芽糖醇有促进肠道对钙吸收的作用和增加骨量及提升骨强度的性能。 刺激胰岛素的分泌:麦芽糖醇由于难以消化吸收,血糖值上升少,故而对葡萄糖代谢所必须的胰岛素的分泌,没有什么刺激作用,这样一来减少了胰岛素的分泌。由此可见,麦芽糖醇可以作为供糖尿病患者食用的甜味剂。 抑制体内脂肪过多积聚:如果同时摄入高脂肪和砂糖后,由于刺激了胰岛素的分泌,脂蛋白分解酶活性提高,故而很容易增加体内脂肪的积聚。若用麦芽糖醇替代砂糖制造如冰淇淋、蛋糕、巧克力之类的高脂肪食品,由于不会刺激胰岛素分泌,因此可以期望减少体内脂肪的过度积聚。 难消化性:麦芽糖醇在人体内几乎完全不能为唾液、胃液、小肠膜酶等分解,除肠内细菌可利用一部分外,其余均无法消化而排出体外。 摄人体内的麦芽糖醇中,约10%在小肠分解吸收后作为能源利用;余下的90%在大肠内的细菌作用下分解为短链脂肪酸,其余一部分在大肠吸收后作为能源利用。因而将麦芽糖醇在小肠内的吸收量加上大肠内短链脂肪酸的吸收量,可以计算出麦芽糖醇的热量值约为2Kea l/g。 生产工艺编辑本段回目录 麦芽糖醇是由麦芽糖经氢化还原制成的双糖醇。工业上其生产工艺可分为两大部分,第一部分是将淀粉水解制成高麦芽糖浆,第二部分是将制得的麦芽糖浆加氢还原制成麦芽糖醇。 麦芽糖醇

赤藓糖醇

使用赤藓糖醇制造无糖糖果 2006-09-15 10:14 由于赤藓糖醇的特殊营养、功能特性及物理、化学性质,目前在国外已被用于无糖糖果的制造。赤藓糖醇用于糖果可使产品热量降低;例如用于胶姆糖中替代传统甜味剂,可是热量降低约85%,在巧克力中可降低热量约30%…… 赤藓糖醇在糖果配方中用以替代砂糖等除可明显降低热量外,它并可改善低热量糖果的消化耐受性,同时改善产品风味、组织及贮存稳定性。 强力甜味剂如阿斯巴甜、安赛蜜等由于甜度过高,在食品制造中用量极少,不能具有增量性质,赤藓糖醇与它们混合使用就可改变这种情况,同时赋予非常类似砂糖的风味。 1、巧克力 用赤藓糖醇替代配方中的砂糖时,仅需在传统制造中作极小调整即可。它的热稳定性好,吸湿性低,使其可在较高温度下(80℃)进行精炼,从而减少操作时间,改善产品风味。 配方示例 原料赤藓糖醇制巧克 力 蔗糖制巧克力 名称 热量 Kcal/g % Kcal/100 g % Kcal/100g 可可液 块 6.1 39 23 7.9 42 256.2 可可脂9.3 13 120.9 13.5 125.5 赤藓糖 醇 0.4 47.7 19 - - 蔗糖 4.0 - - 44 176 卵磷脂9.3 0.48 4.5 0.48 4.5 香兰素- 0.02 - 0.02 - 阿斯巴 甜 - 0.03 - - - 热量 Kcal - - 382.3 - 562.2 如以蔗糖做甜味剂制造的巧克力热量(562.2Kcal/100g)为100,则赤藓糖醇制巧克力热量(382.3Kcal/100g)仅为68,约可降低热量32%。 操作要点 将赤藓糖醇、可可液块(液状)与5-10%可可脂在混均机内30-40℃混合10-15min,然后在五辊精磨机中精磨,精练16-22h,温度不超过80℃,在接近精炼结束时,将余下的可可脂及卵磷脂加入。如精炼时间为16h时,可在14h后加入余下的可可脂,15h后加入卵磷脂,进行调温

海藻糖的一般性质

海藻糖的一般性质 目前使用的商品海藻糖,有含两分子结晶水的结晶海藻糖(CAS 6138-23-4)和不含结晶水的无水海藻糖(CAS 99-20-7),其一般性质如下。 (1)密度结晶海藻糖1.512g/cm3。 (2)熔点结晶海藻糖97℃,于130℃失水;无水海藻糖210.5℃。 (3)溶解热结晶海藻糖57.8kJ/mol,无水海藻糖53.4kJ/mol。 (4)旋光度[α]D20+199o(5%水溶液)。 (5)溶解度海藻糖易溶于水、热乙醇、冰醋酸,不溶于乙醚、丙酮。海藻糖在水中的溶解度随温度变化较为明显,如表1-2所示: 表1-2 海藻糖的溶解度 温度/℃10 20 30 40 50 60 70 80 90 溶解度/(g/100g)55.3 66.9 86.3 109.1 140.1 184.1 251.4 365.9 602.9 饱和浓度/% 35.6 40.8 46.3 52.2 58.3 64.8 71.5 78.5 85.8 (6)渗透压海藻糖的渗透压与麦芽糖的渗透压相近,如表1-3所示。 表1-3 海藻糖的渗透压/mosm/kg 浓度/% 5 10 20 30 海藻糖193 298 690 1229 麦芽糖195 299 676 1221 (7)吸湿性结晶海藻糖在相对湿度92%以下时无吸湿性;无水海藻糖在相对湿度35%~75%时具有吸湿性,在相对湿度75~92%时含水量保持稳定。 (8)黏度海藻糖具有相对低的黏度,25℃时,40%的海藻糖溶液黏度也不会高于5.7厘泊(cP)。 (9)玻璃化转变温度海藻糖具有双糖中最高的玻璃化转变温度,115℃。 (10)水溶液的pH稳定性>99%(pH3.5,100℃,24h)。 (11)水溶液的热稳定性>99%(120℃90min)。 (12)美拉德(Maillard)反应和甘氨酸100℃反应90min,不呈色;和聚蛋白胨120℃反应90min,不呈色。 (13)甜度相当于蔗糖的45%。 (14)消化性经口摄取可在小肠中消化吸收。

赤藓糖醇应用

甜味剂赤藓糖醇在低能量或无糖饼干应用 甜味剂赤藓糖醇在低能量或无糖饼干应用 2006年6月30日 10:24来源:山东保龄宝生物技术有限公司应用技术中心作者:杨海军 据资料显示,2004年1~10月,我国饼干产量比去年同期增长16.4%,销售收入同比增加18.7%。饼干市场年增长率为10~15%,2005年中国饼干产量预计可达到170万吨,人均消耗为1公斤,而发达国家的人均消耗量为25公斤,由此可见我国的饼干市场还具有巨大的发展空间。 蔗糖、油脂是制作饼干的主要原料,对于形成饼干特有的组织结构、口感和风味具有相当重要的作用,是生产高品质饼干制品所不可缺少的原料。特别是糖在饼干的生产中,除了能增加甜味、上色、提高保藏性以外,对面团的流变学性质、工艺及产品品质带来很大的影响,糖的适量添加是保证正常的生产工艺及良好的产品品质十分重要的条件。在不添加糖的饼干的生产过程中,由于失去了糖的反水化作用,面粉的吸水率大幅度增加,面粉中的面筋性蛋白质的涨润度大幅度提高,面团的弹性增加,从而使得面团的调制时间延长,同时使辊压成的饼坯韧缩严重,烘烤后的产品表面起泡严重,口感僵硬。这种感官品质的产品很难被患有糖尿病、肥胖症及其他人群愉快的接受。 但是随着现代消费者消费水平的提高,对健康意识的增强,这种“高糖高油脂高热量”的产品已不能符合消费者的需要。饼干产业也向着营养、健康、功能性、低热量等方向发展,无糖饼干、低能早餐饼干以及添加维生素和纤维素的饼干就在这种趋势下应运而生。但是目前有些厂家只是考虑在低能量或无糖饼干中部分地减少油脂和糖的使用量,但是仅是减少油脂和糖的使用量是不够的,还应采用膳食纤维、糖醇、低聚糖、类脂肪等替代物,在减少产品能量、满足部分消费者消费需求的同时,尽可能地模拟出油脂和蔗糖的功能,提高产品的可接受性。 蔗糖的替代,目前主要是采取强力甜味剂与低甜度填充型甜味剂或填充剂相结合的方法。比如低聚糖、糖醇等。然而已有的清淡食品配料还存在许多不足之处:热值降低有限;其副作用限制了用量;溶解性差;口味异常;不耐贮存以及组织和填充性不佳等。近几年新研制开发的功能性食品配料--赤藓糖醇对弥补上述不足取得了一些成功。它不仅能从物理化学方面取代蔗糖而且还可以带来有利于健康的好处,而且使用赤藓糖醇的饼干产品与其同样使用蔗糖为原料的产品相比具有更好的结构紧密性。在饼干中使用的赤藓糖醇,最好是粒度精细(<200um)的结晶,细小的颗粒会给产品带来平滑、圆润的口感。 赤藓糖醇是一种天然的四碳糖醇,也是所有多元糖醇中唯一运用发酵法生产的。赤藓糖醇为白色光亮粉末或结晶,能溶于水,成为无色不黏稠的液体。它是一种独特的低热值填充剂,在现代保健食品中具有很大的应用潜力,它的特性使它特别适合一些需要高比例掺入粉状或结晶状物质的情况,这是其它低热值填充剂之所不及的。 赤藓糖醇具有许多区别于其它同类产品的无与伦比的优越特性,应用在饼干中为产品增加了许多卖点,具体如下:

蔗糖海藻糖性质介绍

蔗糖的物理性质 蔗糖极易溶于水,其溶解度随温度的升高而增大。蔗糖还易溶于苯胺、氮苯、乙酸乙酯、乙酸戊酯、熔化的酚、液态氨、酒精与水的混合物及丙酮与水的混合物,但不能溶于汽油、石油、无水酒精、三氯甲烷、四氯化碳、二硫化碳和松节油等有机溶剂。蔗糖属结晶性物质。纯蔗糖晶体的比重为1.5879,蔗糖溶液的比重依浓度和温度的不同而异。 蔗糖的化学性质 蔗糖及蔗糖溶液在热、酸、碱、酵母等的作用下,会产生各种不同的化学反应。反应的结果不仅直接造成蔗糖的损失,而且还会生成一些对制糖有害的物质。 蔗糖分子结构 1、热分解作用 结晶蔗糖加热至160℃,便熔化成为浓稠透明的液体,冷却时又重新结晶。加热时间延长,蔗糖即分解为葡萄糖及脱水果糖。在190—220℃的较高温度下,蔗糖便脱水缩合成为焦糖。焦糖进一步加热则生成二氧化碳、一氧化碳、醋酸及丙酮等产物。在潮湿的条件下,蔗糖于100℃时分解,释出水分,色泽变黑。 蔗糖溶液在常压下经长时间加热沸腾,溶解的蔗糖会缓慢分解为等量的葡萄糖及果糖,即发生转化作用。蔗糖溶液若加热至108℃以上,则水解迅速,糖溶液浓度愈大,水解作用愈显著。煮沸容器所用的金属材料,对蔗糖转化速率也有影响。例如:蔗糖溶液在铜器中的转化作用,远比在银器中的大,玻璃容器几乎没有什么影响。 2、酸的作用 蔗糖溶液为酸性时,蔗糖转化更快。浓酸对糖液的分解作用更大,如浓硫酸能使固体蔗糖迅速脱水,焦化成为黑色产物。在纯蔗糖溶液中,只要有少量的游离酸存在,就能使蔗糖的转化作用迅速进行。但是,对于压

榨蔗汁中的蔗糖来说,情况就不是这样。因为蔗汁中含有弱酸的中性盐会抑制蔗糖的转化。 3、碱的作用 稀碱溶液如氢氧化钙,氢氧化钾及钠的溶液,甚至在煮沸的情况下也不会使蔗糖分解。浓碱溶液加在糖液中加热时蔗糖分解成糠醛、丙酮、乳酸、乙酸、甲酸、二氧化碳等产物。分解程度及产物种类视氢氧离子浓度及温度而定。蔗糖能与中等浓度的碱化合生成碱性的蔗糖盐。 4、盐类的作用 水中同时有蔗糖与盐类存在时,它们的溶解度都要发生变化,变化的程度取决于双方的浓度和盐类的性质。 5、氧化作用 蔗糖燃烧或在生物氧化中,都产生二氧化碳及水,在中性或酸性的溶液中,高锰酸钾可使蔗糖氧化成二氧化碳、甲酸、乙酸及草酸,但在碱性条件下,只能部分地变为草酸及二氧化碳。 6、微生物对蔗糖的作用 蔗糖的稀薄溶液易受微生物的感染,但感染机会随糖汁增浓而减少。此外还跟糖汁的温度及pH值有关。一般微生物繁殖的最适温度都在30—45℃之间,而加热到80℃时则多数微生物都能被抑制或杀灭。 海藻糖 科技名词定义 中文名称:海藻糖 英文名称:trehalose 定义1:昆虫的主要血糖,由两个葡萄糖分子组成的双糖。 所属学科:昆虫学(一级学科);昆虫生理与生化(二级学科) 定义2:由两个葡萄糖通过异头体羟基失水而形成的非还原性二糖。有3种不同的异构体:α-α、α-β和β-β。 所属学科:生物化学与分子生物学(一级学科);糖类(二级学科) 本内容由全国科学技术名词审定委员会审定公布

相关文档
最新文档