利息理论第二章课后答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 证明:
()
n
m
m n i v
v a a -=-;
证明:
11()()
m n
n
m
m n i i i i v v v v a a --
-=-=-
2、化简:n t t n
n
a
s a
s
--
解:
()()()()()()()1
111
1111
1111111t
n t
n
t
t
n t t n n n n
n
n
i i
i
i
i v
i i i a s a
s
v i i n ------+=+=+=----+++++++
3、设2,n n x y a a ==,用x 、y 来表示d; 解:
()()()2222221122111211n n n n n
n v a x xi v x y i x y i
xi yi i d i x x x y v yi v a y i ⎧-==⎪⎧-=--⎪⎪⇒⇒-=-⇒=⇒==⎨⎨++---=⎪⎪⎩
==⎪⎩
4、设,m
n x y
a s ••== 证明:
1m n
vx y
iy a
++=
+;
证明:
()()()()()()111111111111m m m m n n
n
n v i a x v xiv
xiv yi xv y i a i iy i s y v yi i -+-⎧-+⎪==⇒=----+⎪∴==⎨++-⎪=
=⇒=-⎪⎩
5、证明:2322..
..
..
1
..
..
..
n
n
n
n
n n
s
s
s s
s
s
+
-
=;
证明:
()()()()()()()()()()
2323222222111111
111111
111111
11
n n n
n n n
n n n n
n
n n n
n
n
s s s i i i s s s i i i i i i i +-+-+-+
-=+-+-+-+-⎡⎤+-+⎣⎦
=+++
=+-
6年金a 的给付情况是:1—10年,每年给付1000;11-20年,每年给付2000元;21-30年,每年给付1000元;年金b 在1-10年,每年给付k 元;11-20每年给付0;21-30,每年给付k 元,若a 与 b 相等,知道=0.5,计算k
解:100030a +10001010v a =k 30a -k 1010v a 又因10v =0.5 解答得k=1800
7 某人希望采取零存整取的方式累积2000,前n 年,每年末存入50,后n 年,每年末存入100,不足部分在2n+1年末存入,正好达到2000的存款本息和。设年利率为4.5%计算n 及超出或者不足2000的差额 解:50n s 2+50n s =2000 解答得n=9.3995 所以n=9
(5018s +509s )()i +1+x=2000 解答得 x=32.4
8 从1998年起,知道1998年底,默认每年一月一号和一月七号在银行存入一笔款项,七月一号的存款要比一月一号的多10.25%,并且与下一年的一月一号相等,每年计息两次且年名义利率为10%。;在1998年十二月三十一号,本息为11000 ,计算第一次存款 解
:x
(2005.1+10172181025.105.105.11025.105.11025.10519.11025.1⨯++⨯+⨯+⨯ )=11000
因为1025.1=205.1
X (10*2005.1+10*2105.1)=11000 解答得 x=202.2
9. ()1.0n Ia =55,1
.0n a =8.08利用近似计算
解;()()()x f x x f x x f '⋅∆+≈∆+ '⎪⎭
⎫ ⎝⎛+=1.01
.0102.0002.0n n
n
a a a ≈7.98
10.某期末付年金付款如下:单数年末,每次付款100元,双数年末每次付款200元,共20年。若在某时间t 一次性付3000元的现值与前面的年金现值相等。若利率i>0,写出t 的表达式。
解:t νννννν⋅=+++++3000)222(10020432
222202
4
20
2020
22020
2022(2)(1)
100()100()10010030001t a a a a a a a νννννννννν⎡⎤+-+++
+=+=+
=⋅
=⎢⎥-⎢⎥⎣⎦
()2
20
2
230t
a a ννν+=
2202(2)ln 30ln a a t ννν⎡⎤
+⎢
⎥
⎣⎦=
11.某年末付永续年金首次付款额为1,第二次为2,…,直到付款额增加到n ,然后保持不变。计算该永续年金现值。 解:
()
()n
n n
n n n n
n a n a a n I a Ia n a i
i i d ννν∞∞
-=+=
+==