070101118《离散数学》教学大纲

070101118《离散数学》教学大纲
070101118《离散数学》教学大纲

课程编号:070101118

《离散数学》课程教学大纲

(Discrete Mathematics)

一、课程简介

1、课程性质:专业基础必修课.

2、开课学期:第三学期

3、学时学分:总学时: 68 学分: 3

4、适用专业:计算机科学

5、课程修读条件:在修完高等数学与线性代数课程之后开设。

6、课程教学目的:

离散数学是计算机科学中基础理论的核心课程。通过本课程的学习,培养学生的抽象思维和严密的逻辑推理能力,应用自如的解题技巧,以及训练有素的演算能力,使学生能处理各种离散结构事物的描述工具与方法,为进一步学习专业课打好基础,并为学生今后处理离散信息,提高专业理论水平,从事计算机的实际工作提供必备的数学工具。

二、教学基本要求或建议:

1、掌握一些现代数学语言

2、理解有关基本概念

3、掌握有关基本理论知识

4、熟练掌握一些重要方法

三、内容纲目及标准:

第一章命题逻辑

[教学目的]正确理解命题、命题联结词、真值表、命题公式的递归定义等概念,掌握命题符号化方法,命题公式真值表的求法,命题演算的基本方法、命题公式范式的判定及求法及应用命题演算基本公式和推理规则进行正确的推理和应用,为学习下一章谓词(一阶)逻辑打下扎实基础。

[教学重点与难点]

(1)命题公式与符号化;真值表与等价公式

(2)重言式与蕴含式;其他联结词

(3)对偶与范式

(4)推理理论(难点)

[教学内容纲目]

第一节命题逻辑辑基本概念

一、命题与联结词概念

二、真值表

三、命题公式与赋值

第二节命题逻辑等值演算

一、等值式

二、析取范式与合取范式

三、联结词完备集

第三节命题逻辑的推理理论

一、推理的形式结构

二、自然推理系统

第二章谓词逻辑

[教学目的]正确理解谓词,量词,永真公式,前束范式等基本概念,理解命题演算和谓词演算的相互关系,了解公理化理论的基本思想及公理化理论在计算机科学中的地位和作用。

[教学重点与难点]

(1)量词与变元

(2)等值公式演算

(3)前束范式

(4)谓词演算推理(难点)

[教学内容纲目]

第一节谓词(一阶)逻辑基本概念

一、一阶逻辑命题符号化

(一)个体变项与常项

(二)谓词与量词

(三)谓词公式

二、一阶逻辑公式及解释

(一)变元

(二)解释

(三)等值公式

三、公式分类

第二节一阶逻辑公式等值演算与推理

一、一阶逻辑等值式与置换规则

二、一阶逻辑前束范式

三、一阶逻辑的推理理论

(一)一阶逻辑的公理化理论

(二)谓词演算与逻辑程序设计语言

第三章集合论

[教学目的](1)正确理解集合、关系、映射的基本概念,理解多元运算的概念,能正确判定单射、满射、双射。(2)熟练掌握集合、关系、映射的运算极其性质。(3)理解和掌握偏序关系、相容关系、等价关系的概念和作用。(4)正确认识无限集合的本质特征,理解集合基数的实质,掌握比较集合基数大小的方法。

[教学重点与难点]集合的运算与性质,关系的概念与表示,关系的运算,关系的性质与闭包(难点),次序关系(难点),等价关系(难点),映射,无限集的特征,集合的基数(难点)。

[教学内容纲目]

第一节集合的概念与运算

一、集合的基本概念

(一)元素与集合

(二)集合的相等

(三)子集和幂集

二、集合的运算

(一)集合的交、并、差(补)运算

(二)集合的运算律

(三)有序对与笛卡儿积

三、集合恒等式

第二节二元关系

一、关系的概念极其表示

(一)关系

(二)图表示

(三)矩阵表示

二、关系的运算

(一)交、并、差(补)

(二)复合

三、关系的性质与闭包

(一)自反性,非自反性

(二)对称性,非对称性

(三)传递性

(四)关系的闭包

四、等价关系与划分

(一)等价关系与等价类

(二)商集

(三)集合的划分

五、次序关系

(一)拟序,偏序,线性序

(二)极大(小)元,最大(小)元,上(下)界,上(下)确界第三节函数

一、函数的定义与性质

(一)单射

(二)满射

(三)1-1映射

二、函数的复合与反函数

(一)函数的复合

(二)逆涵数

三、无限集

(一)无限集的特征

(二)集合的基数

第四章代数系统

[教学目的]

(1)理解和掌握代数系统的概念和性质

(2)熟悉半群的概念和特性

(3)正确理解群、子群、正规子群、商群、群同态与群同构的概念,熟悉它们的性质,掌握它们的判定方法。

(4)理解变换群、置换群的概念和作用,理解置换的计算。

(5)掌握循环群的特性和结构。

(6)理解Lagrange定理和同态基本定理,并能正确应用。

(7)理解格和Boole代数的概念和性质。

(8)了解代数系统在计算机科学研究中的地位与作用。

[教学重点与难点]

半群,群与子群,同态与同构(难点),格,布尔代数(难点),布尔表达式(难点)。

[教学内容纲目]

第一节代数系统的基本概念

一、二元运算及性质

(一)单位元

(二)逆元

(三)同态与同构

二、代数系统

第二节半群与群

一、半群与独异点

二、群的定义与性质

三、子群

四、陪集与Lagrange定理

五、正规子群与商群

六、群同态与同构基本定理

七、循环群与置换群

第三节格与Boole代数

一、格的定义与性质

二、子格与格同态

三、分配格与有补格

四、Boole代数

第五章图论

[教学目的]

(1)正确理解图论中的基本概念,理解图的连通性。

(2)理解Euler图和 Hamilton图的特性,并能正确判定。

(3)熟悉掌握图的矩阵表示

(4)熟悉平面图的概念,判断和有关着色。

[教学重点与难点]路与回路的概念,图的矩阵表示,欧拉图与汉密尔顿图,平面图,对偶图与图的着色(难点)。

[教学内容纲目]

第一节图论基本概念

一、图、通路与回路

二、图的连通性

三、图的矩阵表示

第二节Euler图和Hamilton图

一、Euler图

二、Hamilton图

三、带权图与货郎担问题

第三节平面图及图的着色

一、平面图的基本概念

二、平面图的判断与Kuratowski定理

三、平面图的点着色与边着色

(二)实践部分

无实验

四、课程学时分配:

五、分专业、层次的不同要求的有关说明:

对计算机科学与技术,网络工程本科专业(64学时),必须根据实际情况完成主要教学内容。对专科学生,相应降低要求。在教学目标、教学内容及要求、教学方法、教学手段、考试、参考书目等方面差异不大。

六、课程作业与考核评价:

课程作业训练每周2次,每次2-4个题目,具体作业类型参见教材,课堂讨论课考查学生课堂表现及学习理解能力,期中期末考试形式为闭卷考试,课程试卷试题结构为判断题,填空题,计算

题,证明题及综合应用题。考试内容主要考查学生对基础知识的掌握程度,同时又考查学生对所学知识的理解与应用。课程作业、课堂考核及课堂讨论课情况为平时成绩主要依据,闭卷考试成绩和平时成绩按一定比例(不举行期中考试:6:4,举行期中考试则期末考试成绩、期中考试成绩、平时成绩的比为:4.5:1.5:4)构成课程总评成绩。

七、教材及主要参考书

教材:《离散数学》耿素云等编高等教育出版社(2004.1)

参考书:

1、《离散数学》左孝凌等编著上海科技文献出版社(1982.)

2、《离散数学理论分析题解》左孝凌等编著上海科学技术文献出版社(1988.)

3、《离散数学》方世昌编西安电子科技大学出版社(1990.5)

4、Bernard Kolman,Robert C.Busby,Sharon Cutler Ross.Discrete Mathematical Structures(Fourth

Edition)[M].Beijing:Higher Education Press,2001.

5、《离散数学导论》徐洁磐高等教育出版社(1991.)

6、J.P.特伦布菜 R.马诺哈著,罗远诠、李盘林等译

7、《离散数学结构及其在计算机科学中的应用》上海科学技术出版社(1982.)

8、《离散数学及其应用》傅彦等电子工业出版社(1997.6)

9、《离散数学》王遇科北京工业学院出版社(1986.)

课程教学标准批准:审核人:制定:

吉林大学离散数学精品试卷

2006-2007学年第2学期 2005级《离散数学2》期末考试试题(A卷) 考试时间:2007年6月班级_______________________ 学号_____________________ 姓名_____________________ 请将答案写在答题纸上,写明题号,不必抄题,字迹工整、清晰; 请在答题纸和试题纸上都写上你的班级,学号和姓名,交卷时请将试题纸、答题纸和草纸一并交上来。 一.综合体(30分,每题3分) 1. 求( 1 3 5 ) (2 5 4 ) (3 4 ) 2. 只有两个生成元的循环群一定是有限循环群吗?并说明理由。 3. 有限循环群中是否一定存在周期与群的元数相等的元素? 4. 下面哪个是域GF( 16)的真子域 (A)GF (6) ;(B)GF ⑷;(C)GF(8);(D)GF(16) 5. 有限布尔代数的元素个数必定是如下哪个形式? (A)2n;(B)n 2 ;(C)2 n;(D)4n. 6. 下列代数系统(S, *)中,哪个是群? (A) S={0,1,3,5},* 是模7的乘法;(B) S是有理数集合,*运算是普通乘法; (C) S是整数集合,*是普通乘法;(D) S={1,3,4,9},* 是模11的乘法。 7. 设A={0,1,2,3,4},运算为模5加法,请给出A的所有子群。 8. n元恒等置换是奇置换还是偶置换?对换呢? 9?请给出一个有余,但不是分配格的例子。 10.设R是模12的整数环,R={0,1,2,…,11},下面哪一个是极大理想: (A) 6R; (B)2R; (C)4R; (D)8R 二.计算题(25分,每题5分) 1. 计算分圆多项式①24(X). 2. 设(Z,+)为整数加法群,(C*,??)为非零复数的乘法群,令 f: n -i n ,是Z到C*中的同态映射,请求出f的同态核。 3. 在R上求出x+2除2X5+4X3+3X2+1所得的商式和余式。 4. 设G是3次对称群,H是由I和(13)作成的子群,求H得所有右陪集。 5. 设A={0,1,2,3,4,5}, 运算为模6加法,请给出A中所有元素的周期。 三.(10分)证明或者反驳:f(x)=3x 5+5X2+1 四.(10分)设(G, *)是群,(A, *)和(B,*)是它的两个子群,C={a*b|a € A, b€ B}.证明:若*满足交换律,则(C, *)也是(G,*)的子群。 五.(10分)设Z是整数集合,X={(a,b)|a,b € Z},定义X上的二元运算①和。 如下:对任意(ab) ,(a 2,b2)€ X,有: (a1b"e (a2,b2)= (a+a?,b1+b2), (a1bJ O (a2,b2)= (ax a2,b 1X b),其中,+,x分别是整数加法与乘法。 证明:(X,?,O)是环,如果此环有零因子请给出它们

离散数学

离散数学试题(A 卷答案) 一、(10分) (1)证明(P →Q )∧(Q →R )?(P →R ) (2)求(P ∨Q )→R 的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值。 解:(1)因为((P →Q )∧(Q →R ))→(P →R ) ??((?P ∨Q )∧(?Q ∨R ))∨(?P ∨R ) ?(P ∧?Q )∨(Q ∧?R )∨?P ∨R ?(P ∧?Q )∨((Q ∨?P ∨R )∧(?R ∨?P ∨R )) ?(P ∧?Q )∨(Q ∨?P ∨R ) ?(P ∨Q ∨?P ∨R )∧(?Q ∨Q ∨?P ∨R ) ?T 所以,(P →Q )∧(Q →R )?(P →R )。 (2)(P ∨Q )→R ??(P ∨Q )∨R ?(?P ∧?Q )∨R ?(?P ∨(Q ∧?Q )∨R )∧((P ∧?P )∨?Q ∨R ) ?(?P ∨Q ∨R )∧(?P ∨?Q ∨R )∧(P ∨?Q ∨R )∧(?P ∨?Q ∨R ) ?2M ∧4M ∧6M ?0m ∨1m ∨3m ∨5m 所以,其相应的成真赋值为000、001、011、101、111:成假赋值为:010、100、110。 二、(10分)分别找出使公式?x (P (x )→?y (Q (y )∧R (x ,y )))为真的解释和为假的解释。 解:设论域为{1,2}。 若P (1)=P (2)=T ,Q (1)=Q (2)=F ,R (1,1)=R (1,2)=R (2,1)=R (2,2)=F ,则 ?x (P (x )→?y (Q (y )∧R (x ,y ))) ??x (P (x )→((Q (1)∧R (x ,1))∨(Q (2)∧R (x ,2)))) ?(P (1)→((Q (1)∧R (1,1))∨(Q (2)∧R (1,2))))∧(P (2)→((Q (1)∧R (2,1))∨(Q (2)∧R (2,2)))) ?(T →((F ∧F)∨(F ∧F)))∧(T →((F ∧F)∨(F ∧F))) ?(T →F)∧(T →F) ?F 若P (1)=P (2)=T ,Q (1)=Q (2)=T ,R (1,1)=R (1,2)=R (2,1)=R (2,2)=T ,则 ?x (P (x )→?y (Q (y )∧R (x ,y ))) ??x (P (x )→((Q (1)∧R (x ,1))∨(Q (2)∧R (x ,2)))) ?(P (1)→((Q (1)∧R (1,1))∨(Q (2)∧R (1,2))))∧(P (2)→((Q (1)∧R (2,1))∨(Q (2)∧R (2,2)))) ?(T →((T ∧T)∨(T ∧T)))∧(T →((T ∧T)∨(T ∧T))) ?(T →T)∧(T →T) ?T

离散数学代数结构作业部分答案

第四章代数结构(作业) 作业:P86:4、7、9 4、 (1)若a和b是整数,则a+b+ab也是整数,故a*b也是整数,所以运算*是封闭的。(2)任选整数集合中的三个元素x,y和z。则有: (x*y)*z = (x+y+xy)*z = (x+y+xy)+z+(x+y+xy)×z = x+y+z+xy+xz+yz+xyz x*(y*z) = x*(y+z+yz) = x+(y+z+yz)+x×(y+z+yz) = x+y+z+yz+xy+xz+xyz = (x*y)*z 因此,*运算满足结合律。 (3)假设e为(Z,*)的幺元,则有: 任选整数集中的一个元素x,都有 0*x = 0+x+0×x=x且 x*0 = x+0+x×0=x 故0是(Z,*)的幺元。 7、N+上的所有元素都是(N+ ,*)等幂元; (N+ ,*)无幺元; (N+ ,*)的零元为1。 9、(A,*)中的等幂元:a、b、c、d; (A,*)中的幺元:b; (A,*)中的零元:c; a-1 = d,b-1 = b,c-1 不存在,d-1 = a, 作业:P87:12、13、18 12、(A,*)到(N4,⊕4)的同构映射f为: f(a)=0, f(b)=1, f(c)=2, f(d)=3; 或者: f(a)=0, f(b)=3, f(c)=2, f(d)=1; 13、同构映射f为: f(0)=?, f(1)={a}, f(2)={b}, f(3)={a,b};

或者: f(0)=?, f(1)={b}, f(2)={a}, f(3)={a,b}; 18、任选a ∈N +,b ∈N +, 只需证明f(a+b)=f(a)+f(b) 由f 的定义可知:f(a+b)=2a+2b=f(a)+f(b),故f 是(N +,+)到(E +,+)的同态映射。 作业:P96:3,P97:7 3、(1)显然,*运算对Z 是封闭的。 (2) (a*b)*c = (3(a+b+2)+ab)*c = 3((3(a+b+2)+ab)+c+2)+(3(a+b+2)+ab)×c = 3(3a+3b+c+ab+8+ac+bc+2c)+abc = 3(3a+3b+3c+ab+ac+bc+8)+abc a*(b*c) = a*(3(b+c+2)+bc) = 3(a+(3(b+c+2)+bc)+2)+a(3(b+c+2)+bc) = 3(a+3b+3c+bc+8+ab+ac+2a)+abc = 3(3a+3b+3c+ab+ac+bc+8)+abc = (a*b)*c 故*运算满足结合律。 (3)任选a ∈Z ,(-2)*a=a 且a*(-2)=a ,所以-2是(Z,*)的幺元。 所以(Z,*)是独异点。 7、因为1为(A,*)运算的幺元,而且对任意A 的子集A ’,*在A ’上都是封闭和可结合的运算,因此,(A,*)的所有子独异点为(A ’,*),其中A ’必须包含1。即:(A,*)的所有子独异点为: ({1},*),({1,2},*),({1,3},*),({1,4},*),({1,2,3},*),({1,2,4},*),({1,3,4},*),({1,2,3,4},*) P105:3、4、13 3、??????1100b a ×??????220 0b a =??? ?? ?212100b b a a ,a 1,a 2∈{1,-1}, 所以a 1×a 2∈{1,-1},b 1×b 2∈{1,-1}。 故(G,×)是封闭的。 而 (??????1100b a ×??????2200b a )×??????3300b a =??????212 100b b a a ×????? ?3300b a =??????3213 2100b b b a a a ??????1100b a ×(????? ?22 00b a ×??????3300b a )=??????1100b a ×??????323 200b b a a =??????3213210 0b b b a a a 故(G,×)是可结合的。(也可以说因为矩阵乘法是可结合的。)

大学本科高等数学《离散数学》试题及答案

本科高等数学离散数学试题及答案 一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1?R2 = ________________________,R2?R1 =____________________________, R12 =________________________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____. 15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

离散数学

离散数学 作业要求: (1)禁止用附件提交作业。附件提交的作业计0分。 (2)作业按题号顺序作答,乱序、不写题号等视情况扣分。 (3)选择题直接提交答案,不要抄题。 (4)卷面整洁,文字、符号以及图等要清晰可辨。 一、单选题(每题2分,共15小题) 1.集合}}}{{},{,{c b a A =,则下列不属于A 的子集的是( ) A.}}{{a B.}}{{b C.}}}{{{c D.}}{,{b a 2.设全集{1,2,...,9,10}U =的子集为A={偶数},B={奇数},则下列选项正确的是( ) A.A B =? B.A B =? C.A B U = D. 以上答案都不对 3.已知集合}4,3,2,1{=A , },,{c b a B =, }8,6,4,2,1{=C ,定义A 到B 的关系c)}(4,b),(3,a),(2,a),{(1,1=ρ,B 到C 的关系(c,1)}(b,6),{(a,4),2=ρ,则下列属于21ρρ的是( ) A.)8,1( B.)4,1( C.)6,2( D.)1,3( 4.集合}3,2,1{=A 上的关系)}3,1(),1,2(),2,1{(=R ,则R 具有( )

A.对称性 B.自反性 C.可传递性 D.以上说法都不对 5.集合{1,2,3}A =上的下列关系,是由A 到A 的函数的是( ) A.{(1,3),(2,3),(3,1)}f = B.{(1,2),(3,1)}g = C.{(1,1),(2,1),(3,2),(1,3)}h = D.{(1,3),(2,1),(2,2)}I = 6.集合},,{},3,2,1{c b a B A ==,则A 到B 的映射中,是单射的是( ) A.}b)b)(3,a)(2,(1,{ B.}b)b)(3,a)(1,(1,{ C.}c)b)(3,a)(2,(1,{ D.}b)b)(3,b)(2,(1,{ 7. 下面各集合都是N 的子集,( )集合在普通加法运算下是封闭的。 A.}16|{整除的幂可以被x x B.}5|{互质与x x C.}30|{的因子是x x D.}30|{

《离散数学》及答案

《离散数学》+答案 一、选择或填空: 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别) 2、下列公式中哪些是永真式?( ) (1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)可用蕴含等值式证明 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q (4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式 4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元) 5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1)北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧! 答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6) 44

太原理工大学离散数学试题

一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=__{3}__________________; ρ(A) - ρ(B)=___________________{3},{1,3},{2,3},{123}______ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = _____2^(n^2)_____________________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是__自反,对称,传递 ____________________, ________________________, _______________________________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2= {(2,1),(3,2),(4,3)}, 则 R1?R2 = ________________________,R2?R1 =____________________________, R12 =________________________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____. 15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。 16. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公

离散数学知识点整理

离散数学 一、逻辑和证明 1.1命题逻辑 命题:是一个可以判断真假的陈述句。 联接词:∧、∨、→、?、?。记住“p仅当q”意思是“如果p,则q”,即p→。记住“q除非p”意思是“?p→q”。会考察条件语句翻译成汉语。 系统规范说明的一致性是指系统没有可能会导致矛盾的需求,即若pq无论取何值都无法让复合语句为真,则该系统规范说明是不一致的。 1.3命题等价式 逻辑等价:在所有可能情况下都有相同的真值的两个复合命题,可以用真值表或者构造新的逻辑等价式。

谓词+量词变成一个更详细的命题,量词要说明论域,否则没有意义,如果有约束条件就直接放在量词后面,如?x>0P(x)。 当论域中的元素可以一一列举,那么?xP(x)就等价于P(x1)∧P(x2)...∧P(xn)。同理,?xP(x)就等价于P(x1)∨P(x2)...∨P(xn)。 两个语句是逻辑等价的,如果不论他们谓词是什么,也不论他们的论域是什么,他们总有相同的真值,如?x(P(x)∧Q(x))和(?xP(x))∧(?xQ(x))。 量词表达式的否定:??xP(x) ??x?P(x),??xP(x) ??x?P(x)。 1.5量词嵌套 我们采用循环的思考方法。量词顺序的不同会影响结果。语句到嵌套量词语句的翻译,注意论域。嵌套量词的否定就是连续使用德摩根定律,将否定词移入所有量词里。 1.6推理规则 一个论证是有效的,如果它的所有前提为真且蕴含着结论为真。但有效论证

二、集合、函数、序列、与矩阵 2.1集合 ∈说的是元素与集合的关系,?说的是集合与集合的关系。常见数集有N={0,1,2,3...},Z整数集,Z+正整数集,Q有理数集,R实数集,R+正实数集,C复数集。 A和B相等当仅当?x(x∈A?x∈B);A是B的子集当仅当?x(x∈A→x∈B);A是B的真子集当仅当?x(x∈A→x∈B)∧?x(x?A∧x∈B)。 幂集:集合元素的所有可能组合,肯定有?何它自身。如?的幂集就是{?},而{?}的幂集是{?,{?}}。 考虑A→B的函数关系,定义域、陪域(实值函数、整数值函数)、值域、像集(定义域的一个子集在值域的元素集合)。 一对一或者单射:B可能有多余的元素,但不重复指向。 映上或者满射:B中没有多余的元素,但可能重复指向。 一一对应或者双射:符合上述两种情况的函数关系。 反函数:如果是一一对应的就有反函数,否则没有。 合成函数:fοg(a)=f(g(a)),一般来说交换律不成立。 2.4序列 无限集分为:一组是和自然数集合有相同基数,另一组是没有相同基数。前者是可数的,后者不可数。想要证明一个无限集是可数的只要证明它与自然数之间有一一对应的关系。 如果A和B是可数的,则A∪B也是可数的。

离散数学结构试题集5-6

一.填空题 1. 群中有唯一的()。 2. 如果群运算是可交换的,则群为()。 3. 设*是定义在集合A上的二元运算,如果对于A中任意的两个元素x,y,都有x*y∈A,则称 二元运算*在A上是()。 4. 设*是定义在集合A上的二元运算,如果对于A中任意的两个元素x,y,都有x*y=y*x,则称 二元运算*在A上是()。 5. 设★是定义在有理数集合Q上的二元运算,如果对于Q中任意的两个元素x,y,都有x ★y=x +y-x*y,其中*表示普通乘法元算,则二元运算★在Q上是()。(填写可交 互/不可交换) 6. 设*是定义在集合A上的二元运算,如果对于A中任意的元素x,y,z,都有(x*y)*z=x*(y*z) ,则称二元运算*在A上是()。 7. 设★是定义在非空集合A上的二元运算,如果对于A中任意的两个元素x,y,都有x*y=y,则二元运算★在A上是()。(填写可结合/不可结合) 8. 设*,★是定义在集合A上的两个二元运算,如果对于A中任意的元素x,y,z,都有(x*y) ★z=(x★z)*(y★z),z★(x*y)=(z★x)*(z★y),则称二元运算★对于*在A上是()。 9. 设*,★是定义在集合A上的两个可交换的二元运算,如果对于A中任意的元素x,y,都有x *(x★y)=x, x★(x*y)=x,则称二元运算*对于★在A上满足()。 10. 设*是定义在集合A上的二元运算,如果对于A中任意的元素x,都有x*x=x,则称二元运算 *是()。 11. 设*是定义在集合A上的二元运算,如果在A中存在元素el,对于A中任意的元素x,都有el *x=x,则称el为A中关于运算*的()。 12. 设*是定义在集合A上的二元运算,如果在A中存在元素ol,对于A中任意的元素x,

离散数学作业答案

第一章 1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A 和B表示ECNU不必学习离散数学的二年级的学生的集合。 2.试求: (1)P(φ) (2)P(P(φ)) (3)P(P(P(φ))) 3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个? 能被5整除的有40个, 能被15整除的有13个, ∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。 第三章 1.下列语句是命题吗? (1)2是正数吗? (2)x2+x+1=0。 (3)我要上学。 (4)明年2月1日下雨。 (5)如果股票涨了,那么我就赚钱。 2.请用自然语言表达命题(p?→r)∨(q?→r),其中p、q、r为如下命题: p:你得流感了 q:你错过了最后的考试

3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。 4.给出p→(q→s),q,p∨?r?r→s的形式证明。 第四章 1.将?x(C(x)∨?y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同 班同学,个体域是学校全体学生的集合。 解: 学校的全体学生要么自己有电脑,要么其同班同学有电脑。 2.构造?x(P(x)∨Q(x)),?x(Q(x)→?R(x)),?xR(x)??xP(x)的形式证明。 解: ①?xR(x) 前提引入 ②R(e) ①US规则 ③?x(Q(x)→?R(x)) 前提引入 ④Q(e) →?R(e) ③US规则 ⑤?Q (e) ②④析取三段论 ⑥?x(P(x)∨Q(x)) 前提引入 ⑦P(e) ∨Q(e) ⑥US规则 ⑧P(e) ⑤⑦析取三段论 ⑨?x (P(x)) ⑧EG规则 第五章

2018国家开放大学离散数学本形考任务答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业. 要求:学生提交作业有以下三种方式可供选择: 1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档 3. 自备答题纸,将答题过程手工书写,并拍照上传. 一、填空题 1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15 . 2.设给定图G(如右由图所示),则图G的点割集是 { f },{ e,c} . 3.设G是一个图,结点集合为V,边集合为E,则 G的结点度数之和等于边数的两倍. 4.无向图G存在欧拉回路,当且仅当G连通且不含奇数度结 点. 5.设G=是具有n个结点的简单图,若在G中每一对结点度数之和大于等于︱v︱,则在G中存在一条汉密尔顿路.6.若图G=中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W ≤S . 7.设完全图K n 有n个结点(n 2),m条边,当n为奇数时时, K n 中存在欧拉回路. 姓名: 学号: 得分: 教师签名:

8.结点数v与边数e满足e=v - 1 关系的无向连通图就是树. 9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路. 答:错误。应叙述为:“如果图G是无向连通图,且其结点度数均为偶数,则图G存在一条欧拉回路。” 2.如下图所示的图G存在一条欧拉回路. 答:错误。因为图中存在奇数度结点,所以不存在欧拉回路。 3.如下图所示的图G不是欧拉图而是汉密尔顿图.

离散数学结构试题集1-4

第1章 一.填空题 1. 2. 公式P→(Q→R)在联结词全功能集{﹁,∨}中等值形式为___________________。 3. 4. 5. 6. 7. 全体小项的析取式必为____________________式。 8. P,Q为两个命题,则德摩根律可表示为7. 全体小项的析取式必为_________式。 9. P,Q为两个命题,则吸收律可表示为____________________ 。 10. 设P:我有钱,Q:我去看电影。命题“虽然我有钱,但是我不去看电影”符号化为_____ _______________。 11. 设P:我生病,Q:我去学校。命题“如果我生病,那么我不去学校”符号化为_________ ___________。 12. 13. 14.

15. 设P、Q为两个命题,交换律可表示为____________________。 16. 17. 命题“如果你不看电影,那么我也不看电影”(P:你看电影,Q:我看电影)的符号化为____________________ 。 18. 19. 20. 21. P:你努力,Q:你失败。命题“除非你努力,否则你将失败”的翻译为_______________ _____。 22. 23. 24. 一个重言式和一个矛盾式的合取是____________________。 25. 全体小项的析取式为____________________ 。 26. 命题“如果你不看电影,那么我也不看电影”(P:你看电影,Q:我看电影)的符号化为____________________。 27. 28. 设P:它占据空间,Q:它有质量,R:它不断运动,S:它叫做物质。命题“占据空间的 ,有质量的而且不断运动的叫做物质”的符号化为____________________。 29.

离散数学课后答案

离散数学课后答案 习题一 6.将下列命题符号化。 (1)小丽只能从框里那一个苹果或一个梨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答: (1)(p Λ?q )ν(?pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ?q )ν(?pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语 14.将下列命题符号化. (1) 刘晓月跑得快, 跳得高. (2)老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了. (12)2与4都是素数, 这是不对的. (13)“2或4是素数, 这是不对的”是不对的. 答: (1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高. (2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人. (3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服. (4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题. (5)p, 其中, p: 李辛与李末是兄弟. (6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语. (7)p∧q, 其中, p: 他吃饭, q: 他听音乐. (8)p→q, 其中, p: 天下大雨, q: 他乘班车上班. (9)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (10)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (11)p→q, 其中, p: 下雪路滑, q: 他迟到了. (12) ? (p∧q)或?p∨?q, 其中, p: 2是素数, q: 4是素数. (13) ? ? (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数. 16. 19.用真值表判断下列公式的类型: (1)p→ (p∨q∨r) (2)(p→?q) →?q

大学离散数学期末重点知识点总结(考试专用)

1.常用公式 p ∧(P →Q)=>Q 假言推论 ┐Q ∧(P →Q)=>┐P 拒取式 ┐p ∧(P ∨Q)=>Q 析取三段式 (P →Q) ∧(Q →R)=>P →R 条件三段式 (PQ) ∧(QR)=>PR 双条件三段式 (P →Q)∧(R →S)∧(P ∧R)=>Q →S 合取构造二难 (P →Q)∧(R →S)∧(P ∨R)=>Q ∨S 析取构造二难 (?x)((Ax)∨(Bx)) <=>( ?x)(Ax)∨(?x)(Bx) (?x)((Ax)∧(Bx)) <=>(?x)(Ax)∧(?x)(Bx) —┐(?x)(Ax) <=>(?x)┐(Ax) —┐(?x)(Ax) <=>(?x)┐(Ax) (?x)(A ∨(Bx)) <=>A ∨(?x)(Bx) (?x)(A ∧(Bx)) <=>A ∧(?x)(Bx) (?x)((Ax)→(Bx)) <=>(?x)(Ax)→(?x)(Bx) (?x)(Ax) →B <=>(?x) ((Ax)→B) (?x)(Ax) →B <=>(?x) ((Ax)→B) A →(?x)(Bx) <=>(?x) (A →(Bx)) A →(?x)(Bx) <=>(?x) (A →(Bx)) (?x)(Ax)∨(?x)(Bx) =>(?x)((Ax)∨(Bx)) (?x)((Ax)∧(Bx)) =>(?x)(Ax)∧(?x)(Bx) (?x)(Ax)→(?x)(Bx) =>(?x)((Ax)→(Bx)) 2.命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P ,Q,R 的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n 个变元共有n 2个极小项或极大项,这n 2为(0~n 2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则,T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 3.谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 4.集合 1.N ,表示自然数集,1,2,3……,不包括0; 2.基:集合A 中不同元素的个数,|A|; 3.幂集:给定集合A ,以集合A 的所有子集为元素组成的集合,P(A); 4.若集合A 有n 个元素,幂集P(A)有n 2个元素,|P(A)|=||2A =n 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A 的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 5.关系 1.若集合A 有m 个元素,集合B 有n 个元素,则笛卡尔A ×B 的基数为mn ,A 到B 上可以定义mn 2种不同的关系; 2.若集合A 有n 个元素,则|A ×A|=2n ,A 上有22n 个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x 组成的集合; 后域(ranR):所有元素y 组成的集合; 5.自反闭包:r(R)=RU Ix ; 对称闭包:s(R)=RU 1-R ; 传递闭包:t(R)=RU 2R U 3R U …… 6.等价关系:集合A 上的二元关系R 满足自反性,对称性和传递性,则R 称为等价关系; 7.偏序关系:集合A 上的关系R 满足自反性,反对称性和传递性,则称R 是A 上的一个偏序关系; 8.covA={|x,y 属于A ,y 盖住x}; 9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一); 10.前提:B 是A 的子集 上界:A 中的某个元素比B 中任意元素都大,称这个元素是B 的上界(若存在,可能不唯一); 下界:A 中的某个元素比B 中任意元素都小,称这个元素是B 的下界(若存在,可能不唯一); 上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一); 6.函数 1.若|X|=m,|Y|=n,则从X 到Y 有mn 2种不同的关系,有m n 种不同的函数; 2.在一个有n 个元素的集合上,可以有2n2种不同的关系,有nn 种不同的函数,有n!种不同的双射; 3.若|X|=m,|Y|=n ,且m<=n ,则从X 到Y 有A m n 种不同的单射; 4.单射:f:X-Y ,对任意1x ,2x 属于X,且1x ≠2x ,若f(1x )≠f(2x ); 满射:f:X-Y ,对值域中任意一个元素y 在前域中都有一个或多个元素对应; 双射:f:X-Y ,若f 既是单射又是满射,则f 是双射; 5.复合函数:f og=g(f(x)); 5.设函数f:A-B ,g:B-C ,那么 ①如果f,g 都是单射,则f og 也是单射; ②如果f,g 都是满射,则f og 也是满射; ③如果f,g 都是双射,则f og 也是双射; ④如果f og 是双射,则f 是单射,g 是满射; 7.代数系统 1.二元运算:集合A 上的二元运算就是2A 到A 的映射; 2. 集合A 上可定义的二元运算个数就是从A ×A 到A 上的映射的个数,即从从A ×A 到A 上函数的个数,若|A|=2,则集合A 上的二元运算的个数为2*22=42=16种; 3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等; ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同; 4.同态映射:,,满足f(a*b)=f(a)^f(b),则f 为由的同态映射;若f 是双射,则称为同构; 8.群 广群的性质:封闭性; 半群的性质:封闭性,结合律; 含幺半群(独异点):封闭性,结合律,有幺元; 群的性质:封闭性,结合律,有幺元,有逆元; 2.群没有零元; 3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律; 4.循环群中幺元不能是生成元; 5.任何一个循环群必定是阿贝尔群; 10.格与布尔代数 1.格:偏序集合A 中任意两个元素都有上、下确界; 2.格的基本性质: 1) 自反性a ≤a 对偶: a ≥a 2) 反对称性a ≤b ^ b ≥a => a=b 对偶:a ≥b ^ b ≤a => a=b 3) 传递性a ≤b ^ b ≤c => a ≤c 对偶:a ≥b ^ b ≥c => a ≥c 4) 最大下界描述之一a^b ≤a 对偶 avb ≥a A^b ≤b 对偶 avb ≥b 5)最大下界描述之二c ≤a,c ≤b => c ≤a^b 对偶c ≥a,c ≥b => c ≥avb 6) 结合律a^(b^c)=(a^b)^c 对偶 av(bvc)=(avb)vc 7) 等幂律a^a=a 对偶 ava=a 8) 吸收律a^(avb)=a 对偶 av(a^b)=a 9) a ≤b <=> a^b=a avb=b 10) a ≤c,b ≤d => a^b ≤c^d avb ≤cvd 11) 保序性b ≤c => a^b ≤a^c avb ≤avc 12) 分配不等式av(b^c)≤(avb)^(avc) 对偶 a^(bvc)≥(a^b)v(a^c) 13)模不等式a ≤c <=> av(b^c)≤(avb)^c 3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc); 4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构; 5.链格一定是分配格,分配格必定是模格; 6.全上界:集合A 中的某个元素a 大于等于该集合中的任何元素,则称a 为格的全上界,记为1;(若存在则唯一) 全下界:集合A 中的某个元素b 小于等于该集合中的任何元素,则称b 为格的全下界,记为0;(若存在则唯一) 7.有界格:有全上界和全下界的格称为有界格,即有0和1的格; 8.补元:在有界格内,如果a^b=0,avb=1,则a 和b 互为补元; 9.有补格:在有界格内,每个元素都至少有一个补元; 10.有补分配格(布尔格):既是有补格,又是分配格; 布尔代数:一个有补分配格称为布尔代数; 11.图论 1.邻接:两点之间有边连接,则点与点邻接; 2.关联:两点之间有边连接,则这两点与边关联; 3.平凡图:只有一个孤立点构成的图; 4.简单图:不含平行边和环的图; 5.无向完全图:n 个节点任意两个节点之间都有边相连的简单无向图; 有向完全图:n 个节点任意两个节点之间都有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r 的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点i v ,j v ,若存在连接i v 到j v 的路,则称i v 与j v 相互可达,也称i v 与j v 是连通的;在有向图中,若存在i v 到j v 的路,则称i v 到j v 可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集; 割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点; 15.关联矩阵:M(G),mij 是vi 与ej 关联的次数,节点为行,边为列; 无向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特点: 无向图: ①行:每个节点关联的边,即节点的度; ②列:每条边关联的节点; 有向图: ③所有的入度(1)=所有的出度(0); 16.邻接矩阵:A(G),aij 是vi 邻接到vj 的边的数目,点为行,点为列; 17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A (G)+3A (G)+4A (G) 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路; A(G)中所有数的和:表示图中路径长度为1的通路条数; 2A (G)中所有数的和:表示图中路径长度为2的通路条数; 3A (G)中所有数的和:表示图中路径长度为3的通路条数; 4A (G)中所有数的和:表示图中路径长度为4的通路条数; P(G)中主对角线所有数的和:表示图中的回路条数; 18.布尔矩阵:B(G),i v 到j v 有路为1,无路则为0,点为行,点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0; 20.生成树:只访问每个节点一次,经过的节点和边构成的子图; 21.构造生成树的两种方法:深度优先;广度优先; 深度优先: ①选定起始点0v ; ②选择一个与0v 邻接且未被访问过的节点1v ; ③从1v 出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次; 广度优先: ①选定起始点0v ; ②访问与0v 邻接的所有节点v1,v2,……,vk,这些作为第一层节点; ③在第一层节点中选定一个节点v1为起点; ④重复②③,直到所有节点都被访问过一次; 22.最小生成树:具有最小权值(T)的生成树; 23.构造最小生成树的三种方法: 克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法 ①将所有权值按从小到大排列; ②先画权值最小的边,然后去掉其边值;重新按小到大排序; ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序; ④重复③,直到所有节点都被访问过一次; (2)管梅谷算法(破圈法) ①在图中取一回路,去掉回路中最大权值的边得一子图; ②在子图中再取一回路,去掉回路中最大权值的边再得一子图; ③重复②,直到所有节点都被访问过一次; (3)普利姆算法 ①在图中任取一点为起点1v ,连接边值最小的邻接点v2; ②以邻接点v2为起点,找到v2邻接的最小边值,如果最小边值比v1邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v ,连接1v 现在的最小边值(除已连接的边值); ③重复操作,直到所有节点都被访问过一次; 24.关键路径 例2 求PERT 图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径. 解:最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1-v3-v7-v8 25.欧拉路:经过图中每条边一次且仅一次的通路; 欧拉回路:经过图中每条边一次且仅一次的回路; 欧拉图:具有欧拉回路的图; 单向欧拉路:经过有向图中每条边一次且仅一次的单向路; 欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路; 26.(1)无向图中存在欧拉路的充要条件: ①连通图;②有0个或2个奇数度节点; (2)无向图中存在欧拉回路的充要条件: ①连通图;②所有节点度数均为偶数; (3)连通有向图含有单向欧拉路的充要条件: ①除两个节点外,每个节点入度=出度; ②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1; (4)连通有向图含有单向欧拉回路的充要条件: 图中每个节点的出度=入度; 27.哈密顿路:经过图中每个节点一次且仅一次的通路; 哈密顿回路:经过图中每个节点一次且仅一次的回路; 哈密顿图:具有哈密顿回路的图; 28.判定哈密顿图(没有充要条件) 必要条件: 任意去掉图中n 个节点及关联的边后,得到的分图数目小于等于n ; 充分条件: 图中每一对节点的度数之和都大于等于图中的总节点数; 29.哈密顿图的应用:安排圆桌会议; 方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可; 30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图; 31.面次:面的边界回路长度称为该面的次; 32.一个有限平面图,面的次数之和等于其边数的两倍; 33.欧拉定理:假设一个连通平面图有v 个节点,e 条边,r 个面,则 v-e+r=2; 34.判断是平面图的必要条件:(若不满足,就一定不是平面图) 设图G 是v 个节点,e 条边的简单连通平面图,若v>=3,则e<=3v-6; 35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的; 36.判断G 是平面图的充要条件: 图G 不含同胚于K3.3或K5的子图; 37.二部图:①无向图的节点集合可以划分为两个子集V1,V2; ②图中每条边的一个端点在V1,另一个则在V2中; 完全二部图:二部图中V1的每个节点都与V2的每个节点邻接; 判定无向图G 为二部图的充要条件: 图中每条回路经过边的条数均为偶数; 38.树:具有n 个顶点n-1条边的无回路连通无向图; 39.节点的层数:从树根到该节点经过的边的条数; 40.树高:层数最大的顶点的层数; 41.二叉树: ①二叉树额基本结构状态有5种; ②二叉树内节点的度数只考虑出度,不考虑入度; ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立; ⑤二叉树内节点的总数=边的总数+1; ⑥位于二叉树第k 层上的节点,最多有12-k 个(k>=1); ⑦深度为k 的二叉树的节点总数最多为k 2-1个,最少k 个(k>=1); ⑧如果有0n 个叶子,n2个2度节点,则0n =n2+1; 42.二叉树的节点遍历方法: 先根顺序(DLR ); 中根顺序(LDR ); 后根顺序(LRD ); 43.哈夫曼树:用哈夫曼算法构造的最优二叉树; 44.最优二叉树的构造方法: ①将给定的权值按从小到大排序; ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值; ③重复②,直达所有权值构造完毕; 45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值; 每个节点的编码:从根到该节点经过的0和1组成的一排编码;

相关文档
最新文档