马鞍型标准线圈磁场参数的计算和误差分析

马鞍型标准线圈磁场参数的计算和误差分析
马鞍型标准线圈磁场参数的计算和误差分析

马鞍型标准线圈磁场参数的计算和误差分析

孙丽娜1,王炜2,李广玉3

(南开大学1.电子信息与光学工程学院;2.计算机与工程控制学院,天津300071;

3.天津大学精密仪器与光电子工程学院,天津300072)

摘要:论文题目中文字符数一般控制在21个以内。中文摘要字数应在150~300之间。摘要应客观反映论文主要内容摘要,具有独立性和自含性。以提供文献内容梗概为目的,不加评论和补充解释,主要内容应包括研究的目的、方法、结果和结论。应采用第三人称,不必使用“本文”、“作者”等作为主语,可采用“对…进行了研究”、“报道了…现状”、“进行了…调查”等。专业性缩略语、简称等词语,首次出现时必须加以说明。

关键词:关键词1;关键词2;关键字3;关键词3-5个

中图分类号:G482文献标识码:A

Calculation and error analysis for magnetic field parameters of a standard saddle coil

Sun Lina1,Wang Wei2,LiGuangyu3

(1. College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China;2. College of Computer andControl Engineering,Nankai University, Tianjin 300071, China; 3. School of Precision Instrument and Optoelectronics Engineering,Tianjin University,Tianjin 300072, China)

Abstract:The calculation and measurement of field parameters and their derivatives play a very important role in designing and constructing saddle-shaped bipolar-magnetic coils [1]. In this article, new distribution function Fn and its derivatives along z-axis are defined, formularized and presented. Calculation and error analysis for the magnetic field parameters of a standard saddle coil are conducted and presented using the formulas. It is shown that the method and formulas can be used in calculating the field parameters, derivatives and the magnetic vector H for the bipolar-magnetic coils.

Key words:field parameter; magnetic vector;error analysis;3-5 key words

正文字数在3000-5000为宜[1]。正文中的变量都要用斜体,英文缩写、计量单位、函数名称、运算符号等都要用正体[2]。正文中的计量单位一律使用《中华人民共和国法定计量单位》。

正文部分:分两栏,等宽, 每栏22个字,栏间距2个字,单倍行距,中文字为宋体(英文为Times New Roman),五号。当图表、数学公式、化学分子在两栏格式书写不下,可以使用一栏格式[3]。

正文中不设置“简介”或“引言”标题,直接论述即可[4]。

正文最后应设置“结语”标题,对论文进行归纳和总结。

一级标题

一级标题:黑体, 小四, 悬挂缩进2字符,段落间距段前0.5 行、段后0.5 行,单倍行距。

二级标题

二级标题:黑体,五号,悬挂缩进3字符,单倍行距。

三级标题三级标题:仿宋,五号,悬挂缩进3字符,单倍行距。

图1 符号对话框(黑体小五号,居中)

使用编号叙述正文中的过程或步骤顺序,编号顺序的一级形式为“(1),(2),(3),…”;二级形式为“①,②,③,…”,二级形式的编号字符可以从如图1所示的“字符”对话框中选择[5]。

图表

用计算机绘制正文中的图表[6]。图的序号和图题目位于图的正下方,表的序号和表题目位于表的正上方,图表题目格式为黑体、小五号、居中。图表的序号必须在正文中引用[7]。图表中的变量都要用斜体,英文缩写、计量单位、函数名称、运算符号等都要用正体[8]。图表的示例见图2和表1。图表尺寸:

规格1:40mm≤W1<80mm;40mm≤L1<220mm;

个人资料整理,仅供个人学习使用

2 / 2

规格2: 90mm≤W2<160mm ;40mm≤L2<220mm 。

说明:W (宽)、L (高);规格1(推荐)用于双栏;规格2用于单栏;表为三线表格式[9]。 三线表和图

表1 二元与三元回归误差对比

X=12mm 范围内,三组数据E 0、E 1、E 2

H2ex (×10-03)误差(%)H2ex (×10-03

误差(%)0 1.1346 1.97 1.14630.968 1.1508 1.78 1.16230.7916

1.1262

2.27 1.1373

1.31

2.01

1.02

平均误差

Z 二元回归三元回归

表1为三线表,允许加辅助线。图2为图形实例,应保证图内的字符和线条清晰。

2

PV C 1

PV L DC +DC -

太阳电池阵列

1

PV C 2

PV L PV

S

图2 光伏电池输出电压的调节电路 数学公式

Microsoft Word 软件含有编写和编辑数学公式的内置支持[10]。

论文范例说明

论文范例内容为虚构,仅供作者直接在范例格式内修改、复制粘贴有关作者的论文内容!

论文不应小于3个版面。版面费按页计算费用,稿件内容不满一页按整页计算。请作者撰写论文时写满整页,避免浪费版面资源!结语

结语内容应满足以下要求:

(1)应准确、简明、完整、有条理地对文章的论点、结果进行的归纳与总结;

(2)视论文的具体内容可以提出建议、设想、改进意见或有待解决的问题;

(3)不能含参考文献序号、插图及数学公式。 参考文献(References):

杨贵杰,孙力,崔乃政,等.空间矢量脉宽调制方法的研究[J].中国电机工程学报,20XX ,21(5):79-83.

李晓东,张庆红,叶瑾琳.气候学研究的若干理论问题[J].北京大学学报:自然科学版,1999,35(1):101-106.尼葛洛庞帝.数字化生存[M].胡冰,范海燕,译.海口:海南出版社,1996.

龚沛曾,杨志强,陆慰民.Visual Basic 程序设计教程[M].3版.北京:高等教育出版社,20XX :219-223.

房绪鹏. Z 源逆变器研究[D].杭州:浙江大学,020XX.

丁文祥.数字革命与竞争国际化[N].中国青年报,20XX-11-20(15).

傅刚,赵承,李佳路.大风沙过后的思考[N/OL].北京青年报,20XX-04-12(14)[20XX-07-12].20XX0412/GB/4216%5ED0412B1401.htm.

江向东.互联网环境下的信息处理[J/OL].情报学报, 1999,18(2):4[20XX-01-18].qbxb990203. 姜锡洲.一种温热外敷药制备方案:中国,88105607.3[P].1989-07-26

郭爱民.浅谈提高图书的综合质量[C].//王君仁主编.编辑出版文集.大连:大连理工大学出版社,1993.70-82.收稿日期:20XX-1-20 修改日期:20XX-2-28

作者简历:孙丽娜(1980- ),女(满族),北京人,硕士,副教授,主要研究方向为计算机应用技术,E-mail :。基金项目:1990年度天津市自然科学基金(项目编号:TZ1990256);南开大学创新基金(项目编号:20XX0632)。通讯作者:李广玉(1965- ),男,河北唐山人,博士,教授,主要研究方向为波动电子光学与微纳制造技术,E-mail :。

FD-HM-I亥姆霍兹线圈磁场测定仪说明书(100318修订)

FD-HM-I 亥姆霍兹线圈磁场测定仪 一、概述 亥姆霍兹线圈磁场测定仪是综合性大学和工科院校物理实验教学大纲重要实验之一。该实验可以学习和掌握弱磁场测量方法,证明磁场迭加原理,根据教学要求描绘磁场分布等。传统的亥姆霍兹线圈磁场测量实验,一般用探测线圈配以指针交流电压表测量磁感应强度。由于线圈体积大,指针式交流电压表等级低等原因,测量的误差较大。 近年来,在科研和工业中,集成霍耳传感器由于体积小,测量准确度高,易于移动和定位,所以被广泛应用于磁场测量。例如:A SS 95型集成霍耳传感器就是一种高灵敏度的优质磁场传感器,它的体积小(面积mm mm 34?,厚mm 2),其内部具有放大器和剩余电压补偿电路,采用此集成霍耳传感器(配直流数字电压表)制成的高灵敏度毫特计,可以准确测量mT 000.20~的磁感应强度,其分辨率可达T 6 101-?。因此,用它探测载流线圈及亥姆霍兹线圈的磁场,准确度比用探测线圈高得多。用高灵敏度集成霍耳传感器测量T T 3 5 102101--??~弱交、直流磁场的方法已在科研与工业中广泛应用。 本仪器采用先进的95A 型集成霍耳传感器作探测器,用直流电压表测量传感器输出电压,探测亥姆霍兹线圈产生的磁场,测量准确度比探测线圈优越得多,仪器装置固定件牢靠,实验内容丰富。 本仪器经复旦大学物理实验教学中心使用,取得良好的教学效果。 二、原理 (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为: I N x R R B ?+?= 2 /322 2 0) (2μ (1) 式中0μ为真空磁导率,R 为线圈的平均半径,x 为圆心到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为: I N R B ?= 20 0μ (2)

施工测量方法及精度评定

施工测量方法及精度评定 1、设站方法 根据现场情况,主要选择以下两种方式设站。 1.1 全站仪坐标法设站 (1)在施工控制点上架设全站仪并对中整平,初始化后检查仪器的设置:气温、气压、棱镜常、在输入(或调出)测站点的三维坐标,量取并输入仪器高,输入(或调出)后视点坐标,照准后视点进行后视。 (2)如果后视点上有棱镜,输入棱镜高,可以测量后视点的坐标和高程并与已知数据检核。 (3)瞄准另一控制点,检查方位角或坐标;在另一后视点上竖棱镜或尺子检查仪器的视线高。 (4)利用仪器自身的计算功能进行计算时,记录员也应该进行相应的计算,以检查输入数据的正确性。 (5)在各待测站点上架设脚架和棱镜,量取、记录并输入棱镜高,测量、记录待定点的坐标和高程。 1.2 全站仪边角交会法设站 (1)在未知点P上架设、整平全站仪;在已知的基本控制点A上安置棱镜,量测棱镜高;在已知点B、C上安置照准点标志。 (2)量测PA间平距D、高差DH和PA至PB方向间的水平角α、β。 (3)用D、α及A、B点的坐标计算P点的一组坐标;用D、β及A、C点的坐标计算P点的另一组坐标;两组坐标的差值不超过规定限差,取中数即为P点的最后坐标。

(4)根据A点的高程HA和高差DH计算仪器的视线高:H视=HA-DH。 (5)如果需要可以将P点投影到地面上,并作好记录。量取仪器高,求出地面P 点的高程。 2、施工测量方法 2.1 放样方法 (1)用以上方法把测站设置好了后,就可以用测站极坐标法开始放样。 (2)使用全站仪测量测点的三维坐标,用计算器计算测点距设计棱镜的距离,再指挥司镜员移动棱镜,直至到位。 (3)若使用免棱镜全站仪时,可由观测员移动激光斑点再进行测量,直至到位。 (4)在直线较长的边坡、洞室、混凝土工程放样时,建立以边坡平行线、洞室轴线、混凝土边线、为坐标轴的独立坐标系,以便加快测量放样的速度和减少现场测量计算的错误。 2.2 验收断面测量方法 (1)验收断面测量采用免棱镜全站仪。 (2)边坡断面测量时,采用相对坐标设站,任意架设仪器,直接测量符合断面要求的点位,保证断面桩号差小于10cm,数据直接保存在仪器内。 (3)洞室断面测量时也可以用边坡断面测量方法,而现场通常是先把每个断面的中桩放出来,然后将仪器架设于中桩上,将方向置于断面方向上,用独立坐标进行断面测量,数据直接保存在仪器内。 (4)内业资料处理前,把仪器内存储的数据传到计算机内,用专用软件进行数据格式转换,网上也可下载。

杜海龙 21102019 计算电流线圈产生的磁场

求截面为矩形的圆线圈周围产生的磁场 一、数值方法 (一)数学模型:所研究的电流圆线圈产生磁场的问题在柱坐标系下研究, 根据磁场强度跟矢势之间的关系,得到磁场; 磁场为B ,矢势为A B A =?? r r z z A A e A e A e θθ=++ A e θθ= (,)A r z e θθ= (由A 具有轴对称得到) 所以B A =?? A e θθ=?? 在柱坐标系中,由公式1()()11()()r r z z z r r z r z f f e f e f e f f f r z f f f z r f f rf r r r θθθ θθθθ ?=++??????=-?????????=-?????? ???=-???? -得 B A =?? 1()r z f e rf e z r r θθ?? =-+?? 即r A B z θ ?=-?,1()z B rA r r θ? =? (1)先求矢势A 4L Idl A r μπ=? 一个电流为I ,半径为a 的线圆环周围空间产生的磁场,其矢势表示为 202220cos (,)42cos Ia A r z d r z a ar πθμ? ?π?=++-? 推广到截面为矩形的圆环线圈中 22 11202220 cos (,)4()2cos R z R z I r A r z d dz dr s r z z r r r πθμ? ?π?'''='''+-+-??? 其中S 为矩形截面的面积,12,R R 为矩形截面的两边距圆环中心的距离,12,z z 为矩形截面的上下面的z 轴坐标。 (二)数值模型离散化(均匀网格有限差分) (1)高斯方法计算三重积分(参考书:徐士良常用算法程序集第二版)

测量学_计算题库及参考答案

计算题库及参考答案 1、设A 点高程为15.023m ,欲测设设计高程为16.000m 的B 点,水准仪安置在A 、B 两点之间,读得A 尺读数a=2.340m ,B 尺读数b 为多少时,才能使尺底高程为B 点高程。 【解】水准仪的仪器高为=i H +=17.363m ,则B 尺的后视读数应为 b==1.363m ,此时,B 尺零点的高程为16m 。 2、在1∶2000地形图上,量得一段距离d =23.2cm ,其测量中误差=d m ±0.1cm ,求该段距离的实地长度 D 及中误差D m 。 【解】==dM D ×2000=464m ,==d D Mm m 2000×=200cm=2m 。 3、已知图中AB 的坐标方位角,观测了图中四个水平角,试计算边长B →1,1→2,2→3, 3→4的坐标方位角。 【解】=1B α197°15′27″+90°29′25″-180°=107°44′52″ =12α107°44′52″+106°16′32″-180°=34°01′24″ =23α34°01′24″+270°52′48″-180°=124°54′12″ =34α124°54′12″+299°35′46″ -180°=244°29′58″ 4、在同一观测条件下,对某水平角观测了五测回,观测值分别为:39°40′30″,39°40′48″,39°40′54″,39°40′42″,39°40′36″,试计算: ① 该角的算术平均值——39°40′42″; ② 一测回水平角观测中误差——±″; ③ 五测回算术平均值的中误差——±″。 6、已知=AB α89°12′01″,=B x 3065.347m ,=B y 2135.265m ,坐标推算路线为B →1→2,测得坐标推算路线的右角分别为=B β32°30′12″,=1β261°06′16″,水平距离分别为=1B D 123.704m , =12D 98.506m ,试计算1,2点的平面坐标。 【解】 1) 推算坐标方位角 =1B α89°12′01″-32°30′12″+180°=236°41′49″ =12α236°41′49″-261°06′16″+180°=155°35′33″ 2) 计算坐标增量 =?1B x ×cos236°41′49″=-67.922m , =?1B y ×sin236°41′49″=-103.389m 。 =?12x ×cos155°35′33″=-89.702m , =?12y ×sin155°35′33″=40.705m 。 3) 计算1,2点的平面坐标 =1x 2997.425m =1y 2031.876m =2x 2907.723m =2y 2072.581m 、试完成下列测回法水平角观测手簿的计算。 测站 目标 竖盘位置 水平度盘读数 (°′″) 半测回角值 (°′″) 一测回平均角值 (°′″) 一测回 B A 左 0 06 24 111 39 54 111 39 51 C 111 46 18 A 右 180 06 48 111 39 48 C 291 46 36 8、完成下列竖直角观测手簿的计算,不需要写公式,全部计算均在表格中完成。 测站 目标 竖盘 位置 竖盘读 (° ′ ″) 半测回竖直角 (° ′ ″) 指标差 (″) 一测回竖直角 (° ′ ″ ) A B 左 81 18 42 8 41 18 6 8 41 24 图 推算支导线的坐标方位角

矩形激励线圈的分析

矩形激励线圈的分析 摘要:本文由毕奥?D莎伐定律出发,首先讨论了由一定长度的线电流源和矩形环流源的磁感应强度分布,然后在此基础上,详尽的论述了基于体电流源的矩形线圈产生的磁场分布。 一、引言 载流线圈是大量电工设备中不可缺少的装置,是科学研究和工程问题中最常用的一种磁体,在线圈磁体的设计与研制中,常需要计算线圈的磁场分布。由于工程实际需要和研究问题方便,人们对轴对称线圈进行了大量而广泛的研究,取得了大量成果。在科学研究和工程设计中,矩形线圈的应用也是相当广泛的,但人们对矩形线圈的研究却很少,仅研究了长方形载流导体的磁场计算问题,而未真正涉及矩形线圈的磁场计算。 为了实现对弱磁场或者对不均匀磁场的测量,都需要一个激励源,以产生在一定体积范围内具有一定磁场强度(一般为几个nT到0.1mT)的匀强磁场。在实际运用中,用于产生匀强的装置很多,如螺线管、Helmholtz线圈、矩形线圈等,在本文设计的无损检测系统采用的是矩形线圈,本文将对矩形线圈产生匀强磁场的原理及计算方法进行详尽的分析。 二、具有一定长度带电直导线的磁场计算 根据毕奥?D莎伐定律,空间线电流源产生的磁场强度为:(1)式中: B?D空间点的磁感应强度,其方向垂直于直导线与空间点构成的平面; ?D真空导磁率(4p′10-7T×m/A); I?D导线的电流强度; l?D导线长度; R?D源点到场点的距离; eR?DR方向的单位矢量。 为了计算具有一定长度的电流源在其周围产生的磁场,建立如图1坐标系,并用毕奥?D 莎伐定律的积分形式:(2)

电流的方向为Ii (x方向),场点坐标为P(0,0,Z)=Zk,而导线上的点可以表述为 (x,Y,0)=xi+Yj,则有带入上式,利用计算可得: (3) (4) (5) (6) 对于一般的情况而言: ?D该空间点到带电导线的垂直距离,即|PQ|,; a?D导线底端到该空间点在导线上投影间的距离,即|QA|; b?D导线顶端到该空间点在导线上投影间的距离,即|QB|; Y?D 在XOY平面的投影,即|OQ|; Z?D 在XOZ平面的投影,即|OP|。这样空间点与其在导线和XOY平面的投影点构成一直角三角形DPOQ。

定位误差的计算方法.

定位误差的计算方法: (1)合成法 为基准不重合误差和基准位移误差之和; (2)极限位置法 工序基准相对于刀具(机床)的两个极限位置间的距离就是定位误差; (3)微分法 先用几何方法找出工序基准到定位元件上某一固定点的距离,然后对其全微分,用微小增量代替微分,将尺寸误差视为微小增量代入,就可以得到某一加工尺寸的定位误差。 注:基准不重合误差和基准位移误差它们在工序尺寸方向上的投影之和即为定位误差。 例如:用V 型块定位铣键槽,键槽尺寸标注是轴的中心到键槽底面的尺寸H 。T D 为工件定位外圆的公差;α为V 型块夹角。 1. 工序基准为圆柱体的中心线。 表示一批工件依次放到V 型块上定位时所处的两个极端位置情形,当工件外圆直径尺寸为极大和极小时,其工件外圆中心线分别出于点 O '和点O ''。 因此工序基准的最大位置变动量O O ''',便是对加工尺寸H 1所产生的定位误差: 故得:O E O E H H O O 11DH 1 ''-'='-''='''=ε O A E Rt 1''?中: max 1 D 2 1A O ='' 2 sin A O O E 1α''= ' O A E Rt 1''''?中:min 1 D 2 1 A O ='''' 2 sin A O O E 1α''''= '' 2 sin 2T 2sin 2T 2sin A O A O O E O E D D 11DH 1 α=α=α''''-''=''-'=ε

2. 工序基准为圆柱体的下母线: 工件加工表面以下母线C 为其工序基准时,工序基准的极限位置变动量C C '''就是加工尺寸H2所产生的定位误差。 C S C S C O O O H H 22DH 2 '-''=''-'''='-''=ε C O C O O O ) C O O S ()C O O S (' '-''''+'''=''+'-'''+'= 而 2 sin 2T O O D α= ''' min D 2 1C O ='''' max D 2 1 C O ='' 所以:C O C O O O 2 DH ''-''''+'''=ε ) 12 sin 1(2T 2T 2sin 2T 2D D 2 sin 2T )D (21 )D (212sin 2T D D D max min D max min D DH 2 -α=-α=-+ α=-+α=ε

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

磁场,感应计算题

稳恒磁场计算题 144.稳恒磁学计算题144、如下图所示,AB 、CD 为长直导线BC 为圆心在O 点的一段圆弧形导线,其半径为R .若通以 电流I ,求O 点的磁感应强度. 解:如图所示,O 点磁场由DC 、CB 、BA 三部分电流产生,其中: DC 产生 )21(4)2sin 4(sin 45cos 400 01-=-= R I R I B πμπ π πμ 方向向里 CB 产生 R I R I B 16224002 μμππ == 方向向里 BA 产生 03=B R I R I B B B B O 16)12(400321μπμ+-=++= 方向向里 145、如图所示,一载流导线中间部分被弯成半圆弧状,其圆心点为O ,圆弧半径为R 。若导线的流过电流I ,求圆心O 处的磁感应强度。 解:两段直电流部分在O 点产生的磁场 01=B 弧线电流在O 点产生的磁场 R I B 2202μπα= R I R I B B B O πα μπαμ42220 021== +=∴ 146、载流体如图所示,求两半圆的圆心点P 处的磁感应强度。

解:水平直电流产生 01=B 大半圆 产生 1 024R I B μ= 方向向里 小半圆 产生 2 034R I B μ= 方向向里 竖直直电流产生 2 044R I B πμ= 方向向外 4321B B B B B O +++=∴ )1 11(44442 210202 01 0R R R I R I R I R I B O πμπμμμ-+=- + = 方向向里 147、在真空中,有两根互相平行的无限长直导线相距0.1m ,通有方向相反的电流,I 1=20A,I 2=10A ,如图所示.试求 、解:取垂直纸面向里为正,如图设X 轴。 ) 1.0(102102)(2272010x x x x d I x I B --?=-+= -πμπμ 在电流1I 左侧,B 方向垂直纸面向外 在电流1I 、2I 之间,B 方向垂直纸面向里 在电流2I 右侧,当m x 2.0<时,B 方向垂直纸面向外 当m x 2.0>时,B 方向垂直纸面向里

误差基本知识及中误差计算公式

测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。 §2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值),n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即:。§3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m 1、m 2 、…m n ,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unit weight mean square error) m ,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

磁场计算练习

1.如图所示,矩形线圈匝数N=100匝,ab=30 cm,ad=20 cm,匀强磁场磁感应强度B=0.8 T,绕轴OO′从图示位置开始匀速转动,角速度ω=100π rad/s,试求: (1)穿过线圈的磁通量最大值Φm为多大?线圈转到什么位置时取得此值? (2)线圈产生的感应电动势最大值E m为多大?线圈转到什么位置时取得此值? (3)写出感应电动势e随时间变化的表达式,并在图乙中作出图象. 2.如图所示,有一倾斜的光滑平行金属导轨,导轨平面与水平面的夹角为,导轨间距为L,接在两导轨间的电阻为R,在导轨的中间矩形区域内存在垂直斜面向上的匀强磁场,磁感应强度大小为B,一直量为m、有效电阻为r的导体棒从距磁场上边缘d处释放,整个运动过程中,导体棒与导轨接触良好,且始终保持与导轨垂直。不计导轨的电阻,重力加速度为g。 (1)求导体棒刚进入磁场时的速度; (2)求导体棒通过磁场过程中,通过电阻R的电荷量q; (3)若导体棒刚离开磁场时的加速度为0,求异体棒通过磁场的过程中回路中产生的焦耳热Q。

3.如图所示是一个交流发电机的示意图,线框处于匀强磁场中,已知,匀强磁场的磁感应强度,线圈的匝数,线圈的总电阻,外电路负载电阻,线圈以, 电表是理想电表求 (1)电压表的示数? (2)从图示位置开始经时感应电动势的瞬时值多大? (3)从图示位置开始经的这段时间通过R的电量? (4)线圈匀速转动一周外力做多少功? 4.如图所示,平行导轨倾斜放置,倾角θ=37°,匀强磁场的方向垂直于导轨平面向上,磁感应强度B=T,质量为m=1kg的金属棒ab垂直放在导轨上,ab与导轨平面间的动摩擦因数μ=0.25。ab的电阻r=1Ω,平行导轨间的距离L=1m, R1 =R2=4Ω,导轨电阻不计,ab由静止开始下滑运动x=3.5m后达到匀速。sin37°=0.6,cos37°=0.8。求: (1)ab在导轨上匀速下滑的速度多大? (2)ab由静止到匀速过程中电路产生的焦耳热为多少?

实验十一亥姆霍兹线圈磁场测定全解

实验十一 亥姆霍兹线圈磁场测定 一、概述 亥姆霍兹线圈磁场测定仪是综合性大学和工科院校物理实验教学大纲重要实验之一。该实验可以学习和掌握弱磁场测量方法,证明磁场迭加原理,根据教学要求描绘磁场分布等。传统的亥姆霍兹线圈磁场测量实验,一般用探测线圈配以指针交流电压表测量磁感应强度。由于线圈体积大,指针式交流电压表等级低等原因,测量的误差较大。 近年来,在科研和工业中,集成霍耳传感器由于体积小,测量准确度高,易于移动和定位,所以被广泛应用于磁场测量。例如:A SS 95型集成霍耳传感器就是一种高灵敏度的优质磁场传感器,它的体积小(面积mm mm 34?,厚mm 2),其内部具有放大器和剩余电压补偿电路,采用此集成霍耳传感器(配直流数字电压表)制成的高灵敏度毫特计,可以准确测量mT 000.20~的磁感应强度,其分辨率可达 T 6101-?。因此,用它探测载流线圈及亥姆霍兹线圈的磁场,准确度比用探测线圈高 得多。用高灵敏度集成霍耳传感器测量T T 35102101--??~弱交、直流磁场的方法已在科研与工业中广泛应用。 本仪器采用先进的95A 型集成霍耳传感器作探测器,用直流电压表测量传感器输出电压,探测亥姆霍兹线圈产生的磁场,测量准确度比探测线圈优越得多,仪器装置固定件牢靠,实验内容丰富。 本仪器经复旦大学物理实验教学中心使用,取得良好的教学效果。 二、原理 (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为: I N x R R B ?+?= 2 /3222 0)(2μ (1) 式中0μ为真空磁导率,R 为线圈的平均半径,x 为圆心到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为: I N R B ?= 20 0μ (2)

精编【激励与沟通】矩形激励线圈的分析

【激励与沟通】矩形激励线圈 的分析 xxxx年xx月xx日 xxxxxxxx集团企业有限公司 Please enter your company's name and contentv

矩形激励线圈的分析 摘要:本文由毕奥?D莎伐定律出发,首先讨论了由一定长度的线电流源和矩形环流源的磁感应强度分布,然后在此基础上,详尽的论述了基于体电流源的矩形线圈产生的磁场分布。 一、引言 载流线圈是大量电工设备中不可缺少的装置,是科学研究和工程问题中最常用的一种磁体,在线圈磁体的设计与研制中,常需要计算线圈的磁场分布。由于工程实际需要和研究问题方便,人们对轴对称线圈进行了大量而广泛的研究,取得了大量成果。在科学研究和工程设计中,矩形线圈的应用也是相当广泛的,但人们对矩形线圈的研究却很少,仅研究了长方形载流导体的磁场计算问题,而未真正涉及矩形线圈的磁场计算。 为了实现对弱磁场或者对不均匀磁场的测量,都需要一个激励源,以产生在一定体积范围内具有一定磁场强度(一般为几个nT到0.1mT)的匀强磁场。在实际运用中,用于产生匀强的装置很多,如螺线管、Helmholtz线圈、矩形线圈等,在本文设计的无损检测系统采用的是矩形线圈,本文将对矩形线圈产生匀强磁场的原理及计算方法进行详尽的分析。

二、具有一定长度带电直导线的磁场计算 根据毕奥?D莎伐定律,空间线电流源产生的磁场强度为:(1) 式中:B?D空间点的磁感应强度,其方向垂直于直导线与空间点构成的平面; ?D真空导磁率(4p′10-7T×m/A);I?D导线的电流强度;l?D导线长度; R?D源点到场点的距离;eR?DR方向的单位矢量。 为了计算具有一定长度的电流源在其周围产生的磁场,建立如图1坐标系,并用毕奥?D莎伐定律的积分形式:(2) 电流的方向为Ii (x方向),场点坐标为P(0,0,Z)=Zk,而导线上的点可以表述为(x,Y,0)=xi+Yj,则有带入上式,利用计算可得: (3) (4) (5) (6) 对于一般的情况而言: ?D该空间点到带电导线的垂直距离,即|PQ|,;

《大学物理实验》2-11实验十一 亥姆霍兹线圈磁场测定

实验十一 圆线圈和亥姆霍兹线圈磁场测定 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N 匝的圆环电流。 当它们的间距正好等于其圆环半径R 时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1.学习和掌握弱磁场测量方法, 2.验证磁场迭加原理, 3.描绘载流圆线圈和亥姆霍兹线圈轴线磁场分布。 二、实验原理 (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点(如图1所示)的磁感应强度为: 2 0223/2 2()R B N x μ?= +I ? (1) 式中0μ为真空磁导率, R 为线圈的平均半径,x 为圆心到该点P 的距离,为线圈匝数,N I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为: I N B ?= 200μ (2) (2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈(如图2所示),两线圈内的电流方向一致,大小相同,线圈之间的距离正好等于圆形线圈的半径d R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,设x 为亥姆霍兹线圈中轴线上

某点离中心点处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: O ?? ???????????????????????++??????????????++=??2/3222/322 202221x R R x R R NIR B μ (3) 而在亥姆霍兹线圈上中心O 处的磁感应强度B 为: ' 00 3/285N I B R μ??= (4) 三、实验仪器 FD—HM—Ⅰ圆线圈和亥姆霍兹线圈实验平台, 毫特斯拉计,三位半数字电流表及直流稳流电源组合仪一台;传感器探头, 电源线 1根,连接线 4根,不锈钢直尺 1把,铝合金靠尺1把。 图3 实验装置图 1-毫特斯拉计,2-电流表,3-直流电流源,4-电流调节旋钮, 5-调零旋钮,6-传感器插头, 7-固定架, 8-霍耳传感器, 9-大理石台面, 10、线圈, 注:A、B、C、D 为接线柱 四、实验内容和步骤 1.仪器调试 (1)开机后应预热10分钟,再进行测量; (2)将两个线圈和固定架按照图3所示简图安装。大理石台面(图3中9所示有网格线的平面)应该处于线圈组的轴线位置。根据线圈内外半径及沿半径方向支架厚度,

加权平均值及其中误差

6-7 加权平均值及其中误差 一、不等精度观测和观测值的权 在测量实践中,除了等精度观测之外,还有不等精度观测。此时,求多次观测的最或然值就不能简单地用算术平均值,而是需要用“加权平均值”的方法求解。 某一观测值或观测值的函数的误差越小(精度越高),其权越大;反之,其误差越大(精度越小),其权越小。一般用“”表示中误差,用“P”表示权,并定义:“权与中误差的平方成反比”,以公式表示为 (6-26) 式中,C为任意常数。等于1的权称为“单位权“,权等于1的中误差称为“单位权中误差”,一般用表示。因此,权的另一种表达式为 (6-27) 中误差的另一种表达式为 (6-28) 在测量工作中,为了使权的概念简单明了,一般取一次观测、一个测回或单位长度(1m 或1km )等的测量误差作为单位权中误差。 二、加权平均值及其中误差 对某一未知量进行一组不等精度观测:,其中误差为,则观测值的权为。按照误差理论,此时应按下式取其加权平均值,作为该量的最或然值: 上式可以写成线性函数的形式: 根据线性函数的误差传播公式,得到 上式可化为

因此,加权平均值的中误差为 (6-29) 加权平均值的权为所有观测值的权之和: (6-30) 三、单位权中误差的计算 在处理不等精度的测量成果时,需要根据单位权中误差来计算观测值的权和加权平均值的中误差。单位权中误差一般取某一类观测值的基本精度,例如,水平角观测的一测回的中误差等。根据一组对同一量的不等精度观测,可以估算本类观测值的单位权中误差。 如对同一量的n个不等精度观测,得到 …. 取以上各式的总和,并除以n,得到 用真误差代替中误差,得到在观测量的真值已知时用真误差求单位权中误差的公式: (6-31) 在观测值的真值未知的情况下,用观测值的加权平均值代替真值;用观测值的改正值代替真误差,得到按不等精度观测值的改正值计算单位权中误差的公式; (6-32)

例1长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂

例1长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场 中垂 【错解】t=0时,线圈平面与磁场平行、磁通量为零,对应的磁通量的变化率也为零,选A。 【错解缘故】 磁通量Φ=BS ⊥BS〔S ⊥ 是线圈垂直磁场的面积〕,磁通量的变化ΔΦ=Φ 2 -Φ 1 , 两者的物理意义截然不同,不能理解为磁通量为零,磁通量的变化率也为零。 【分析解答】 实际上,线圈在匀强磁场中绕垂直于磁场的轴转动时,产生交变电动势e=εm cosωt=Babωcosωt。当t=0时,cosωt=1,尽管磁通量 可知当电动势为最大值时,对应的磁通量的变化率也最大,即 【评析】 弄清概念之间的联系和区别,是正确解题的前提条件。在电磁感应中要弄清磁通量Φ、磁通量的变化ΔΦ以及磁通量的变化率ΔΦ/Δt之间的联系和区别。 例2在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极?

【错解】 当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定那么可知,AB中的电流方向是从A 流向B,从而判定电源的上端为正极。 【错解缘故】 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【分析解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,因此,AB中电流的方向是由B流向A,故电源的下端为正极。 【评析】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例3一个共有10匝的闭合矩形线圈,总电阻为10Ω、面积为0.04m2,置于水平面上。假设线框内的磁感强度在0.02s内,由垂直纸面向里,从1.6T均匀减少到零,再反向均匀增加到2.4T。那么在如今间内,线圈内导线中的感应电流大小为______A,从上向下俯视,线圈中电流的方向为______时针方向。 【错解】 由于磁感强度均匀变化,使得闭合线卷中产生感应电流,依照法拉第电磁感应定律,感应电动势

定位误差分析

(3)定位误差的计算 由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。组合时可有如下情况。 1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8) 2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9) 3)Δ Y ≠ 0, Δ B ≠ O时 如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10) 如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11) “ + ” ,“—” 的判别方法为: ①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时, 判断工序基准相对于定位基准的变动方向。 ②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大) 时,判断定位基准相对其规定位置的变动方向。 ③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。 -、定位误差及其组成 图9-21a 图9-21 工件在V 形块上的定位误差分析 工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的 制造不准确而引起的定位基准位移误差,以表示。定位误差是这两部分的矢量和。 二、定位误差分析计算 (一)工件以外圆在v形块上定位时定位误差计算 如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差

(9-3) 对于9-16中的三种尺寸标注,下面分别计算其定位误差。当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。所以B1尺寸的定位误差为 (9-4) 当尺寸标注为B2时,工序基准为上母线。此时存在基准不重合误差 所以△D应为△B与Δy的矢量和。由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。故 (9-5) 当尺寸标注为B3时,工序基准为下母线。此时基准不重合误差仍然是,但当Δy向下变化时,ΔB 是方向朝上的,所以,它们的矢量和应是相减。故 (9-6) 通过以上分析可以看出:工件以外圆在V形块上定位时,加工尺寸的标注方法不同,所产生的定位误差也不同。所以定位误差一定是针对具体尺寸而言的。在这三种标注中,从下母线标注的定位误差最小,从上母线标注的定位误差最大。 四.计算题:(共 10 分) 如图所示套类工件铣键槽,要求保证尺寸94-0.20,分别采用图(b)所示的定位销定位方案和图(c)所示的V形槽定位方案,分别计算定位误差。

房产测量的标准规范以及计算方法

房产测量的标准规范以及计算方法 1 范围 本标准规定了城镇房产测量内容与基本要求,适用于城市、建制镇的建成区和建成取以外的工矿企事业单位及其毗邻居民点的房产测量。其他地区的房地产测量亦可参照执行。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 2260--1995 中华人民共和国行政区划代码 GB 6962--1986 1:500、1:1000、1:2000比例尺地形图航空摄影规范 GB/T 17986.2--2000 房产测量规范第二单元:房产图图式 CH 1003--1995 测绘产品质量评定标准 3 总则 3.1 房产测量的目的和内容 3.1.1 房产测量的目的。房产测量主要是采集和表述房屋和房屋用地的有关信息,为房产产权、产籍管理、房地产开发利用、交易、征收税费,以及城镇规划建设提供数据的资料。 3.1.2 房产测量的基本内容。房产测量的基本内容包括:房产平面控制测量,房产调查,房产要素测量,房产图绘制,房产面积测算,变更测量,成果资料的检查与验收等。 3.1.3 房产测量的成果。房产测量成果包括:房产簿册,房产数据和房产图集。 3.2 房产测量的基本精度要求 3.2.1 房产测量的精度指标与限差。本标准以中误差作为评定精度的标准,以两倍中误差作为限差。 3.2.2 房产平面控制测量的基本精度要求。末级相邻基本控制点的相对点位中误差不超过± 0.025m。 3.2.3 房产分幅平面图与房产要素测量的精度 3.2.3.1 模拟方法测绘的房产分幅平面图上的地物点,相邻于邻近控制点的点位中误差不超过图上± 0.5mm。 3.2.3.2 利用已有的地籍图、地形图编绘房产分幅图时,地物点相对于邻近控制点的点位中误差不超过图上 ± 0.6mm。 3.2.3.3 对全野外采集数据或野外解析测量等方法所测的房地产要素点和地物点,相对于邻近控制点的点位中误差不超过± 0.05m。 3.2.3.4 采用已有坐标或已有图件,展绘成房产分幅图时,展绘中误差不超过图上± 0.1mm。 3.2.4 房产界址点的精度要求。房产界址点(以下简称界址点)的精度分三级,各界址点相对于邻近控制点的点位误差和间距超过50m的相邻界址点的间距误差不超过表1的规定;间距未超过50m的界址点间的间距误差限差不应超过式(1)计算结果。 表 1 界址点等级界址点相对于邻近控制点的点位误差相邻界址点的间距误差 限差中误差 一 ±0.04 ±0.02 二 ±0.10 ±0.05 三 ±0.20 ±0.10 ΔD=(±m j+0.02m jD) (1) 式中:m j——相应等级界址点的点位中误差,m; D-----相邻界址点间的距离,m; ΔD----界址点坐标计算的边长与实量边长较差的限差,m。 3.2.5 房脚点的精度要求。需要测定房脚点的坐标时,房脚点坐标的精度登记和限差执行与界址点相同的标准;不要求测定房脚点坐标时则将房屋按2.3的精度要求表示于房产图上。 3.2.6 房产面积的精度要求。房产面积的精度分为三级,各级面积的限差和中误差不超过表2计算结果。

亥姆霍兹线圈磁场 南昌大学 物理实验(可打印修改) (2)

南昌大学物理实验报告 课程名称:普通物理实验(1) 实验名称:亥姆霍兹线圈磁场 学院:理学院专业班级:应用物理学152班学生姓名:学号: 实验地点:基础实验大楼B212 座位号:26 实验时间:第七周星期四上午十点开始

一、实验目的: 1.学习和掌握霍尔效应原理测量磁场的方法。 2.测量载流圆线圈和亥姆霍兹线圈轴线上的磁场分布。 二、实验原理: 1.载流圆线圈与亥姆霍兹线圈的磁场(1)载流圆线圈磁场 根据比奥-萨伐尔定律,载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点磁感应强度B 为 (1) 2 3222 00)(2x R IR N B += μ式中为真空磁导率,R 为线圈的平均半径,为圆线圈的匝数,I 通过线圈的电流x 为轴线上某H/m 10π47-0?=μ0N 一点到圆心O 的距离.因此它在轴线上磁场分布图如图(1)所示。 (2)亥姆霍兹线圈 所谓亥姆霍兹线圈是两个相同的圆线圈,彼此平行且共轴,通以同方向电流I ,理论计算证明:当线圈间距a 等于线圈半径R 时,两线圈合磁场在轴线上(两线圈圆心连线)附近比较大范围内是均匀的,如图(2)所示.这种均匀磁场在工程运用和科学实验中应用十分广泛。

1.测量圆电流线圈轴线上磁场的分布 (1)仪器使用前,请先开机预热5min接好电路,调零. (2)调节磁场实验仪的输出功率,使励磁电流有效值为I=200mA,以圆电流线圈中心为坐标原点,每隔10.0 B mm测一个值,测量过程中注意保持励磁电流值不变,记录数据并作出磁场分布曲线图. m 2.测量亥姆霍兹线圈轴线上磁场的分布 (1)关掉电源,把磁场实验仪的两组线圈串联起来(注意极性不要接反),接到磁场测试仪的输出端钮,调零. (2)调节磁场测试仪的输出功率,使励磁电流有效值仍为I=200mA,以两个圆线圈轴线上的中心点为坐标原点,B 每隔10.0 mm测一个值.记录数据并作出磁场分布曲线图. m 五、实验数据与处理: 1.圆电流线圈轴线上磁场分布的测量数据(注意坐标原点设在圆心处,要求列表记录,表格中包括测点位置,并在表格中表示出各测点对应的理论值),在坐标纸上画出实验曲线。 ≈ Bmax时,记录x53.0mm x/mm010******** △x/mm-53-43-33-23-13-3 Bm/mT 测量值0.4190.4620.5020.5360.5550.564 Bm/mT 标准值0.4250.4740.5190.5570.5840.597 Bm/mT 误差值0.0060.0120.0170.0210.0290.033 x/mm60708090100110 △x/mm71727374757 Bm/mT 测量值0.5560.5330.5000.4600.4150.368 Bm/mT 标准值0.5940.5750.5440.5020.4550.406 Bm/mT0.0380.0420.0440.0380.0400.038

亥姆霍兹线圈磁场测定-实验报告

开放性实验实验报告—— 亥姆霍兹线圈磁场测定 姓名学号班级 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N匝的圆环电流。当它们的间距正好等于其圆环半径R时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1. 熟悉霍尔效应法测量磁场的原理。 2. 学会亥姆霍兹磁场实验仪的使用方法。 3. 测量圆线圈和亥姆霍兹线圈上的磁场分布,并验证磁场的叠加原理 二、实验原理 同学们注意,根据自己的理解,适当增减,不要太多,有了重点就可以了。 1.霍尔器件测量磁场的原理 图3—8—1 霍尔效应原理

如图3—8—1所示,有-N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,电流密度为J,则电子将沿负J方向以速度运动,此电子将受到垂直方向磁场B的洛仑兹力 作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场,该电场对电子的作用力,与反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压,此种效应为霍尔效应,由此而产生的电压叫霍尔电压,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,则电流密度J的大小为

(3—8—1) 式中b为矩形导体的宽,d为其厚度,则bd为半导体垂直于电流方向的截面积。 如果半导体所在范围内,磁场B也是均匀的,则霍耳电场也是均匀的,大小为 (3—8—2) 霍耳电场使电子受到一与洛仑兹力F m相反的电场力F e,将阻止电子继续迁移,随着电荷积累的增加,霍耳电场的电场力也增大,当达到一定程度时,F m与F e大小相等,电荷积累达到动态平衡,形成稳定的霍耳电压,这时根据F m=F e有 (3—8—3) 将(3—8—2)式代入(3—8—3)式得 (3—8—4) 式中、容易测量,但电子速度难测,为此将变成与I有关的参数。根据欧姆定理电流密度,为载流子的浓度,得,故有 (3—8—5) 将(3—8—5)式代入(3—8—4)式得

相关文档
最新文档