高海拔对电气设备影响

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高海拔对电气设备主要的影响是绝缘和温升两方面。对不同的电气设备影响的侧重点不同。

一、高压开关设备

海拔升高,气压降低,空气的绝缘强度减弱,使电器外绝缘降低而对内绝缘影响很小。由于设备的出厂试验是在正常海拔地点进行的,因此,根据IEC出版物694对于开关设备以其额定工频耐压值和额定脉冲耐压值来鉴定绝缘能力,对于使用地点超过1000M以上时,应作适当的校正。对于10KV开关柜来说,其额定电压为12KV;额定工频耐压值(有效值)为32KV(对隔离距离)和28KV(各相之间及对地);额定脉冲耐压值(峰值)为85KV(对隔离距离)和75KV(各相之

间及对地)。

而随着海拔的升高,空气密度降低,散热条件变差,会使高压电器在运行中温升增加,但空气温度随海拔高度的增加而

逐渐降低,基本可以补偿由海拔升高对电器温升的影响。

但对于阀式避雷器来说,情况就较为复杂。由于避雷器自身并不密封,其阀片的间距不可调,因此其火花间隙的放电电压易受空气密度的影响,所以应向设备厂商注明海拔高度,或使用高压型阀式避雷器。

二、干式变压器

环氧树脂干式变压器,国家标准关于以上两个因素有着明确的校正方法。根据GB6450)《干式变压器》中第,对于在超过1000M海拔处运行,并在正常海拔进行试验的变压器,其温升限值应相应递减,超过1000M海拔部分以第500M为一级,温升限值接自冷变压器2.5%、风冷变压器5%减小;额定短时工频耐受电压值同时增加6.25%。

三、低压电气设备

对于低压电气设备,情况要稍好一些。根据JB/Z0103-11标准及科研部门的调查研究,现有普通型低压电器在高原地区

的使用如下:

1、温度:现有一般低压电器产品,使用于高原地区时,其动、静触头和导电体以及线圈等部分的温度随海拔高度的增加而递增。其温升递增率为海拔每升高100M,温升增加0.1-0.5K,但大多数产品均小于0.4K。而高原地区气温随海拔高度的增加而降低,其递减率为海拔每升高100M,气温降低足够补偿由海拔升高对电器温升的影响。因此,低压电器的额定电流值可以保持不变,对于连续工作的大发热量电器,可适当降低电源等级使用。

2、绝缘耐压:普通型低压电器在海拔2500米时仍有60%的耐压裕度,且通过对国产常用继电器与转换开关等的试验表

明,在海拔4000M及以下地区,均可在其额定电压下正常运行。

3、动作特性:海拔升高时,双金属片热继电器和熔断器的动作特性有少许变化,但在海拔4000M下时,均在其技术条件规定的特性曲线"带"范围内RTO等国产常用熔断器的熔化特性最大偏差均在容许偏差的50%以内。而国产常用热继电器的动作稳定性较好,其动作时间随海拔升高有显著缩短,根据不同的型号,分别为正常动作时间和40%-73%。也可在现场调节电流整定值,使其动作特性满足要求。通过对低压熔断器非线性的环境温度对时间-电流特性曲线研究表明,熔体的载流能力在同样的较小的过载电流倍数情况下(即轻过载)熔断时间随环境温度减小而增加,在20度以下时,变化的程度则更大;而在同样的较大的过载电流倍数情况下(即短路保护时),熔断时间随环境温度的变化可不作考虑。因此,在高原地区的使用熔断器开关作为配电线路的过载与短路保护时,其上下级之间的选择性应特别加以考虑。在采用低压断路器时,应留有一定的断路与工作余量。由此可见,熔断器在高原的使用环境下可靠性和保护特性更为理想。我们厂在3000KM的地方,设备的降容系数是0.8,电机的系数是0.83,此数供参考。

高海拔、低气压对循环流化床燃煤锅炉炉内燃烧的影响

摘要:

煤粒在流化床内的燃烧涉及到流动、传热、化学反应及若干相关的物理化学现象。煤粒送入循环流化床内迅速受到高温物料及烟气的加热,首先是水分蒸发,接着是挥发份析出和燃烧,以及焦炭的燃烧,其间还伴随着发生煤粒的破碎、磨损等现象。煤粒在炉内将依次发生如下的过程:

①煤粒得到高温床料的加热并干燥;

②热解及挥发份燃烧;

③发生颗粒膨胀和一级破碎现象;

④焦炭燃烧并伴随着二级破碎和磨损现象。

流化床内煤粒的燃烧包括挥发份的析出燃烧和焦炭的燃烧,这与煤粉炉是一致的。与煤粉炉不同之处在于:

①对煤粉炉而言,煤粒的干燥和破碎是在炉外(也就是在制粉系统内)完成,而循环流化床在炉内完成干燥过程和部分破碎过程。

②由于炉内煤粒浓度较大,循环流化床炉内煤粒间存在磨损现象。

③煤粉炉是一次燃烧,循环流化床锅炉通过飞灰循环实现多次燃烧。

④循环流化床的燃烧是低温燃烧,焦炭的燃烧主要以扩散燃烧为主。

⑤循环流化床内的温度梯度较小。

⑥循环流化床热容量较大,煤粒燃烧产生的热量较总热容量的比例较小。

⑦由于干燥过程激烈和快速,挥发份量有所增加。

⑧化学反应基本是一致的,但传质过程有所不同。

以下就高海拔、低气压对循环流化床内煤粒燃烧特性的影响进行初步分析。

一、高海拔、低气压对挥发份析出燃烧的影响

高海拔、低气压使炉内煤粒的环境压力降低,研究表明,低的环境压力有利于减小挥发份逸出的阻力,缩短其在颗粒内部的停留时间。由于挥发份的析出燃烧过程中,挥发份的析出时间占绝大多数,而燃烧是在瞬间完成,因此,低的环境压力将使挥发份的析出加快,并使挥发份产物有所增加,使燃烧过程加快和更趋于激烈,在浓相区释放出的热量更多,使浓相区的温度升高。因此,对于燃用高挥发份的褐煤而言,应选用较高的流化风速和采取适当的防结焦措施。

二、高海拔、低气压焦炭燃烧过程的影响

煤中挥发份在流化床条件下具有短时大量析出的特点,这对炉内燃烧的组织和后续的焦炭燃烧产生较大的影响。在流化床条件下,煤粒挥发份析出燃烧过程与焦炭燃烧过程存在一定的重叠,即在初期以挥发份的析出和燃烧为主,后期以焦炭燃尽为主。实践证明,焦炭的燃尽时间比挥发份的析出燃烧时间长得多,也就是说,焦炭的燃烧过程控制着煤粒在流化床中的整个燃烧过程。

根据文献[1]介绍,焦炭燃尽时间可用下式表示:

τ=ρc R c[δe Bδ-(e Bδ-1)/B]/(M cε0D0C f B)----------(1)

其中:ρc——焦炭表观密度,kg/m3;

R c——焦炭含碳量,kg/kg;

M c——碳的摩尔质量,kg/mol;

δ——灰层厚度,m;

ε0、B——特定煤种的表面灰层结构参数;

C f——环境氧浓度,mol/m3;

D0——气体在灰层中的分子扩散系数,m2/s。

循环流化床的燃烧是低温燃烧,焦炭的燃烧主要以扩散燃烧为主。从式(1)中可看出,焦炭燃尽时间(τ)与环境氧浓度(C f)成反比关系。高海拔、低气压将使环境氧浓度降低,如果不考虑煤质和其它因素的影响,高海拔、低气压将使焦炭燃尽时间延长。也就是说,高海拔、低气压最终将使煤粒燃尽时间延长。因此,在燃用相同煤种的情况下,高海拔地区的循环流化床锅炉要获得与平原地区循环流化床锅炉相同的燃烧效率,只有提高循环倍率或提高炉膛高度。对于高挥发份的褐煤而言,由于其挥发份大量析出造成焦炭的多孔性,使物性参数得以改善,有助于缩短燃尽时间,这样就使得锅炉燃烧效率得以部分弥补。炉膛高度不需按大气压力成比例地增加。

三、对流化床内煤粒破碎特性的影响

高海拔、低气压对炉内煤粒破碎特性无明显影响。

四、对流化床内煤粒磨损特性的影响

在流化床内,煤粒因燃烧而在其表面有一灰壳生成,脱硫剂也会在其外表面形成一个脱硫产物层,因此会影响燃烧的进一步进行和脱硫剂的有效性,从这个意义上讲,流化床内煤粒的磨损有利于燃烧和脱硫反应的进行。同时,磨损产生的细粒子可燃物扬析损失,也会导致燃烧效率的降低。

根据文献[1]介绍,对于低灰份煤(Aar<20),磨损速率可用近似公式表示为:

R a=2.33×10-8(u0-u mf) 0.3]--------(2)

R a——磨损速率,kg/s;

相关文档
最新文档