1 材料应力腐蚀的特点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 材料应力腐蚀的特点
材料在应力和腐蚀环境的共同作用下引起的破坏叫应力腐蚀。这里需强调的是应力和腐蚀的共同作用。
材料应力腐蚀引起的破坏,常有以下特点:
(1)造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一般是拉伸应力(近年来,也发现在不锈钢中可以有压应力引起)。这个应力可以是外加应力,也可以是焊接、冷加工或热处理产生的残留拉应力。最早发现的冷加工黄铜子弹壳在含有潮湿的氨气介质中的腐蚀破坏,就是由于冷加工造成的残留拉应力的结果。假如经过去应力退火,这种事故就可以避免。
(2)应力腐蚀造成的破坏,是脆性断裂,没有明显的塑性变形。
(3)只有在特定的合金成分与特定的介质相组合时才会造成应力腐蚀。例如α黄铜只有在氨溶液中才会腐蚀破坏,而β黄铜在水中就能破裂。
(4)应力腐蚀的裂纹扩展速率一般在10-9-10-6m/s,有点象疲劳,是渐进缓慢的,这种亚临界的扩展状况一直达到某一临界尺寸,使剩余下的断面不能承受外载时,就突然发生断裂。
(5)应力腐蚀的裂纹多起源于表面蚀坑处,而裂纹的传播途径常垂直于拉力轴。
(6)应力腐蚀破坏的断口,其颜色灰暗,表面常有腐蚀产物,而疲劳断口的表面,如果是新鲜断口常常较光滑,有光泽。
(7)应力腐蚀的主裂纹扩展时常有分枝。但不要形成绝对化的概念,应力腐蚀裂纹并不总是分枝的。
(8)应力腐蚀引起的断裂可以是穿晶断裂,也可以是晶间断裂。如果是穿晶断裂,其断口是解理或准解理的,其裂纹有似人字形或羽毛状的标记。
上述的应力腐蚀破坏特征,可以帮助我们识别破坏事故是否属于应力腐蚀,但一定要综合考虑,不能只根据某一点特征,便简单地下结论。
2 材料应力腐蚀抗力指标及测试方法
早期对应力腐蚀开裂的研究是采用光滑试样,在特定介质中于不同应力下测定金属材料的滞后破坏时间。用这种方法已积累了大量的数据,对于了解应力腐蚀破坏问题起了一定作用。但还有很多不足之处,主要有:
(1)因数据分散,有时可能得出错误的结论。
(2)不能正确得出裂纹扩展速率的变化规律。
(3)费时,且不能用于工程设计。
现在对应力腐蚀的研究,都是采用预制裂纹的试样。将这种试样放在一定介质中,在恒定载荷下,测定由于裂纹扩展引起的应力强度因子K随
时间的变化关系(具体测试方法将在下面介绍),据此得出材料的抗应力腐蚀特性。
例如图5-1所示Ti-8Al-1Mo-1V,其K1c=100MPa.m1/2。在3.5%盐水中,当初始K值仅为40MPa.m1/2时,仅几分钟试样就破坏了。如果将值K 稍微降低,则破坏时间可大大推迟。当K值降低到某一临界值时,应力腐蚀开裂实际上就不发生了。这一K值我们称之为应力腐蚀门槛值,以K1SCC 表示(SCC是Stress Corrosion Cracking的缩写)。
(1)K (2)K1SCC (3)K>K1C时,加上初始载荷后立即断裂。尽管初始K值不同,裂纹扩展速率和断裂时间也不同,但材料的最终破坏都是在K=K1C时发生的。 应该指出,高强度钢和钛合金都有一定的门槛值K1SCC,但铝合金却没有明显的门槛值,其门槛值只能根据指定的试验时间而定。一般认为对于这类试验的时间至少要1000小时,使用这类K1SCC数据时必须十分小心。特别是如果所设计的工程构件在腐蚀性环境中应用的时间比产生K1SCC数据的试验时间长时,更要小心。 除了用K1SCC来表示材料的应力腐蚀抗力外,也可测量裂纹扩展速率da/dt。 下面简单介绍应力腐蚀破裂的测试方法。 一种是载荷恒定,使K1不断增大的方法,最常用的是恒载荷的悬臂梁弯曲试验装置。另一种测定K1SCC的方法是位移恒定,使K1不断减少,用紧凑拉伸试样和螺栓加载。 这两种方法各有其优缺点。用悬臂梁弯曲方法可得到完整的K1初始-断裂时间曲线,能够较准确的确定K1SCC,缺点是所需试样较多。恒位移法不需特殊试验机,便于现场测试,原则上用一个试样即可测定K1SCC值,缺点是裂纹扩展趋向停止的时间很长。当停止试验时,扩展的裂纹前沿有时不太规整,在判定裂纹究竟是扩展了还是已停止扩展发生困难,因此在计算K1SCC时就有一定误差。 3 影响应力腐蚀的因素 1.环境因素 奥氏体不锈钢对卤化物元素是十分敏感的;同样,一些铜合金对含氨的环境也是很敏感的。奥氏体不锈钢固然对氯化物产生应力腐蚀很敏感,但氯或卤素离子并不是唯一的决定因素,产生SCC还必须有氧存在。对加铌的18-8不锈钢研究发现,只要其中有百万分之几的氧就能和氯化物共同 造成应力腐蚀。奥氏体不锈钢在沸腾的MgCl2溶液中,只有氮浓度超过 500X10-6才产生SCC,而在氮浓度小于500X10-6时,则不发生应力腐蚀。溶液的PH值对应力腐蚀的敏感性也有很大的影响。 2.力学因素 经轧制的高强度铝合金7075-T6板材,当沿着轧制方向取样作拉伸试验时,对应力腐蚀的抗力最高,门槛应力可达420MPa;当沿着板宽方向取样时,其门槛应力则为224MPa;如沿板厚方向取样作拉伸试验时,门槛应力只有49MPa,几乎只有轧制方向的1/10。7075-T6铝合金所显示的应力方向性。 图5-3表示四种高强度钢淬火回火至大约抗拉强度为1650MPa时,它们的应力强度因子和断裂时间的关系。试样经预制裂纹在蒸馏水中施加不同载荷,可看出四种钢均有一恒定的K1SCC,在K1SCC以下试样不断裂。在这四种钢处理成相同的抗拉强度时,它们的K1SCC也相同,但是当K1>K1SCC 时,这四种钢的断裂时间相差还是较多的。 热处理成不同强度的40CrNiMo(4340),其应力腐蚀的裂纹扩展速率和应力强度因子的关系,可见当屈服强度较高时,裂纹扩展表现出两个阶段,开始时裂纹扩展速率随应力强度因子的增加而升高,当应力强度因子增加到一定数值时,裂纹扩展速率便保持恒定不再与应力强度因子有关了。这一实验结果具有一定的典型性,几乎所有的高强度钢包括马氏体时效钢,还有高强度铝合金都有此规律。 3.冶金因素 (1)材料成份的影响; (2)材料组织的影响; (3)材料强度的影响。 5.1.4 应力腐蚀机理及防止办法 应力腐蚀机理就是滑移-溶解理论。它可以简单地归结为四个过程,这就是滑移-膜破-阳极溶解-再钝化。这一机理所提出的基本概念广为多数人接受。但是,滑移-溶解机理只能很好地解释沿晶断裂的应力腐蚀,而对穿晶型断裂如奥氏体不锈钢的氯脆,却遇到了很大困难。因为穿晶断裂型的应力腐蚀,其断裂表面不是在滑移面上,断裂具有类似解理的特征。 防止应力腐蚀的办法要视具体的材料-介质而定。例如低碳钢容易产生碱脆和硝脆。在锅炉的铆接和焊接部位,少量的渗漏使溶融的盐形成局部高浓度的苛性钠,易产生碱脆。对于碱脆就要时时注意锅炉用水处理,减少PH值或加入强氧化剂使钢表面钝化,加入一些抑制剂如硝酸盐、硫酸盐、磷酸盐都可减缓应力腐蚀,也可用阴极保护的办法。而对于硝脆则正相反,要增加溶液的PH值,或加入苛性钠等碱性物质延缓应力腐蚀,当然,从电化学防护来说也可用阴极保护。对奥氏体不锈钢的氯脆,首先从合金的成分加以改进,如从低镍的18-8型(304、302型)改变成高镍并加钼的316型,