溶液法测定极性分子的偶极矩实验报告

溶液法测定极性分子的偶极矩实验报告
溶液法测定极性分子的偶极矩实验报告

结构化学实验报告

——溶液法测定极性分子的偶极矩

一、实验目的

1.用溶液法测定正丁醇的偶极矩

2.了解偶极矩与分子电性质的关系

3.掌握溶液法测定偶极矩的实验技术

二、实验原理

1.偶极矩与极化度

(1)两个大小相等方向相反的电荷体系的偶极矩定义为:

(2)极化程度可用摩尔定向极化度P定向来衡量:

P

定向=4/3πN

A

2/(3kT)=4/9πN

A

2/(kT)

(3)极性分子所产生的摩尔极化度P是摩尔定向极化度、摩尔电子诱导极化度和摩尔原子诱导极化度的总和:

P=P

定向+P

诱导

=P

定向

+P

电子

+P

原子

2.偶极矩的测定方法(溶液法测定偶极矩)(1)无限稀释时溶质的摩尔极化度的公式:

P=P

2∞=3αε

1

/(ε

1

+2)2 * Μ

1

1

+ (ε

1

-1)/(ε

1

+2) * (Μ

2

-βΜ

1

)/ρ

1

(2)习惯上用溶质的摩尔折射度R2表示高频区测得的摩尔极化度,因为此时P定向=0,P原子=0,推导出无限稀释时溶质的摩尔折射度的公式:

P

电子=R

2

∞=n

2

-1/(n

1

2+2) * (Μ

2

-βΜ

1

)/ρ

1

+6n

1

1

γ/[(n

1

2+2)2*ρ

1

]

(3) 近似公式:

ε

溶=ε

1

(1+α* x

2

)

ρ

溶=ρ

1

(1+β*x

2

)

n

溶=n

1

(1-γ*x

2

)

(4) 永久偶极矩的获得

考虑到摩尔原子诱导极化度通常只有摩尔电子极化度的5%-15%,而且P定向又比P原子大得多,故常常忽略P原子,可得P定向=P2∞-R2∞=4/9πN A*μ02/(kT)

μ

0=0.0128*[(P

2

∞-R

2

∞)*T]1/2

(5)介电常数的测定:用空气与一已知介电常数ε溶的标准物质分别测得电容C/空,C/标

C/

空=C

+C

d

= C

+C

d

C/

=C

+C

d

则通过上两式可求得C0=(C/标-C/空)/(ε标-1) C d=C/空-C0=C/空-(C/标-C/空)/(ε标-1)

ε

溶= C

/ C0=(C/溶- C d)/ C0

三、仪器和试剂

仪器:阿贝折光仪1台;比重管1只;电容测量仪一台;电容池一台;电子天平一台;电吹风一只;25ml容量瓶4支;25ml、5ml、1ml移液管各一支;滴管5只;5ml针筒一支;针头一支;吸耳球一个;

试剂:正丁醇(分析纯);环己烷(分析纯);蒸馏水;丙酮

四、实验步骤

1.溶液的配制

配制4种正丁醇的摩尔分数分别是0.05、0.10、0.15、0.20的正丁醇-环己烷溶液。操作时应注意防止溶质和溶剂的挥发以及吸收极性较大的水气,为此溶液配好后应迅速盖好瓶盖,并置于干燥箱中。

2.折光率的测定

在恒温(25±0.10C)条件下用阿贝折光仪测定环己烷和各配制溶液的折光率。测定时注意各样品需加样三次,每次读取一个数据,取平均值。

3.介电常数的测定

(1)先接好介电常数测量仪的配套电源线,打开电源开关,预热5分钟;用配套测试线将数字电常数测量仪与电容池连接起来;待显示稳定后,按下“采零”键,以清除仪表系统零位漂移,屏幕显示“00.00”。

(2)电容C0 和C d 的测定:本实验采用环己烷为标准物质,其介电常数的温度公式为:

ε标=2.203-0.0016(t-20)

式中t为实验室温度(0C)。用电吹风将电容池加样孔吹干,旋紧盖子,将电容池与介电常数测量仪接通。读取介电常数测量仪上的数据。重复三次,取平均值。用移液管取1ml纯环己烷加入电容池的加样孔中,盖紧盖子,同上方法测量。倒去液体,吹干,重新装样,用以上方法再测量两次,取三次测量平均值。

(3)溶液电容的测量:测定方法与环己烷的测量方法相同。每个溶液均应重复测定三次,

三次数据差值应小于0.05pF,所测电容读数与平均值,减去C d,即为溶液的电容C溶。由于

溶液易挥发而造成浓度改变,故加样时动作要迅速,加样后迅速盖紧盖子。

4.溶液密度的测定

取干净的比重管称重m0。然后用针筒注入已恒温的蒸馏水,定容,称重,记为m1。用丙酮清洗并吹干。同上,测量各溶液,记为m2 。则环己烷和各溶液的密度为:

ρ

溶=(m

2

-m

)/(m

1

-m

) *ρ

,ρ25℃水=0.99707g/mL

5.清洗、整理仪器

上述实验步骤完成后,确认实验数据的合理性。确认完毕,将剩余溶液回收,容量瓶、比重管、针筒洗净、吹干。整理实验台,仪器恢复实验前的摆放。

五、数据记录和处理

2.折光率的测定

由上图可知:n1=1.4276

γ=0.0378/1.4276=0.0265

3.介电常数的测定

t=17.8℃ε标=2.203-0.0016(t-20)=2.207

C0=(C/标-C/空)/(ε标-1)=(5.48-5.24)/(2.207-1)=0.199 C d=C/空-C0=5.24-0.199=5.04

由ε溶=(C/溶- C d)/ C0 ,可算出:

ε(环己烷)=2.207

ε(0.05)=2.66

ε(0.10)=2.56

ε(0.15)=3.16

ε(0.20)=2.86

由上图可知:ε1=2.3282

α=3.612/2.3282=1.551 4.溶液密度的测定

m0=25.0273

m1=28.4069

m2(环己烷)=27.6384

m2(0.05)=27.6410

m2(0.10)=27.6457

m2(0.15)=27.6470

m2(0.20)=27.6491

由ρ溶=(m2-m0)/(m1-m0) *ρ水,可算出:ρ(环己烷)=0.7726

ρ(0.05)=0.7734

ρ(0.10)=0.7748

ρ(0.15)=0.7752

ρ

(0.20)=0.7758

由上图可知:ρ1=0.7727

β=0.0164/0.7727=0.0212

5.求P

2∞、R

2

P2∞=3αε1/(ε1+2)2 * Μ1/ρ 1 + (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1 =91.71

R2∞=(n12-1)/(n12+2) * (Μ2-βΜ1)/ρ 1 + 6n12Μ1γ/[(n12+2)2*ρ1]

=26.23

6.求偶极矩μ0(当时温度为1

7.80C)

μ0=0.0128*[(P2∞-R2∞)*T]1/2=0.0128*[(91.71-26.23)*290.8]1/2

=1.77

六、分析讨论

1.分析本实验误差的主要来源,如何改进?

答:(1)溶液的配制:移液管使用过程中量取溶液并不十分精确,会导致溶液配置的时候X2的值与要求值有一定的偏差。所以,在移液的过程中要保证移液管使用操作迅速准确。(2)折光率的测定:折光率的线性还比较好,测量中除了取样,试剂瓶盖子应随时盖好.以免样品挥发影响溶液浓度。而且样品滴加要均匀,用量不能太少,以免测量不准确。(3)介电常数的测定:仪器不是很稳定,而且并未用移液管移取1mL,而是用每种溶液的专用滴管吸取50滴,滴管的构造不一样,也导致了移取的样品量不一致,这是造成介电常数与浓度关系的线性很差的两个原因。应该用同一个移液管准确移取,且每次都要用丙酮洗净用待测液润洗,而且在重新装样前,为了证实电容池电极间的残余液确已除净,须先测量空气的电容值,待空气的电容值恢复到测量之前,或者在±0.05pF的误差范围内,方可进行下一次测量。

(4)溶液密度的测定:因为电子天平非常灵敏,当有电吹风在吹或稍有动静时,读数就变得很厉害,两次测量的数据都会很不一样,所以每个样品测了两次,取了比较合理的数据。减小误差的方法是确保每次装样品前比重管都要洗净吹干(内外管壁都是),溶液要装满比重管,且外壁不能沾溶液,测量的环境要尽可能安静。

2.本实验中,为什么要将被测的极性物质溶于非极性的溶剂中配成稀溶液?

答:因为溶液法的基本想法是,在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气态时相近,于是无限稀释的溶液中就可以使用如下稀溶液的近似公式:

ε

溶=ε

1

(1+α* x

2

)

ρ

溶=ρ

1

(1+β*x

2

)

n

溶=n

1

(1-γ*x

2

)

从而可以推导出无限稀释时溶质的摩尔极化度及摩尔折射度的公式,最终得到永久偶极矩。

3.根据实验结果,判断正丁醇的对称性(所属点群)。

答:由于正丁醇具有永久偶极矩,且只有属于Cn、Cnv(包括Cs)点群的分子才具有永久偶极矩,所以正丁醇所属点群为C1 。

偶极矩,介电常数

溶液法测定极性分子的偶极矩 一、实验目的 了解电介质极化与分子极化的概念,以及偶极矩与分子极化性质的关系。掌握溶液法测定极性分子永久偶极矩的理论模型和实验技术,用溶液法测定乙酸乙酯的偶极矩。 二、实验原理 德拜(Peter Joseph William Debye )指出,所谓极性物质的分子尽管是电中性的,但仍然拥有未曾消失的电偶极矩,即使在没有外加电磁场时也是如此。分子偶极矩的大小可以从介电常数的数据中获得,而对分子偶极矩的测量和研究一直是表征分子特性重要步骤。 1、偶极矩、极化强度、电极化率和相对电容率(相对介电常数) 首先定义一个电介质的偶极矩(dipole moment )。考虑一簇聚集在一起的电荷,总的净电荷为零,这样一堆电荷的偶极矩p 是一个矢量,其各个分量可以定义为 i i i z i i i y i i i x z q p y q p x q p 式中电荷i q 的坐标为),,(i i i z y x 。偶极矩的SI 制单位是:m C 。 将物质置于电场之中通常会产生两种效应:导电和极化。导电是在一个相对较长的(与分子尺度相比)距离上输运带电粒子。极化是指在一个相对较短的(小于等于分子直径)距离上使电荷发生相对位移,这些电荷被束缚在一个基本稳定的、非刚性的带电粒子集合体中(比如一个中性的分子)。 一个物质的极化状态可以用矢量P 表示,称为极化强度(polarization )。矢量P 的大小 定义为电介质内的电偶极矩密度,也就是单位体积的平均电偶极矩,又称为电极化密度,或电极化矢量。这定义所指的电偶极矩包括永久电偶极矩和感应电偶极矩。P 的国际单位制度量单位是2 m C 。为P 取平均的单位体积当然很小,但一定包含有足够多的分子。在一个微小的区域内,P 的值依赖于该区域内的电场强度E 。 在这里,有必要澄清一下物质内部的电场强度的概念。在真空中任意一点的电场强度E 的定义为:在该点放置一个电荷为dq 的无限微小的“试验电荷”,则该“试验电荷”所受

接触角的测定实验报告

—、实验目的 1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。 2. 掌握用JC2000C1静滴接触角/界面张力测量仪测定接触角和表面张力的方 法。 二、实验原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固?液界面所取 代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来, 有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润 湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不 粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。 此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类 型示于图仁 图1各种类型的润湿 当液体与固体接触后,体系的自山能降低。因此,液体在固体上润湿程度的 大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固 体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角 的液滴存在,如图2所示。 图2接触角 铺展润湿 粘附湿润 不银润 浸湿

假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即 yso- ySL= yLG-COS0 (1) 式中ysG, yi_G,ysi.分别为固?气、液?气和固?液界面张力;8是在固、气、液三 相交界处,自固体界面经液体内部到气液界面的夹角,称为接触角,在0°-180°之间。接触角是反应物质与液体润湿性关系的重要尺度。 在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是: 粘附润湿Wa = ySG - ySL + yLG zO (2) 铺展润湿S = ysG?ysL?yLG >0 (3) 式中Wa, S分别为粘附润湿、铺展润湿过程的粘附功、铺展系数。 若将(1)式代入公式(2)、(3),得到下面结果: Wa二ysG+yLG -ySL=yLG(1+COS0) (4) S=ySG-ySL-yLG=yLG(COS0-1) (5) 以上方程说明,只要测定了液体的表面张力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把8=90。作为润湿与否的界限,当8>90°,称为不润湿,当0<90°时,称为润湿,8越小润湿性能越好;当8角等于零时,液体在固体表面上铺展,固体被完全润湿。 接触角是表征液体在固体表面润湿性的重要参数之一,由它可了解液体在一定固体表面的润湿程度。接触角测定在矿物浮选、注水采油、洗涤、印染、焊接等方面

稀溶液法测定偶极矩

华南师范大学实验报告 学生姓名学号 2 专业化学(师范)年级、班级2009级化6 课程名称结构化学实验项目稀溶液法测定偶极矩 实验类型验证综合实验时间2011 年12 月 2 日 实验指导老师实验评分 一、实验目的 1.掌握溶液法测定偶极矩的主要实验技术 2.了解偶极矩与分子电性质的关系 3.测定正丁醇的偶极矩 二、实验原理 1.偶极矩与极化度 分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。

1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是 qd =→ μ ① 式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→ μ是一个矢量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10 m ,电荷的数量级为10-20 C ,所以偶极矩的数量级是10-30 C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度P μ来衡量。P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。 kT 9μ πN 4P A μ= ② 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此 P 诱导 = P e + P a ③

3 溶液法测定极性分子的偶极矩

实验3 溶液法测定极性分子的偶极矩 1 目的要求 (1) 用溶液法测定乙酸乙酯的偶极矩。 (2) 了解偶极矩与分子电性质的关系。 (3) 掌握溶液法测定偶极矩的主要实验技术。 2 基本原理 (1) 偶极矩与极化度:分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不 重合。前者称为非极性分子,后者称为极性分子。 图18-1电偶极矩示意图 图18-2极性分子在电场作用下的定向 1912年德拜提出“偶极矩” μ 的概念来度量分子极性的大小,如图18-1所示, 其定义是 d q ?=μ (1-1) 式中,q 是正负电荷中心所带的电量; d 为正负电荷中心之间的距离;μ 是一个 向量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,如图Ⅱ-29-2所示趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔转向极化度P 转向来衡量。 转向 P 与永久偶极矩2μ的值成正比,与绝对温度T 成反比。 kT N P 3432μπ ?=转向 kT N μ π ?=9 4 (1-2) 式中:k 为玻兹曼常数,N 为阿伏加德罗常数。

在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱 导 来衡量。显然P 诱导可分为二项,即电子极化度P 电子和原子极化度P 原子,因此P 诱导=P 电子 +P 原子。P 诱导与外电场强度成正比,与温度无关。 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率 小于1010s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 原子电子转向P P P P ++= (1-3) 当频率增加到1012~1014的中频(红外频率)时,电子的交变周期小于分子偶极矩的松弛时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场方向定向,故转向P =0,此时极性分子的摩尔极化度等于摩尔诱导极化度诱导P 。当交变电场的频率进一步增加到>1015秒-1的高频(可见光和紫外频率)时,极向分子的转向运动和分子骨架变形都跟不上电场的变化。此时极性分子的摩尔极化度等于电子极化度电子 P 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子摩尔转向极化度转向P ,然后代入(18-2)式就可算出极性分子的永久偶极矩μ来。 (2) 极化度的测定:克劳修斯、莫索和德拜从电磁场理论得到了摩尔极化度P 与介电常数ε之间的关系式: ρ εεM P ?+-= 21 (1-4) 式中,M 为被测物质的分子量;ρ为该物质在TK 下的密度;ε可以通过实验测定。 但(1-4)式是假定分子与分子间无相互作用而推导得到的。所以它只适用于温度不太低的气相体系,对某些物质甚至根本无法获得气相状态。因此后来提出了用一种溶液来解决这一困难。溶液法的基本想法是,在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞2P ,就可以看作为(1-4)式中的P 。 海台斯纳特首先利用稀释溶液的近似公式。

分子偶极矩的测定

分子偶极矩的测定 一、实验目的 1、电桥法测定极性物质在非极性溶剂中的介电常数和分子偶极矩。 2、了解溶液法测定偶极矩的原理、方法和计算,并了解偶极矩与分子电性 质的关系。 二、实验原理 1)偶极矩和极化度 分子的表象为电中性,但是由于空间构型的不同,分子的正负中心有可能不重合,于是表现出极性来,极性的大小用偶极矩μ来衡量 μ=qd 式中q为正(负)电荷中心所带的电荷量,d为正、负电荷间的距离。偶极矩的方向规定从正指向负。 极性分子拥有偶极矩,在没有外电场的作用下时,由于分子热运动,偶极矩指向各方向的机会均等,所以统计偶极矩等于0。将分子置于外电场中时,分子会沿外电场方向做定向的转动,同时,分子中的电子云相对分子骨架发生位移,分子骨架本身也发生一定的变形,成为分子极化,可用摩尔极化度来衡量分子极化程度。因转向而极化成为摩尔转向极化度,由变形所致的为摩尔变形极化度,包括电子极化和原子极化。即 P=P 转向+P 变形 =P 转向 +(P 电子 +P 原子 ) 已知P 转向 与永久偶极矩μ的平方成正比,与热力学温度成反比,即 P 转向= 1 4 πN A μ2 b = N Aμ2 0b 式中k b为玻尔兹曼常数,N A为阿伏伽德罗常数。 对于非极性分子,μ=0,即P 转向=0,所以P=P 电子 +P 原子 。 对于极性分子,分子的极化程度与外电场的频率有关。在低频电场(ν﹤1010s-1)下,摩尔极化度等于摩尔转向极化度与摩尔变形极化度之和;在中频电场(ν=1012~1014s-1)下,电场交变周期小于偶极矩的松弛时间,分子转向运动跟 不上电场变化,P 转向=0,于是P=P 电子 +P 原子 ;在高频电场(ν﹥1015s-1)下,

固体表面动态接触角的测定

固体表面动态接触角的测定 一.目的与要求 1.了解固体表面接触角的测量及表面能的计算原理。 2.掌握润湿周长、接触角、表面能的实验测试方法及实验操作。 二.仪器与药品 DCA-150界面分析仪 正己烷(A.R.);无水乙醇(A.R.);二次蒸馏水;聚苯乙烯(Pst)样品 三.基本原理 接触角是表征固体物质润湿性最基本的参数之一,据测量的原理的不同,接触角又可分成平衡接触角和动态接触角(dynamic contact angle),动态接触角(包括前进接触角(advancing contact angle)和后退接触角(receding contact angle)两种。 早在20世纪初期,Wilhelmy测试液体表面张力及接触角的方法:将一定的待测液体装在特定容器中,尽可能垂直固定悬挂的铂金板,升起液面至刚好与铂金板的下边缘相接触,此时铂金板受到液面向下的拉力即为液体的表面张力r r = F w / (L·cosθ) (1) r-液体表面张力(Dyn /cm);F w —吊片所受的力(Dyn);L—润湿周长(cm);θ—接触角(°); 由于绝大多数的液体对于°铂金是完全润湿的,即接触角θ为0°,所以只要知道润湿周长,就可从(1)式很方便计算得到液体的表面张力 1.平衡接触角 又叫静态接触角,根据Wilhelmy理论,只要将待测固体加工成规定尺寸的片状样品,然后垂直悬挂与已知表面张力的液面接触,同样可以依据(1)计算得到液体在固体表面的平衡接触角。 2.动态接触角 Wilhelmy法:如图2依据Wilhelmy理论,把样品板插入到液体中然后抽出来,通过测量样品板受力变化计算得到液体在固体表面的动态接触角的大小。

偶极矩的测定

偶极矩的测定 1 目的要求 (1) 用溶液法测定乙酸乙酯的偶极矩。 (2) 了解偶极矩与分子电性质的关系。 (3) 掌握溶液法测定偶极矩的主要实验技术。 2 基本原理 (1) 偶极矩与极化度:分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不重合。前者称为非极性分子,后者称为极性分子。 图18-1电偶极矩示意图 图18-2极性分子在电场作用下的定向 1912年德拜提出“偶极矩” μ的概念来度量分子极性的大小,如图 18-1所示,其定义是 (18-1) 式中,q 是正负电荷中心所带的电量; d 为正负电荷中心之间的距离;μ? 是一个向量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电 d q ?=μ?p + b

场E 中,则偶极矩在电场的作用下,如图Ⅱ-29-2所示趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔转向极化度P 转向来衡量。 与永久偶极矩 的值成正比,与绝对温度T 成反比。 KT N P 3432μπ? ?=转向 KT N μπ? ?=94 (18-2) 式中:K 为玻兹曼常数,N 为阿伏加德罗常数。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然P 诱导可分为二项,即电子极化度P 电子和原子极化度P 原子,因此P 诱导=P 电子+P 原子。P 诱导与外电场强度成正比,与温度无关。 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 原子电子转向P P P P ++= (18-3) 当频率增加到1012~1014的中频(红外频率)时,电子的交变周期小于分子偶极矩的松弛时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场方向定向,故 =0,此时极性分子的摩尔极化度等于摩尔诱导极化度 。当交变电场的频率进一步增加到>1015秒-1的高频(可见光和紫外频率)时,极向分子的转向运动和分子骨架变形都跟不上电 转向P 2 μ转向P 诱导P

溶液法测定极性分子的偶极矩(上课用)

溶液法测定极性分子的偶极矩 I. 目的与要求 一、 用溶液法测定乙酸乙酯的偶极矩 二、 了解偶极矩与分子电性质的关系 三、 掌握溶液法测定偶极矩的实验技术 I I. 基本原理 一、偶极矩与极化度 分子结构可以近似地被石成是由电子。和对于骨架(原子核及内层电子)所构成的。由于分子空间构型的不同,其正、负电荷中心可能是重合的,也可能不重合,前者称为非极性分子,后者称为极性分子。 图1 电偶极矩示意图 1912年,德拜(Debye )提出―偶极矩‖μ的概念来度量分子极性的大小,如图1所示,其定义是 d q ?=μ (1) 式中 q 是正、负电荷中心所带的电荷量,d 为正、负电荷中心之间的距离,μ是一个向量,其方向规定从正到负。因分子中原子间距离的数量级为1010 -m ,电荷的数量级为2010-C ,所以偶极矩的数量级是3010-C·m 。 通过偶极矩的测定可以了解分子结构中有关电子云的分布和分子的对称性等情况,还可以用来判别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向各个方向的机会相同,所以偶极矩的统计值等于零。若将极性分子置于均匀的电场中,则偶极矩在电场的作用下会趋向电场方向排列。这时我们称这些分子被极化了,极化的程度可用摩尔转向极化度转向P 来衡量。 转向P 与永久偶极矩平方成正比,与热力学温度T 成反比

kT L kT L P 2294334μπμπ=?=转向 (2) 式中k 为玻耳兹曼常数,L 为阿伏加德罗常数。 在外电场作用下,不论极性分子或非极性分子都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度诱导P 来衡量。显然,诱导P 可分为二项,即电子极化度电子P ,和原子极化度原子P ,因此诱导P = 电子P + 原子P 。诱导P 与外电场强度成正比,与温度无关。 如果外电场是交变电场,极性分子的极化情况则与交变电场的频率有关。当处于频率小于1010-s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和 P = 转向P + 电子P + 原子P (3) 当频率增加到1210-~1410-s -1的中频(红外频率)时,电场的交变周期小于分子偶极矩的弛豫时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场定向,故转向P = 0。此时极性分子的摩尔极化度等于摩尔诱导极化度诱导P 。当交变电场的频率进一步增加到大于1510-s -1的高频(可见光和紫外频率)时,极性分子的转向运动和分子骨架变形都跟不上电场的变化,此时极性分子的摩尔极化度等于电子极化度电子P 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子的摩尔转向极化度转向P ,然后代人(2)式就可算出极性分子的永久偶极矩μ来。 二、极化度的测定 克劳修斯、莫索蒂和德拜(Clausius -Mosotti -Debye )从电磁理论得到了摩尔极化度P 与介电常数ε之间的关系式 ρ εεM P ?+-=21 (4) 式中,M 为被测物质的摩尔质量,ρ是该物质的密度,ε可以通过实验测定。 但(4)式是假定分子与分子间无相互作用而推导得到的,所以它只适用于温度不太低的气相体系。然而测定气相的介电常数和密度,在实验上困难较大,某些物质甚至根本无法使其处于稳定的气相状态。因此后来提出了一种溶液法来解决这一困难。溶液法的基本想法是,在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞ 2P 就可以看作为(4)式中的P 。 海德斯特兰(Hedestran )首先利用稀溶液的近似公式 ()211x αεε+=溶 (5) ()211x βρρ+=溶 (6) 再根据溶液的加和性,推导出无限稀释时溶质摩尔极化度的公式

用拉脱法测定液体表面张力系数物理实验报告

用拉脱法测定液体表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被周 围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密 度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行 定标的方法,计算该传感器的灵敏度。 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一 层液膜。使液面收缩的表面张力f 沿液面的切线方向,角?称为湿润角(或接触角)。当继续提起圆筒形吊环时,?角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破 裂时的拉力为F ,则有 f g m m F 2)(0++= (1) 式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ?+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。α在数值上等于单位长度上的表面张力。式中l 为圆筒形吊环内、外圆环的周长之和。 ) ()(0外内D D g m m F ++-= πα (3) 由于金属膜很薄,被拉起的液膜也很薄,m 很小可以忽略,于是公式简化为:

稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩 一、实验目的 (1)掌握溶液法测定偶极矩的主要实验技术 (2)了解偶极矩与分子电性质的关系 (3)测定正丁醇的偶极矩 二、实验原理 2.1偶极矩与极化度 分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。 1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是 qd =→ μ (1) 式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→ μ是一个矢量,其方向规定为从正到负,的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度P μ来衡量。P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。 kT 9μ πN 4P A μ= (2) 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此 P 诱导 = P e + P a (3) 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 P = P μ+ P e +P a (4) 介电常数实际上是在107H Z 一下的频率测定的,测得的极化度为 P μ+ P e +P a 。若把频率提高到红外范围,分子已经来不及转向,此时测得的极化度只有P e 和P a 的贡献了。所以从按介电常数计算的P 中减去红外线频率范围测得的极化,就

偶极矩的测定

物理化学实验 偶极矩的测定 一. 目的要求 1. 理解折射法测定偶极矩的原理 2. 掌握折射法测定偶极矩的主要实验技术 3. 用折射法测定乙酸乙酯的偶极矩 二. 基本原理 1. 偶极矩和极化率 分子由带正电荷的原子核和带负电荷的电子组成,正负电荷的重心可能重合,也可能不重合,前者称为非极性分子,后者称为极性分子。表征分子电荷分布的两个最重要的物理量是偶极矩和磁化率。 1912德拜(Debye )提出用偶极矩μ来度量分子极性的大小,两个带电荷为+q 和-q 的质点,相距d 远时,体系偶极矩的大小为 d q ?=μ (1) 偶极矩是一个矢量,在化学中,它的方向规定为从正到负,偶极矩的SI 制单位是库伦·米 (C·m ),因为分子中原子间距离的数量级为10-10 m ,电荷的数量级为10-20 C ,所以μ的数量级为10-30C·m ,习惯上还用“德拜”作单位,记做 D 。两者关系是1D =3.33563×10-30 C·m 。 分子在电场影响下极化,极化有转向极化和诱导极化两类,极性分子在不加电场时,由于分子的热运动,偶极矩指向各方面的概率相同,故大量分子的总的平均偶极矩等于零,在加电场时,极性分子与电场的相互作用能 θμcos F E =? (2) 式中F 是分子所在位置的有效电场强度,θ是μ和F 间夹角,为使体系能量最低,分子尽可 能定向,使θ在180。 左右,而热运动会破坏分子定向,使θ取任意角度,由转向而产生的平均偶极矩r μ,与F 、μ和T 的关系如下: F kT r 32 μμ= 式中,k 为玻耳兹曼(1.3806×10 -23 J·K -1 )常数;T 为热力学温度。令kT 32 μαμ= ,故F r μαμ=, μα称为转向极化率,SI 制单位为C ·m 2∕V 。 非极性分子没有永久偶极矩μ,故在电场中没有转向极化,无论是极性分子还是非极性分子在电场中都有变形变化。由正负电荷重心的移动而产生的诱导偶极矩与分子所处的有效电场强度成正比。 2μ=αd F αd 称为分子的变形极化率 e a d ααα+= αa 表征分子骨架(即分子中各原子核和内层电子)的变形,称为原子极化率 αe 表征价电子云相对于分子骨架的移动,称为电子极化率。 总之平均偶极矩2r μμμ=+r 2μμμ=+ 极化率2 d a e 3kT μμααααα=+= ++ 对非极性分子2 μμ=,a e ααα=+ (3) 2. 极化率和介电常数的关系 已经证明在忽略分子间作用力的情况下 αππερεεA N P M 3 4 41210?==?+- (4) 这一关系式称为克劳修斯-莫索第一德拜(Clausius-Mosotti-Debye )方程式,式中ε为介电

溶液法测定偶极矩结构化学实验二

结构化学实验二 溶液法测定极性分子的偶极矩 一、实验目的 1.用溶液法测定正丁醇的偶极矩 2.了解偶极矩与分子电性质的关系 3. 掌握溶液法测定偶极矩的实验技术 二、实验原理 1.偶极矩与极化度 两个大小相等方向相反的电荷体系的偶极矩定义为: μ=q d (1) 极性分子在电场作用下极化程度可用摩尔定向极化度P定向来衡量: P定向=4/3πN A*μ02/(3kT)=4/9πN A*μ02/(kT) (2) 极性分子所产生的摩尔极化度P是摩尔定向极化度、摩尔电子诱导极化度和摩尔原子诱导极化度的总和: P=P定向+P诱导=P定向+P电子+P原子(3) 2. 溶液法测定偶极矩 无限稀释时溶质的摩尔极化度的公式: P=P2∞=3αε1/(ε1+2)2* Μ1/ρ1+ (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1(9) 习惯上用溶质的摩尔折射度R2表示高频区测得的摩尔极化度,因为此时P 定向=0,P原子=0,推导出无限稀释时溶质的摩尔折射度的公式: P电子=R2∞=(n12-1)/(n12+2) * (Μ2-βΜ1)/ρ1+6n12Μ1γ/[(n12+2)2*ρ1] (13) 稀溶液的近似公式:

ε溶=ε1(1+α* x2) (7) ρ溶=ρ1(1+β*x2) (8) n溶=n1(1-γ*x2) (12) 由P定向=P2∞-R2∞=4/9πN A*μ02/(kT) (14) 得μ0=0.0128*[(P2∞-R2∞)*T]1/2 (D)(15) 需测定参数:α,β,γ,ε1,ρ1 n1 三、仪器和试剂 仪器:阿贝折光仪1台;比重管1只;电容测量仪一台;电容池一台;电子天平一台;电吹风一只;25ml容量瓶4支;25ml、5ml、1ml移液管各一支;滴管5只;5ml针筒一支;针头一支;吸耳球两个 试剂:正丁醇(分析纯);环己烷(分析纯);蒸馏水;丙酮 四、实验步骤 1.溶液的配制 配制4种正丁醇的摩尔分数分别是0.05、0.10、0.15、0.20的正丁醇-环己烷溶液。 2.折光率的测定 用阿贝折光仪测定环己烷和各配制溶液的折光率。测定时注意各样品需加样三次,每次读取一个数据,取平均值。 3.介电常数的测定 (2)电容C0 和Cd 的测定:本实验采用环己烷为标准物质,其介电常数

测接触角实验方案

测试接触角实验申请 实验内容:主要测定水、乙二醇、二碘甲烷在石墨、石英、绢云母、柴油上的接触角。 实验目的:通过测定水在石墨、绢云母、石英的接触角,以表征石墨、绢云母、石英的疏水亲水性;通过测定水、乙二醇、二碘甲烷在石墨、石英、绢云母、柴油上的接触角,可以用来石墨、石英、绢云母的表面能的计算和隐石墨浮选体系中矿物与水、捕收剂与水、矿物与气泡、矿物与捕收剂之间等一系列界面相互作用自由能的计算,进而对各界面之间的范德华力、疏水引力、水化斥力等界面热力学行为进行研究。 样品加工:采用压片机对辉钼矿样品进行压片,制各样品。压片时样品质量为10g,压片压力为2.45×104kPa,压片直径为20mm,压片表面平整光滑。采用“浸渍法”制备捕收剂表面膜,剪取尺寸为20mmx20mm的空白铜板纸,浸入捕收剂纯液中,浸渍时间1min,置于硅胶干燥器内干燥24h,备用。 采用GBX润湿角测量仪测量液体在崮体表面上的接触角。测量时,按照测量接触角的步骤、小心地滴加在固体表面,形成液滴,取10次读数的接触角平均值作为该座滴的接触角。所有测量均在室温(25℃)进行。 实验方法 测量接触角步骤( 自动滴管, 自动平台) 1. 打开计算机 2. 打开接触角仪器的开关 3. 在计算机“桌面”上, 点选GBX digidrop 的快捷方式, 打开接触角的测量与分析软件 4. 选择新的测试选单 5. 选择“Surface Energy Menu” 6. 将滴管针头申到镜头所能看到的范围之内 7. 利用仪器上左下角的旋钮, 将镜头聚焦在滴管之上(通常是滴管最清析, 最大的位置) 8. 在操作软件上的右上角, 点选MVT, 叫出操作选单 9. 选择液滴的大小(VOL) 10. 选择连续摄影模式 11. 将开始拍照录像的时间改成0ms 12. 请点选使用自动成滴系统 13. 请点选“single”, 开始一次的测试 14. 等待仪器自动滴水, 桌面自动升降, 自动在桌面上形成液滴 15. 选择左方的分析功能, 得到你的接触角角度(一共有七种方法, 根据需要选择) 16. 得到你所需要的接触角值 分析表面/界面自由能步骤 ( 在进行本实验之前?Zisman 至少必需准备两种以上的液体, 其它公式必需准备三种以上的液体, 需要极性还是非极性的液体, 请参考)

物理化学实验报告_偶极矩

华南师范大学实验报告 课程名称:结构实验 实验项目:稀溶液法测定偶极矩 实验类型:□验证□设计□综合 实验时间:2009年11月20日 一、实验名称:稀溶液法测定偶极矩 二、实验目的 (1) 掌握溶液法测定偶极矩的主要实验技术。 (2) 了解偶极矩与分子电性质的关系。 (3) 用溶液法测定乙酸乙酯的偶极矩。 三、实验原理 (1) 偶极矩与极化度:分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不重合。前者称为非极性分子,后者称为极性分子。 图1电偶极矩示意图 图2极性分子在电场作用下的定向 1912年德拜提出“偶极矩” μ 的概念来度量分子极性的大小,如图1所示,其定义是 (1) 式中,q 是正负电荷中心所带的电量; d 为正负电荷中心之间的距离;μ 是一个向量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,如图2所示趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔转向极化度P 转向来衡量。 与永久偶极矩 的值成正比,与绝对温度T 成反比。 KT N P 3432μπ ?=转向 d q ?=μ 转向P 2μ

物理化学-实验三十八:溶液法测定极性分子的偶极矩

实验三十八 溶液法测定极性分子的偶极矩 一、实验目的 1.测定氯仿在环已烷中的偶极矩,了解偶极矩与分子电性的关系。 2.了解Clansius-Mosotti-Debye 方程的意义及公式的使用范围。 3.掌握密度管的使用与电容的测定。 二、实验原理 分子可近似看成由电子云和分子骨架(包括原子核和内层电子)组成。非极性分子的正、负电荷中心是重合的,而极性分子的正、负电荷中心是分离的,其分离程度的大小与分子极性大小有关,可用“偶极矩”这一物理量来描述。以q 代表正、负电荷中心所带的电荷量,d 代表正、负电荷中心之间的距离,则分子的偶极矩 μ=q ·d (1) μ为矢量,其方向规定为从正电荷中心到负电荷中心。 极性分子具有的偶极矩又称永久偶极矩,在没有外电场时,由于分子的热运动,偶极矩指向各个方向的机会相同,故偶极矩的统计值为零。但当有外电场存在时,偶极矩会在外电场的作用下沿电场方向定向排列,此时我们称分子被极化了,极化的程度可用分子的摩尔取向极化度取向P 来衡量。 除摩尔取向极化度取向P 外,在外电场作用下,极性分子和非极性分子都会发生电子云对分子骨架的相对移动和分子骨架的变形,这种现象称为变形极化,可用摩尔变形极化度 变形P 来衡量。显然,变形P 由电子极化度电子P 和原子极化度原子P 组成。所以,对极性分子而 言,分子的摩尔极化度P 由三部分组成,即 P =取向P +电子P +原子P (2) 当处在交变电场中,根据交变电场的频率不同,极性分子的摩尔极化度P 可有以下三种不同情况: (1)低频下(<1010秒― 1)或静电场中,P =取向P +电子P +原子P ; (2)中频下(1012秒 ―1~ 1014秒― 1)(即红外频率下),由于极性分子来不及沿电场取向,故 取向P =0,此时P =变形P =电子P +原子P ; (3)高频下(>1015秒― 1)(即紫外频率和可见光频率下),极性分子的取向运动和分子骨架 变形都跟不上电场的变化,此时取向P =0,原子P =0,P =电子P 。 因此,只要在低频电场下测得P ,在红外频率下测得变形P ,二者相减即可得到取向P 。理论上有

实验一、稀溶液法测偶极矩

实验二十二 稀溶液法测偶极矩 一、目的要求 1.用溶液法测定极性分子的偶极矩,了解偶极矩与分子电性质的关系。 2.掌握稀溶液法测定偶极矩的实验技术。 二、原理 偶极矩是表示分子中电荷分布情况的物理量,它的数值大小可以量度分子的极性。偶极矩是一个向量,规定其方向由正到负,定义为分子正负电荷中心所带的电荷量q与正负电荷中心之间的距离d的乘积: μ = q d (1) 从分子的偶极矩数据的大小可以了解分子的对称性、空间构型等结构特征。由于分子中原子间距离数量级是10-8cm,电子电量数量级是10-10静电单位,故分子偶极矩的单位习惯上用"德拜(Debye)"表示,记为D,它与国际单位库仑米(c m)的关系为: 1D=1×10-18静电单位厘米=3.336×10-30C m (2) 偶极矩的大小与配合物中的原子排列的对称性有关。对于[M A2B2]或[M A4B2]型配合物,他们的反式构型应具有对称中心,其偶极矩为0或者比较小,而顺式构型要大得多。应用这一方法的必要条件是配合物在非极性溶剂中要有一定的溶解度。 分子偶极矩通常可采用微波波谱法、分子束法、介电常数法等几种方法进行测量。由于受仪器和样品的局限,前两种方法使用极少,文献上发表的偶极矩数据均来自介电常数法。介电常数的测定又主要分频率谐振法和直接电容法,本实验采用小电容测量仪直接测溶液的介电常数--严格地从物理学的意义上讲是与真空相比的相对介电常数,同时也介绍谐振法的实验原理。 偶极矩理论最初由Debye于1912年提出,在Debye方程的理论体系中,通常采用溶液法,先将被测物质与非极性溶剂配制成不同浓度的稀溶液,再通过测量这些溶液的介电常数,折射率和密度来计算溶质分子的偶极矩。 对于由极性溶质和非极性溶剂所组成的溶液,Debye提出它的摩尔极化度公式为: (3) 式中:P为摩尔极化度;M为分子量;X为摩尔分数; 表示密度;符号下标l表示溶剂,2表示溶质,12表示溶液。 摩尔极化度P与介电常数ε之间关系为: (4) 极性分子在交变电场中所产生的摩尔极化度是转向极化、电子极化和原于极化的总

偶极矩概念

偶极矩 正、负电荷中心间的距离r和电荷中心所带电量q的乘积,叫做偶极矩μ=r×q。它是一个矢量,方向规定为从正电中心指向负电中心。偶极矩的单位是D(德拜)。根据讨论的对象不同,偶极矩可以指键偶极矩,也可以是分子偶极矩。分子偶极矩可由键偶极矩经矢量加法后得到。实验测得的偶极矩可以用来判断分子的空间构型。 基本介绍 同属于AB2型分子,CO2的μ=0,可以判断它是直线型的;H2S的μ≠0,可判断它是折线型的。可以用偶极矩表示极性大小。键偶极矩越大,表示键的极性越大;分子的偶极矩越大,表示分子的极性越大。 2分析说明 两个电荷中,一个电荷的电量与这两个电荷间的距离的乘积。可用以表示一个分子中极性的大小。如果一个分子中的正电荷与负电荷排列不对称,就会引起电性不对称,因而分子的一部分有较显著的阳性,另一部分有较显著的阴性。这些分子能互相吸引而成较大的分子。例如缔合分子的形成,大部分是由于氢键,小部分就是由于偶极矩。偶极矩用μ表示:μ=q*d。单位为D(Debye.德拜) 3偶极矩测定 偶极矩与极化度 分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子,分子极性大小用偶极矩μ来度量,偶极矩定义为:μ=q·d .......① 式中,q为正、负电荷中心所带的电荷量;d是正、负电荷中心间的距离。偶极矩的SI单位是库(仑)米(C·m)。 若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。极化的程度用摩尔极化度P来度量。P 是转向极化度(P转向);电子极化度(P电子)和原子极化度(P原子)之和:P= P转向+ P电子+ P原子 .....② 由于P原子在P中所占的比例很小,所以在不很精确的测量中可以忽略P原子,则②式可写成:P= P转向+ P电子 .只要在低频电场(ν)或静电场中测得P;在ν的高频电场(紫外可见光)中,由于极性分子的转向和分子骨架变形跟不上电场的变化,故P转向=0。 P原子=0,所以测得的是P电子。这样可求得P转向,再计算μ。

接触角的测定实验报告

液-固界面接触角的测量实验报告 一、实验目的 1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。 2. 掌握用JC2000C1静滴接触角/界面力测量仪测定接触角和表面力的方法。 二、实验原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固-液界面所取代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来,有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类型示于图1。 图1 各种类型的润湿 当液体与固体接触后,体系的自由能降低。因此,液体在固体上润湿程度的大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图2所示。

图2 接触角 假定不同的界面间力可用作用在界面方向的界面力来表示,则当液滴在固体平面上处于平衡位置时,这些界面力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即 γSG- γSL= γLG·cosθ(1) 式中γSG,γLG,γSL分别为固-气、液-气和固-液界面力;θ是在固、气、液三相交界处,自固体界面经液体部到气液界面的夹角,称为接触角,在0o-180o之间。接触角是反应物质与液体润湿性关系的重要尺度。 在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是: 粘附润湿W a=γSG-γSL+γLG≥0(2) 铺展润湿S=γSG-γSL-γLG≥0 (3) 式中W a,S分别为粘附润湿、铺展润湿过程的粘附功、铺展系数。 若将(1)式代入公式(2)、(3),得到下面结果: W a=γSG+γLG-γSL=γLG(1+cosθ)(4) S=γSG-γSL-γLG=γLG(cosθ-1) (5)以上方程说明,只要测定了液体的表面力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把θ=90°作为润湿与否的界限,当θ>90°,

相关文档
最新文档