溶液法测定极性分子的偶极矩
溶液法测定偶极矩
溶液法测定极性分子偶极矩实验报告一、实验目的1.测定乙酸乙酯在四氯化碳中的介电常数和偶极矩,了解偶极矩与分子电性质的关系。
2,测定某些化合物的折光率和密度,求算化合物、基团和原子的摩尔折光度,判断化合物的分子结构。
二、实验原理分子是由带正电荷的原子核和带负电荷的电子组成的。
分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合,前者为非极性分子,后者称为极性分子,分子极性大小用偶极矩“来度量,其定义为"=qd (1)式中:a为正、负电荷中心所带的电荷虽,单位是C; d是正、负电荷中心的距离,单位是m。
“是偶极矩,单位是(SI制)库[仑]米(C-m)o而过去习惯使用的单位是德拜(D):1D=1X 10-18静电单位・厘米=3. 338X1。
-%・m在不存在外电场时,非极性分子虽因振动,正负电荷中心可能发生相对位移而产生瞬时偶极矩,但宏观统计平均的结果,实验测得的偶极矩为零。
极性分子具有永久偶极矩,由于分子热的运动,偶极矩在空间各个方向的取向几率均等,统计值等于零。
若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。
极化的程度用摩尔极化度户来度量。
分子因转向而极化的程度用摩尔转向极化度户明来表示,因变形而极化的程度用摩尔变形极化度户安形来表示。
而户z 又由户5 (电子极化度)和户M (原子极化度)两部分组成,于是有P =尸“+尸”=尸“+ (尸叱+尸好)(2)户呻与永久偶极矩的平方口z的值成正比,与热力学温度T成反比:■ _ ]. 4 ”. NP啪-满'5 A 3kf⑶式中:乩为阿佛加德罗(Avogadro)常数:人为玻耳兹曼(Boltzmann)常数。
由于户在户中所占的比例很小,所以在不很精确的测量中订以忽略户时,(2)式订写成:P =Pm +户电干(4)只要在低频电场(u <101V)或静电场中,测得的是尸。
溶液法测定极性分子的偶极矩
测定精度较高
通过精确测量溶液的折射 率和电导率等参数,可以 获得较为准确的偶极矩值。
缺点
受溶液浓度影响
01
溶液法测定偶极矩时,结果会受到溶液浓度的影响,需要严格
控制溶液的浓度和纯度。
对测量仪器要求高
02
为了获得准确的测量结果,需要使用高精度的测量仪器,如电
导率计、折射仪等。
对实验条件要求严格
03
溶液法测定偶极矩需要在恒温、恒压的条件下进行,实验条件
为了更好地了解分子间的相互作用和分子结构与性质的关系,未来研究 将更加注重多尺度测量方法的发展,以实现从原子、分子、到宏观尺度 多层次的测量和分析。
新型实验设备与技术
随着实验设备和技术的发展,未来溶液法测定极性分子偶极矩的研究将 更加注重新型实验设备与技术的应用,以推动研究工作的深入开展。
THANKS FOR WATCHING
分子光谱学研究
偶极矩对分子的电子结构和光谱性质有重要影响,通过溶液法测定偶极矩,可以深入理 解分子的光谱行为。
在物理研究中的应用
电磁学研究
偶极矩是电磁学中重要的物理量,通过溶液法测定偶极矩, 可以研究分子的电磁性质和行为。
表面物理和界面物理
在表面物理和界面物理研究中,溶液法测定偶极矩可以揭示分 子在表面或界面上的取向和排列,有助于理解表面和界面现象
02 溶液法测定偶极矩的实验 方法
实验准备
准备实验器材
包括磁力搅拌器、电导率计、电 极、电解槽等。
准备实验试剂
需要选择适当的电解质溶液,如 KCl、NH4Cl等,以及待测极性分 子。
实验环境要求
确保实验室温度、湿度适宜,避免 外界干扰因素对实验结果的影响。
实验步骤
溶液法测定极性分子的偶极矩-1
溶液法测定极性分子的偶极矩摘要:为了解电介质极化与分子极化的概念,掌握溶液法测定极性分子永久偶极矩的理论模型和实验技术。
通过配制不同浓度的乙酸乙酯的极稀溶液,测定它们的介电常数和折光率以及溶液密度,得到a、b、c。
实验测得a=1.3489,b=0.0859,c=-0.0464再通过克劳修斯-莫索提-德拜方程求得P m=81.1516, P E=22.7002,最后得到乙酸乙酯的偶极矩为μ=5.93*e-30C*m,与文献值的相对误差为7.54%。
由此可看出溶液法测定极性分子的偶极矩是一项非常简单易操作的实验方法。
关键词:永久偶极矩溶液法介电常数Abstract To understand the concept of dielectric polarization and molecular polarization, master determination of theoretical models and experimental techniques permanent dipole moment of the polar molecule solution method.By formulating different concentrations of ethyl acetate in a very dilute solution, measuring their dielectric constant and refractive index and density of the solution, to give a, b, c.Experimentally measured a = 1.3489, b = 0.0859, c=-0.0464Through Clausius - Mosuo Ti - Debye equation obtained Pm= 81.1516, P E= 22.7002,Finally get the dipole moment of ethyl acetate μ = 5.93 * e-30C *m,Literature values and the relative error is 7.54%.Thereby determining the dipole moment of the polar molecule can be seen a very simple solution method is easy to operate experimental method. Keywords: Permanentdipole momentSolution methodPermittivity分子结构可以看成是由电子和分子骨架所构成的。
溶液法测定极性分子的偶极矩
溶液法测定极性分子的偶极矩偶极矩是描述分子极性程度的指标之一,在化学研究和生产中有着广泛的应用,如分子的结构确定、溶解度的计算、反应活性的预测等。
测定偶极矩的方法有很多种,其中一种重要的方法是溶液法测定。
本文将对溶液法测定极性分子的偶极矩进行详细介绍。
一、基本原理分子的偶极矩是描述分子极性和分子中心对称性的物理量,它是由分子中正、负电荷分布不均匀而引起的。
在外电场的作用下,极性分子会发生偶极矩与电场方向相同的取向,这种取向是分子能量最低的状态。
偶极矩p与电场强度E之间的关系可以用下式表示:p = kE式中k为比例常数,被称为偶极极化率。
偶极矩的单位通常是D (戴括林)。
1D = 3.336 × 10-30 库仑米。
在溶液中,极性分子会与分子间作用力相互作用,分子取向受到周围分子的干扰。
但是随着电场强度的增加,溶液中的极性分子的取向会出现相应的改变。
假设极性分子的取向只有二种取向,即与电场方向相同或相反,这种取向称为取向相干。
电场强度E的变化范围非常小,足以保证溶液中极性分子的取向相对稳定。
根据统计学原理,对于一大量具有取向相干的分子,它们的平均取向相同。
根据Maxwell-Boltzmann分布函数,溶液中分子的偶极矩分布在一个分子取向分布函数与电场强度之积的函数上。
分子取向分布函数可以表示为:f(θ) = sinθ e - (epE cosθ) / (kT)式中θ为分子的取向角度,ep为分子的偶极极化率,T为温度,k为玻尔兹曼常数。
二、实验步骤1. 准备溶液选择一个具有已知浓度的极性分子溶解于一个电介质中,制备极性分子溶液。
通常使用丙酮、正己烷、四氯化碳、氯仿等非极性溶剂溶解极性分子。
使用电介质可以基本消除电场强度产生的影响。
2. 进行偶极矩测定将溶液装入两个平行的电极板中。
两个电极板之间应保持足够的距离,使得在两板之间的电场强度趋于均匀。
控制电场强度E保持不变,并测量极间电位差V0。
溶液法测定极性分子的偶极矩
二 实验原理
在可见光 下测定溶 液的R2∞
本实验
乙酸乙酯-四氯 化碳溶液
无限稀释溶 液的介电常 数和溶液的 密度求P2∞
然后由(10)式计算乙酸乙酯的偶极矩。
二 实验原理
2.极化度的测定
无限稀时,溶质的摩尔极化度P2∞的公式为
2
3αε1 M1 ε1 1 M 2 βM1 P P lim P2 2 x2 0 ρ1 ε1 2 ρ1 ε1 2
阿贝折光仪
比重管
电吹风
四、实验步骤
1. 折射率的测定
用阿贝折光仪测定四氯化碳及各配制溶液的折 光率,注意测定时各样品需加样3次,每次读取 三个数据。
2. 介电常数的测定
(1) 将电容测量仪通电,预热10min。
四、实验步骤
(2)将电容仪与电容池,调节零电位器使数字表 头指示为零。然后测定C′空值。 (3)移取1mL四氯化碳加入到电容池中,数字表头 上所示值即为C′标
溶液法测定极性分 子的偶极矩
—— Dipole Moment of a Polar Molecule
化学系基础实验中心
目的要求 实验原理
实验步骤 注意事项
实验成败的关键
实验讨论
实验仪器
数据处理
思考题
一 目的要求
了解偶极矩与分子电性质的关系 掌握溶液法测定偶极矩的实验技术 用溶液法测定乙酸乙酯的偶极矩
当交变电场的频率进一步增加到大于1015s-1的高频(可 见光和紫外频率 ) 时,极性分子的摩尔极化度等于电 子极化度P电子。
二 实验原理
原则上只要在低频电场下测得极性分子的摩尔极化度 P,在红外频率下测得极性分子的摩尔诱导极化度 P诱
物理化学-实验三十八:溶液法测定极性分子的偶极矩
实验三十八 溶液法测定极性分子的偶极矩一、实验目的1.测定氯仿在环已烷中的偶极矩,了解偶极矩与分子电性的关系。
2.了解Clansius-Mosotti-Debye 方程的意义及公式的使用范围。
3.掌握密度管的使用与电容的测定。
二、实验原理分子可近似看成由电子云和分子骨架(包括原子核和内层电子)组成。
非极性分子的正、负电荷中心是重合的,而极性分子的正、负电荷中心是分离的,其分离程度的大小与分子极性大小有关,可用“偶极矩”这一物理量来描述。
以q 代表正、负电荷中心所带的电荷量,d 代表正、负电荷中心之间的距离,则分子的偶极矩μ=q ·d (1)μ为矢量,其方向规定为从正电荷中心到负电荷中心。
极性分子具有的偶极矩又称永久偶极矩,在没有外电场时,由于分子的热运动,偶极矩指向各个方向的机会相同,故偶极矩的统计值为零。
但当有外电场存在时,偶极矩会在外电场的作用下沿电场方向定向排列,此时我们称分子被极化了,极化的程度可用分子的摩尔取向极化度取向P 来衡量。
除摩尔取向极化度取向P 外,在外电场作用下,极性分子和非极性分子都会发生电子云对分子骨架的相对移动和分子骨架的变形,这种现象称为变形极化,可用摩尔变形极化度变形P 来衡量。
显然,变形P 由电子极化度电子P 和原子极化度原子P 组成。
所以,对极性分子而言,分子的摩尔极化度P 由三部分组成,即P =取向P +电子P +原子P (2)当处在交变电场中,根据交变电场的频率不同,极性分子的摩尔极化度P 可有以下三种不同情况:(1)低频下(<1010秒―1)或静电场中,P =取向P +电子P +原子P ;(2)中频下(1012秒―1~1014秒―1)(即红外频率下),由于极性分子来不及沿电场取向,故取向P =0,此时P =变形P =电子P +原子P ;(3)高频下(>1015秒―1)(即紫外频率和可见光频率下),极性分子的取向运动和分子骨架变形都跟不上电场的变化,此时取向P =0,原子P =0,P =电子P 。
溶液法测定偶极矩结构化学实验二
结构化学实验二溶液法测定极性分子的偶极矩一、实验目的1.用溶液法测定正丁醇的偶极矩2.了解偶极矩与分子电性质的关系3. 掌握溶液法测定偶极矩的实验技术二、实验原理1.偶极矩与极化度两个大小相等方向相反的电荷体系的偶极矩定义为:μ=q d (1)极性分子在电场作用下极化程度可用摩尔定向极化度P定向来衡量:P定向=4/3πN A*μ02/(3kT)=4/9πN A*μ02/(kT) (2)极性分子所产生的摩尔极化度P是摩尔定向极化度、摩尔电子诱导极化度和摩尔原子诱导极化度的总和:P=P定向+P诱导=P定向+P电子+P原子(3)2. 溶液法测定偶极矩无限稀释时溶质的摩尔极化度的公式:P=P2∞=3αε1/(ε1+2)2* Μ1/ρ1+ (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1(9) 习惯上用溶质的摩尔折射度R2表示高频区测得的摩尔极化度,因为此时P 定向=0,P原子=0,推导出无限稀释时溶质的摩尔折射度的公式:P电子=R2∞=(n12-1)/(n12+2) * (Μ2-βΜ1)/ρ1+6n12Μ1γ/[(n12+2)2*ρ1] (13) 稀溶液的近似公式:ε溶=ε1(1+α* x2) (7)ρ溶=ρ1(1+β*x2) (8)n溶=n1(1-γ*x2) (12) 由P定向=P2∞-R2∞=4/9πN A*μ02/(kT) (14)得μ0=0.0128*[(P2∞-R2∞)*T]1/2 (D)(15)需测定参数:α,β,γ,ε1,ρ1 n1三、仪器和试剂仪器:阿贝折光仪1台;比重管1只;电容测量仪一台;电容池一台;电子天平一台;电吹风一只;25ml容量瓶4支;25ml、5ml、1ml移液管各一支;滴管5只;5ml针筒一支;针头一支;吸耳球两个试剂:正丁醇(分析纯);环己烷(分析纯);蒸馏水;丙酮四、实验步骤1.溶液的配制配制4种正丁醇的摩尔分数分别是0.05、0.10、0.15、0.20的正丁醇-环己烷溶液。
溶液法测定极性分子的偶极矩
溶液法测定极性分子的偶极矩一、实验目的1、了解偶极矩与分子电性质的关系2、掌握溶液法测定偶极矩的实验技术3、用溶液法测定乙酸乙酯的偶极矩二、实验原理1、分子结构可以近似地被石成是由电子。
和对于骨架(原子核及内层电子)所构成的。
由于分子空间构型的不同,其正、负电荷中心可能是重合的,也可能不重合,前者称为非极性分子,后者称为极性分子。
偶极矩μ是用来度量分子极性的大小的,其定义是μ=q·d通过偶极矩的测定可以了解分子结构中有关电子云的分布和分子的对称性等情况,还可以用来判别几何异构体和分子的立体结构等。
2、把物质分子的微观性质偶极矩和它的宏观性质介电常数、密度和折射率联系起来,分子的永久偶极矩就可用下面简化式计算μ=0.04274×10-30(P2∞-R2∞)T上述测求极性分子偶极矩的方法称为溶液法。
溶液法测得的溶质偶极矩与气相测得的真实值间存在偏差,造成这种现象的原因是非极性溶剂与极性溶质分子相互间的作用—“溶剂化”作用,这种偏差现象称为溶液法测量偶极矩的“溶剂效应”。
3、介电常数是通过测量电容计算而得到的。
电容池两极间真空时和充满某物质时电容分别为C0和C x,则某物质的介电常数ε与电容的关系为ε=εx/ε0=C x/ C0当将电容池插在小电容测量仪上测量电容时,实际测量所得的电容应是电容池两极间的电容和整个测试系统中的分布电容C d并联构成。
C d是一个恒定值,称为仪器的本底值,在测量时应予扣除,否则会引进误差,因此必须先求出本底值C d,并在以后的各次测量中予以扣除。
C标‘=C标+C dC‘x=C x+C d三、实验仪器与试剂仪器:阿贝折射仪、电吹风、介电常数测量仪、容量瓶(10ml)、电容池试剂:乙酸乙酯(分析纯)、四氯化碳四、实验内容1、取编号为1~5的10 ml容量瓶用电子天平分别称量其重量m1。
2、溶液配置用移液管分别移取10ml不同浓度的乙酸乙酯一四氯化碳溶液(50ml含1ml、3ml、5ml、7ml、9ml乙酸乙酯)放入已编好号的5个容量瓶中,并分别称量其重量m2。
大学物理化学实验报告-溶液法测定极性分子的偶极距
物理化学实验报告院系化学化工学院班级化学061学号13姓名沈建明实验名称 溶液法测定极性分子的偶极距 日期 2009.3.26 同组者姓名 史黄亮 室温 17.86℃ 气压 101.21kPa 成绩一、目的和要求1、了解偶极距与分子电性质的关系;2、掌握溶液法测定偶极距的试验技术;3、用溶液法测定乙酸乙酯的偶极距。
二、基本原理 1. 偶极矩和极化度分子的极性可以用“偶极矩”来度量。
其定义为(1)q 为正、负电荷中心所带电荷量,d 为正、负电荷中心距离。
是向量,其方向规定从正到负。
若将极性分子置于均匀电场E 中,则偶极矩在电场的作用下趋向电场方向排列,分子被极化,极化的程度可用摩尔转向极化度P 转向来衡量:(2)在外电场作用下,不论永久偶极为零或不为零的分子都会发生电子云对分子骨架的相对移动,分子骨架也辉因电场分布不均衡发生变形。
用摩尔变形极化度P 变形来衡量:P 变形 = P 电子 + P 原子 (3)分子的摩尔极化度:P = P 转向 +P 变形 = P 转向 +P 电子 +P 原子 (4)dq μ⋅=24μP =πL 9kT转向μ该式适用于完全无序和稀释体系(互相排斥的距离远大于分子本身大小的体系),即温度不太低的气相体系或极性液体在非极性溶剂中的稀溶液。
在中频场中转向P = 0。
则P =P 电子 +P 原子 (5) 在高频场中原子P =0 则P =P 电子 (6) 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子的摩尔转向极化度转向P ,然后代人(2)式就可算出极性分子的永久偶极矩μ来。
2、极化度的测定首先利用稀溶液的近似公式()211x αεε+=溶 (7) ()211x βρρ+=溶 (8)再根据溶液的加和性,推导出无限稀释时溶质摩尔极化度的公式()11211112112022123lim 2ρβεερεαεM M M P P P x -⋅+-+⋅+===→∞ (9) 根据光的电磁理论,在同一频率的高频电场作用下,透明物质的介电常数ε与折光率n 的关系为 2n =ε 因为此时转向P = 0,原子P =0,则R 2 =电子P = ρMn n ⋅+-2122 (10) 在稀溶液情况下也存在近似公式()211x n n γ+=溶 (11)同样,从(9)式可以推导得无限稀释时溶质的摩尔折射度的公式 电子P ()122112111221212022621lim 2ργρβ++-⋅+-===→∞n M n M M n n R R x (12) 从(2)、(4)、(9)和(12)式可得转向P kTL RP22294μπ=-=∞∞ 即()m C TR P⋅-⨯=∞∞-22301004274.0μ3、介电常数的测定介电常数是通过测定电容计算而得。
溶液法测定极性分子的偶极矩试验目的了解电介质极化与分子极
溶液法测定极性分子的偶极矩一、实验目的了解电介质极化与分子极化的概念,以及偶极矩与分子极化性质的关系。
掌握溶液法测定极性分子永久偶极矩的理论模型和实验技术,用溶液法测定乙酸乙酯的偶极矩。
二、实验原理德拜(Peter Joseph William Debye)指出,所谓极性物质的分子尽管是电中性的,但仍然拥有未曾消失的电偶极矩,即使在没有外加电磁场时也是如此。
分子偶极矩的大小可以从介电常数的数据中获得,而对分子偶极矩的测量和研究一直是表征分子特性重要步骤。
1、偶极矩、极化强度、电极化率和相对电容率(相对介电常数)首先定义一个电介质的偶极矩(dipole moment)。
考虑一簇聚集在一起的电荷,总的净电荷为零,这样一堆电荷的偶极矩是一个矢量,其各个分量可以定义为式中电荷的坐标为。
偶极矩的SI制单位是:。
将物质置于电场之中通常会产生两种效应:导电和极化。
导电是在一个相对较长的(与分子尺度相比)距离上输运带电粒子。
极化是指在一个相对较短的(小于等于分子直径)距离上使电荷发生相对位移,这些电荷被束缚在一个基本稳定的、非刚性的带电粒子集合体中(比如一个中性的分子)。
一个物质的极化状态可以用矢量表示,称为极化强度(polarization)。
矢量的大小定义为电介质内的电偶极矩密度,也就是单位体积的平均电偶极矩,又称为电极化密度,或电极化矢量。
这定义所指的电偶极矩包括永久电偶极矩和感应电偶极矩。
的国际单位制度量单位是。
为取平均的单位体积当然很小,但一定包含有足够多的分子。
在一个微小的区域内,的值依赖于该区域内的电场强度。
在这里,有必要澄清一下物质内部的电场强度的概念。
在真空中任意一点的电场强度的定义为:在该点放置一个电荷为的无限微小的“试验电荷”,则该“试验电荷”所受到的力为。
当将这个定义应用到物质内部时,在原子尺度上会引起巨大的电场涨落。
为此,物质内部某一点的宏观电场强度定义为在该点邻近的小区域内原子尺度电场强度的平均值,这个小区域当然比通常标准要小得多,但仍足以容纳足够多的分子。
溶液法测定极性分子的偶极矩实验报告
P=P定向+P诱导=P定向+P电子+P原子
2.偶极矩的测定方法(溶液法测定偶极矩)
(1)无限稀释时溶质的摩尔极化度的公式:
P=P2∞=3αε1/(ε1+2)2* Μ1/ρ1+ (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1
C0=(C/标-C/空)/(ε标-1)=(5.48-5.24)/(2.207-1)=0.199
Cd=C/空-C0=5.24-0.199=5.04
由ε溶=(C/溶- Cd)/ C0,可算出:
ε(环己烷)=2.207
ε(0.05)=2.66
ε(0.10)=2.56
ε(0.15)=3.16
ε(0.20)=2.86
3.介电常数的测定
(1)先接好介电常数测量仪的配套电源线,打开电源开关,预热5分钟;用配套测试线将数字电常数测量仪与电容池连接起来;待显示稳定后,按下“采零”键,以清除仪表系统零位漂移,屏幕显示“00.00”。
(2)电容C0和Cd的测定:本实验采用环己烷为标准物质,其介电常数的温度公式为:ε标=2.203-0.0016(t-20)
4.溶液密度的测定
取干净的比重管称重m0。然后用针筒注入已恒温的蒸馏水,定容,称重,记为m1。用丙酮清洗并吹干。同上,测量各溶液,记为m2。则环己烷和各溶液的密度为:
ρ溶=(m2-m0)/(m1-m0) *ρ水,ρ25℃水=0.99707g/mL
5.清洗、整理仪器
上述实验步骤完成后,确认实验数据的合理性。确认完毕,将剩余溶液回收,容量瓶、比重管、针筒洗净、吹干。整理实验台,仪器恢复实验前的摆放。
测定分子偶极矩实验报告
一、实验目的1. 理解偶极矩的概念及其在分子结构中的作用。
2. 掌握溶液法测定偶极矩的实验原理和操作步骤。
3. 通过实验测定特定分子的偶极矩,验证其极性。
二、实验原理偶极矩是描述分子极性的物理量,其定义为分子中正负电荷中心之间的距离与电荷量的乘积。
对于极性分子,其偶极矩不为零;对于非极性分子,其偶极矩为零。
本实验采用溶液法测定分子的偶极矩,通过测量溶质在溶剂中的极化程度,计算得出分子的偶极矩。
三、实验仪器与材料1. 仪器:阿贝折射仪、烧杯、移液管、搅拌器、天平、温度计、温度计套管、温度计夹具、数据采集器等。
2. 材料:待测分子溶液、溶剂、标准溶液、去离子水等。
四、实验步骤1. 准备工作:将待测分子溶液和溶剂分别装入烧杯中,确保溶液温度与室温相同。
2. 标准溶液制备:将标准溶液与溶剂混合,制成一定浓度的标准溶液。
3. 标准溶液折射率测量:将标准溶液倒入阿贝折射仪中,读取折射率。
4. 待测溶液折射率测量:将待测分子溶液倒入阿贝折射仪中,读取折射率。
5. 数据处理:根据实验数据,计算待测分子溶液的折射率,进而计算其偶极矩。
五、实验结果与分析1. 实验数据:| 标准溶液浓度(mol/L) | 标准溶液折射率 | 待测溶液折射率 ||------------------------|----------------|----------------|| 0.100 | 1.434 | 1.437 |2. 数据处理:根据实验数据,计算待测溶液的折射率:折射率 = (待测溶液折射率 - 标准溶液折射率) / (标准溶液浓度 - 待测溶液浓度)折射率 = (1.437 - 1.434) / (0.100 - 0.100) = 0.003根据实验原理,计算待测分子的偶极矩:偶极矩 = 折射率× 摩尔折射率× 摩尔体积假设摩尔折射率为0.429 nm^3/mol,摩尔体积为24.45 cm^3/mol,则待测分子的偶极矩为:偶极矩= 0.003 × 0.429 × 24.45 = 0.030 nm·C六、结论通过溶液法测定,我们得到了待测分子的偶极矩为0.030 nm·C。
溶液法测定极性分子偶极矩的数据处理方法
溶液法测定极性分子偶极矩的数据处理方法极性分子偶极矩是为了 Understanding the Molecular Structure and Physical Properties 诸如 Intermolecular Interactions, Biological Activity, 而确定极性分子的重要结构特征之一。
溶液法测定极性分子偶极矩的数据处理方法可以帮助人们对极性分子偶极矩有更深入的了解。
在溶液法测定极性分子偶极矩的数据处理方法中,首先需要满足三种条件:(1)电偶极矩应被定义为极性分子在不同位置的解析函数;(2)极性分子偶极矩应被建模为等长曲线;(3)偶极矩的变化必须被解释为两个或多个基础偶极矩之和。
当满足以上三个条件之后,需要采用团簇方法将极性分子偶极矩的数据分组处理。
这种方法能够根据极性分子的类群结构和物理特性将大量的极性分子偶极矩数据分组处理,例如氢键、疏水性、电荷密度、活性基团等。
团簇分析方法需要使用体系模拟数据,包括许多用于测量极性分子偶极矩的参数,例如键长、夹角、双键邻域、共轭位置、电荷密度、极化力、氢键能等测定参数。
而使用体系模拟数据,则需要使用数据拟合法,来根据上述各个参数的值,估算出极性分子的偶极矩和变化规律。
最后,通过对比两个数据集,即实测数据和模拟数据,可以使用计算机辅助的数据分析工具,如MATLAB,比较分析两个数据集,以确定极性分子偶极矩的趋势和变化规律。
总之,为了更准确地测定极性分子偶极矩,溶液法测定极性分子偶极矩的数据处理方法是非常有用的,其具体过程如前所述,旨在通过团簇法将大量的极性分子偶极矩数据分组处理,并利用数据拟合法和计算机辅助的数据分析工具,以便更准确地测量极性分子偶极矩,以更好地理解极性分子的结构和物理特性。
实验十五 溶液法测定极性分子的偶极矩
电容的测定方法很多,其中电桥法的测定原理图是
其桥路为变压器比例臂电桥,达电桥平衡时 C' = Us Cs U x
式中,C′为电容池两极间的电容;CS 为标准差动电器的电容。调节差动电容器, 当 C′=CS 时,Us = U x ,此时指示放大器的输出趋近于零。CS 可从刻度盘上读 出,这样 C′即可测得。
沿电场定向,于是 P转向 = 0 。此时,极性分子的摩尔极化度是电子极化度和原子 极化度之和 P = P诱导 = P电子 + P原子 ;当在1015 s−1 以上的高频电场(可见光和紫外频率) 区时,极性分子的转向和分子骨架变形都跟不上电场的变化,P转向 = 0 ,P电子 =0, 极化度仅等于电子极化度 P = P电子 。
(3) 打开盖子,用针筒把电容池中的溶液吸出,用电吹风冷风吹干至数字表所 显示值为 C空' 时,按浓度从低到高的顺序逐一测定溶液的 C样' (每次装入量严格相 同,样品过多会腐蚀密封材料渗入恒温腔,实验无法正常进行)。
五、数据处理
1. 将所测数据列表
实验温度 ℃; 环己烷的分子量
;正丁醇的分子量
x正丁醇
1支
刻度吸量管(1mL)
6支
2.药品
环己烷(分析纯); 正丁醇摩尔分数分别为 0.04,0.06,0.08,0.10 和 0.12 的 五种正丁醇—环己烷溶液。
四、实验步骤
1.将电容池洗净、吹干,将连接在池盖上的空气电容器用环己烷洗净、吹干, 将超级恒温槽、电容池、阿贝折射仪、密度仪用胶管连接好。在(25.0±0.1)℃条 件下,使电容池、阿贝折射仪、密度仪恒温。PCM-1A 精密电容测量仪通电,预 热 20min。 2. 用阿贝折射仪分别测定环己烷(溶剂)和五份溶液的折射率 n1和n溶 。
溶液法测定极性分子的偶极矩实验报告
溶液法测定极性分子的偶极矩实验报告实验目的:通过溶液法,测定几种不同溶液中极性分子的偶极矩。
实验原理:极性分子具有偶极矩,可以通过测量溶液中分子的导电性来间接测定分子的偶极矩。
在纯溶剂中,只有离子导电。
当有极性分子溶解在纯溶剂中时,由于溶质和溶剂分子之间的相互作用力,导致产生极性分子的偶极矩,导致溶液的电导率增加。
利用电导率与溶液浓度的关系,可以推算出溶液中极性分子的偶极矩。
实验仪器:1.导电仪2.溶液辅助电导池3.称量器4.温度计5.热水浴实验步骤:1.根据实验要求,依次称取不同浓度的溶液。
将每种溶液放入烧杯中,并用温度计测量溶液的温度。
2.将导电仪连接到溶液辅助电导池的两个电极上。
将电导池插入烧杯中的溶液,并确保电极完全浸入溶液中。
3.打开导电仪电源,进行零点校准,记录下零点电导率。
4.打开导电仪的电导率测量开关,开始测量溶液的电导率。
每隔一段时间记录一次电导率,直到电导率保持稳定。
5.重复步骤1-4,测量其他不同浓度的溶液的电导率。
实验数据处理:1.计算纯溶剂的电导率:根据零点电导率,计算出纯溶剂的电导率。
2.根据浓度和电导率的关系绘制标准曲线:以浓度为横坐标,电导率为纵坐标,绘制标准曲线。
3.通过标准曲线,计算每种溶液中极性分子的偶极矩。
实验结果:利用以上方法,我们测得了不同溶液中极性分子的偶极矩,并计算得出结果如下:1.溶液A:偶极矩为X库仑米。
2.溶液B:偶极矩为Y库仑米。
3.溶液C:偶极矩为Z库仑米。
实验讨论:通过实验结果可以看出,不同溶液中极性分子的偶极矩不同,这与溶质分子的结构和性质有关。
偶极矩是描述分子极性的重要物理量,通过测量溶液的电导率可以间接测定分子的偶极矩,为分子结构和化学性质的研究提供了重要方法。
实验结论:通过实验,我们成功测定了几种不同溶液中极性分子的偶极矩,并验证了溶液法测定极性分子偶极矩的可行性。
实验结果对于研究分子结构和化学性质具有一定的指导意义。
溶液法测定极性分子的偶极矩
溶液法测定极性分子的偶极矩孟晓燕【摘要】本文主要测定丙酮、乙醚、正丁醇等极性溶质的偶极矩,用四氯化碳作非极性溶剂.通过测量溶液的折光率、介电常数和密度随溶质摩尔分数的变化,从而确定线性关系系数,求得极性溶质的偶极矩.【期刊名称】《江西化工》【年(卷),期】2015(000)006【总页数】4页(P100-103)【关键词】溶液法;介电常数;折光率;密度;偶极矩【作者】孟晓燕【作者单位】上饶师范学院,江西上饶334001【正文语种】中文偶极矩是物理化学实验研究的一个课题,它对判断分子的键构型;考察键的旋转,研究分子的电性以及计算其它物理化学性质等方面起着重要的作用。
用溶液法测定,具有操作简便,耗样少,低毒性,速度快,实验数据线性好和结果准确度高等特点。
所以采用溶液法测定极性物质的偶极矩[1]。
本文主要测量极性溶质丙酮、乙酸乙酯、乙醚、乙醇、正丙醇、异丙醇、正丁醇的偶极矩,溶剂为非极性的四氯化碳。
1.1 偶极矩与极化度分子呈电中性,正负电荷中心重合的,称为非极性分子;不重合的,称为极性分子。
分子极性的大小用偶极矩μ来度量,其定义式为:μ=q·dμ的SI单位是库·米(C·m),常用德拜(D),1D=3.338×10-30C·m。
极化的程度用摩尔极化度P来度量[2]。
P=P转向+P电子+P原子其中由于P原子数值很小,常可忽略,式(1-2)写成:P=P转向+P电子在ν<1010s-1的低频电场或静电场中可测得P;在ν≈1015s-1的高频电场中,因P转向=0,P原子=0,则测得的就是P电子,再由式(4)求得P转向,由式(3)计算出μ。
通过测定出极性分子的偶极矩,可知分子中电子云的分布、分子对称性,并判断分子的立体结构及几何异构体[3]。
1.2 溶液法测定偶极矩1.2.1 极化度的测定克劳修斯、莫索蒂和徳拜从电磁理论得到了摩尔极化度P与介电常数ε之间的关系式P=[(ε-1)M]/[(ε+2)ρ]式中M为被测物质的摩尔质量,ρ是该物质的密度,ε可通过实验测定。
溶液法测定偶极矩
(3)由样品折光率计算样品质量组成 将测得的折光率求平均后平方,带入之前做出的标准曲线,即可得到样品的质量分数
J1 J2 n1 1.4534 1.4563 n2 1.4534 1.4562 n3 1.4534 1.4563 n4 1.4533 1.4564 n 1.4534 1.4563 2 ������ 2.112299 2.12081 W 0.035627 0.016192 (4)计算样品介电常数,做������ − ������图 J1 J2 C1′(pF) 8.51 8.01 C2′(pF) 8.51 8.01 C3′(pF) 8.5 8 ������ ′(pF) 8.507 8.007 C(pF) 6.386613 5.886613 ε (图中保 2.531076 2.332922 留四位)
折光率对浓度标准曲线
2.13 2.125 折 光 2.115 率 平 2.11 方 2 2.105 n 2.12 2.1203 2.1190 2.1146 2.1282 y = -0.437x + 2.127 R² = 0.963
2.1086
2.1 2.095 0 0.01 0.02 0.03 0.04
15 -1
10 -1
12
14 -1
p电子 R
n2 1 M n 2 2 (5)
因此,分别在低频和中频电场下测出分子的摩尔极化度,两者相减即可得到 P 转向,再由(3) 式计算 μ 。 通过测定偶极矩, 可以了解分子中电子云的分布和分子对称性, 判断几何异构体和分子 的立体结构。 所谓溶液法就是将极性待测物溶于非极性溶剂中进行测定, 然后外推到无限稀释。 因为 在无限稀的溶液中, 极性溶质分子所处的状态与它在气相时十分相近, 此时分子的摩尔极化 度就可视为(5)的 P。 在稀溶液当中,溶液的摩尔极化度 P 可用下式求出: (6) P P1 x1 p 2 x 2 (1-溶剂,2-溶质,x-摩尔分数)
溶液法测定极性分子的偶极矩实验报告
溶液法测定极性分子的偶极矩实验报告溶液法测定极性分子的偶极矩实验报告引言:极性分子的偶极矩是描述分子极性程度的重要参数,对于化学反应和物质性质的研究具有重要意义。
本实验通过溶液法测定极性分子的偶极矩,探究溶液中分子间相互作用对偶极矩的影响,为进一步研究分子结构和性质提供了实验基础。
实验目的:1. 学习溶液法测定极性分子偶极矩的方法;2. 探究溶液中分子间相互作用对偶极矩的影响;3. 理解极性分子的偶极矩与分子结构和性质之间的关系。
实验原理:根据溶液法测定极性分子偶极矩的方法,我们可以通过测定溶液的电导率来间接推算出溶液中分子的偶极矩。
在实验中,我们使用电导率计测量不同浓度的溶液的电导率,并利用电导率与浓度的关系推算出溶液中分子的偶极矩。
实验步骤:1. 准备实验所需的溶液和仪器设备;2. 将待测溶液倒入电导率计中,记录下初始电导率;3. 逐渐加入纯溶剂,每次加入一定量后等待电导率稳定,记录下电导率;4. 根据浓度和电导率的关系,绘制电导率与浓度的曲线;5. 利用电导率与浓度的关系,推算出溶液中分子的偶极矩。
实验结果与分析:根据实验所得的数据,我们绘制了电导率与浓度的曲线,并通过曲线拟合得到了溶液中分子的偶极矩。
实验结果表明,溶液中分子的偶极矩与溶液的浓度呈正相关关系。
当溶液浓度较小时,分子间的相互作用较弱,偶极矩较小;而当溶液浓度较高时,分子间的相互作用增强,偶极矩也相应增大。
结论:通过溶液法测定极性分子的偶极矩实验,我们成功地测定了溶液中分子的偶极矩,并得出了偶极矩与溶液浓度的关系。
实验结果表明,溶液中分子的偶极矩受到分子间相互作用的影响,这为进一步研究分子结构和性质提供了实验基础。
实验总结:本实验通过溶液法测定极性分子的偶极矩,探究了溶液中分子间相互作用对偶极矩的影响。
实验结果表明,溶液的浓度与分子的偶极矩呈正相关关系。
通过本实验的学习,我们进一步理解了极性分子的偶极矩与分子结构和性质之间的关系,为后续的研究提供了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶液法测定极性分子的偶极矩I. 目的与要求一、 用溶液法测定乙酸乙酯的偶极矩二、 了解偶极矩与分子电性质的关系三、 掌握溶液法测定偶极矩的实验技术I I. 基本原理一、偶极矩与极化度分子结构可以近似地被石成是由电子。
和对于骨架(原子核及内层电子)所构成的。
由于分子空间构型的不同,其正、负电荷中心可能是重合的,也可能不重合,前者称为非极性分子,后者称为极性分子。
图1 电偶极矩示意图1912年,德拜(Debye )提出―偶极矩‖μ的概念来度量分子极性的大小,如图1所示,其定义是 d q ⋅=μ (1)式中 q 是正、负电荷中心所带的电荷量,d 为正、负电荷中心之间的距离,μ是一个向量,其方向规定从正到负。
因分子中原子间距离的数量级为1010-m ,电荷的数量级为2010-C ,所以偶极矩的数量级是3010-C·m 。
通过偶极矩的测定可以了解分子结构中有关电子云的分布和分子的对称性等情况,还可以用来判别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向各个方向的机会相同,所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场中,则偶极矩在电场的作用下会趋向电场方向排列。
这时我们称这些分子被极化了,极化的程度可用摩尔转向极化度转向P 来衡量。
转向P 与永久偶极矩平方成正比,与热力学温度T 成反比kTL kT L P 2294334μπμπ=⋅=转向 (2)式中k 为玻耳兹曼常数,L 为阿伏加德罗常数。
在外电场作用下,不论极性分子或非极性分子都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度诱导P 来衡量。
显然,诱导P 可分为二项,即电子极化度电子P ,和原子极化度原子P ,因此诱导P = 电子P + 原子P 。
诱导P 与外电场强度成正比,与温度无关。
如果外电场是交变电场,极性分子的极化情况则与交变电场的频率有关。
当处于频率小于1010-s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和P = 转向P + 电子P + 原子P (3)当频率增加到1210-~1410-s -1的中频(红外频率)时,电场的交变周期小于分子偶极矩的弛豫时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场定向,故转向P = 0。
此时极性分子的摩尔极化度等于摩尔诱导极化度诱导P 。
当交变电场的频率进一步增加到大于1510-s -1的高频(可见光和紫外频率)时,极性分子的转向运动和分子骨架变形都跟不上电场的变化,此时极性分子的摩尔极化度等于电子极化度电子P 。
因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子的摩尔转向极化度转向P ,然后代人(2)式就可算出极性分子的永久偶极矩μ来。
二、极化度的测定克劳修斯、莫索蒂和德拜(Clausius -Mosotti -Debye )从电磁理论得到了摩尔极化度P 与介电常数ε之间的关系式ρεεM P ⋅+-=21 (4) 式中,M 为被测物质的摩尔质量,ρ是该物质的密度,ε可以通过实验测定。
但(4)式是假定分子与分子间无相互作用而推导得到的,所以它只适用于温度不太低的气相体系。
然而测定气相的介电常数和密度,在实验上困难较大,某些物质甚至根本无法使其处于稳定的气相状态。
因此后来提出了一种溶液法来解决这一困难。
溶液法的基本想法是,在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞2P 就可以看作为(4)式中的P 。
海德斯特兰(Hedestran )首先利用稀溶液的近似公式()211x αεε+=溶 (5)()211x βρρ+=溶 (6)再根据溶液的加和性,推导出无限稀释时溶质摩尔极化度的公式()11211112112022123lim 2ρβεερεαεM M M P P P x -⋅+-+⋅+===→∞ (7) 上述(5)、(6)、(7)式中,溶ε、溶ρ是溶液的介电常数和密度,2M 、2x 是溶质的摩尔质量和摩尔分数,1ε、1ρ和1M 分别是溶剂的介电常数、密度和摩尔质量,α、β在是分别与溶ε-2x 和溶ρ-2x 直线斜率有关的常数。
上面已经提到,在红外频率的电场下可以测得极性分子的摩尔诱导极化度诱导P = 电子P + 原子P 。
但在实验上由于条件的限制,很难做到这一点,所以一般总是在高频电场下测定极性分子的电子极化度电子P 。
根据光的电磁理论,在同一频率的高频电场作用下,透明物质的介电常数ε与折光率n 的关系为 2n =ε (8)习惯上用摩尔折射度R 2来表示高频区测得的极化度,因为此时转向P = 0,电子P =0,则 R 2 =电子P = ρM n n ⋅+-2122 (9) 在稀溶液情况下也存在近似公式()211x n n γ+=溶 (10) 同样,从(9)式可以推导得无限稀释时溶质的摩尔折射度的公式 电子P ()122112111221212022621lim 2ργρβ++-⋅+-===→∞n M n M M n n R R x (11) 上述(10)、(11)式中,溶n 是溶液的折光率,n 1是溶剂的折光率,γ是与溶n -2x 直线斜率有关的常数。
三、偶极矩的测定考虑到原子极化度通常只有电子极化度的5%~10%,而且转向P 又比电子P 大得多,故常常忽视原子极化度。
从(2)、(3)、(7)和(11)式可得转向P kT L R P 22294μπ=-=∞∞(12) 上式把物质分子的微观性质偶极矩和它的宏观性质介电常数、密度和折射率联系起来,分子的永久偶极矩就可用下面简化式计算()m C T R P ⋅-⨯=∞∞-22301004274.0μ (13)在某种情况下,若需要考虑电子P 影响时,只需对∞2R 作部分修正就行了。
上述测求极性分子偶极矩的方法称为溶液法。
溶液法测得的溶质偶极矩与气相测得的真实值间存在偏差,造成这种现象的原因是非极性溶剂与极性溶质分子相互间的作用—―溶剂化‖作用,这种偏差现象称为溶液法测量偶极矩的―溶剂效应‖。
罗斯(Ross )和萨克(Sack )等人曾对溶剂效应开展了研究,并推导出校正公式,有兴趣的读者可阅读有关参考资料。
此外,测定偶极矩的实验方法还有多种,如温度法、分子束法、分子光谱法以及利用微波谱的斯塔克法等,这里就不一一介绍了。
四、介电常数的测定介电常数是通过测量电容计算而得到的。
测量电容的方法一般有电桥法、拍频法和谐振法。
后两者抗干扰性能好、精度高,但仪器价格较贵。
本实验采用电桥法,选用CC -6型小电容测量仪,将其与复旦大学科教仪器厂生产的电溶池配套使用。
电容池两极间真空时和充满某物质时电容分别为C 。
和Cx ,则某物质的介电常数ε与电容的关系为0C C x x ==εεε (14) 式中0ε和x ε分别为真空和该物质的电容率。
当将电容池插在小电容测量仪上测量电容时,实际测量所得的电容应是电容池两极间的电容和整个测试系统中的分布电容C d 并联构成。
C d 是一个恒定值,称为仪器的本底值,在测量时应予扣除,否则会引进误差,因此必须先求出本底值C d ,并在以后的各次测量中予以扣除。
Ⅲ.仪器 试剂阿贝折光仪 1台 电吹风 1只CC -6型小电容测量仪 1台 容量瓶(50 fillJ ) 4只电容池 l 只 乙酸乙酯(分析纯)超级恒温槽 1台 四氯化碳(分析纯)Ⅳ.实验步骤一、溶液配制用移液管分别移取10ml 四氯化碳,放入四个容量瓶中。
再换移液管分别移取0.2、0.4、0.6、0.8ml 乙酸乙酯,分别放入四个容量瓶中,配制4种不同浓度的乙酸乙酯一四氯化碳溶液。
操作时应注意防止溶质和溶剂的挥发以及吸收极性较大的水气,为此溶液配好后应迅速盖上瓶塞,并置于干燥箱中。
二、折光率测定在(25士0.1)℃条件下用阿贝折光仪测定四氯化碳及各配制溶液的折光率。
测定时注意各样品需加样三次,每次读取三个数据,然后取平均值。
三、介电常数测定1.电容C d 和C 。
的测定:本实验采用四氯化碳作为标准物质,其介电常数的温度公式为标ε= 2.238 – 0.0020(t —20) (15)式中t 为恒温温度(℃)。
25℃时标ε应为2.228。
用洗耳球将电容池两极间的间隙吹干,旋上金属盖。
开通电源,校零后将电容池与小电容测量仪相连接,接通恒温浴导油管,使电容他恒温在(2.0士0.1)℃。
待到显示电容不再上升(如果数值不稳定,读取显示的最大值),读取数值。
重复测量三次,取三次测量的平均值为'0C 。
用液管将纯四氯化碳从金属盖的中间口加人到电容池中去,使液面超过二电极,并盖上塑料塞,以防液体挥发。
恒温数分钟后,同上法测量电容值。
然后打开金属盖,倾去二极间的四氯化碳(倒在回收瓶中),重新装样再次测量电容值。
取两次测量的平均值为'标C 。
2.溶液电容的测定:测定方法与纯四氯化碳的测量相同。
但在进行测定前,为了证实电容池电极间的残余液确已除净,可先测量以空气为介质时的电容值。
如电容值偏高,则应用丙酮溶液润洗,再以洗耳球电容池吹干,方可加入新的溶液。
每个溶液均应重复测定两次,其数据的差值应小于0.05pF ,否则要继续复测。
所测电容读数取平均值,减去C d ,即为溶液的电容值C 溶。
由于溶液易挥发而造成浓度改变,故加样时动作要迅速,加样后塑料塞要塞紧。
3.溶液的密度:()[]()42623410251069.010911.163255.1---⨯--⨯-⨯-=t t t CCl t ρ ()[]()4392623284102510201095.110168.192454.0----⨯--⨯+⨯-⨯-=t t t t O H C t ρ 0ρ为0℃时的密度,t ρ为t ℃时的密度,单位为:3-⋅cm g 。
V .数据处理一、按溶液配制的实测质量,计算四个溶液的实际浓度2x 。
二、计算C 。
、C d 和各溶液的C 溶值,求出各溶液的介电常数ε溶;作ε溶-2x 图,由直线斜率求算α值。
三、计算纯四氯化碳及各溶液的密度,作ρ-2x 图,由直线斜率求算β值。
四、作n 溶-2x 图,由直线斜率计算γ值。
五、将ρ2、ε1、α和β值代人(7)式计算∞2P 。
六、将ρ1、n 1、β和γ值代人(11)式计算∞2R 。
七、将∞2P 、∞2R 值代人式(13)即可计算乙酸乙酯分子的偶极矩μ值。
八、文献值Ⅵ. 提问思考一、分析本实验误差的主要来源,如何改进?二、试说明溶液法测量极性分子永久偶极矩的要点,有何基本假定,推导公式时作了哪些近似?三、如何利用溶液法测量偶极矩的“溶剂效应”来研究极性溶质分子与非极性溶剂的相互作用?。