岩石爆破理论

岩石爆破理论
岩石爆破理论

5岩石爆破理论

5.1岩石爆破破坏基本理论

炸药爆炸引起岩石破坏,这是一个高能转化释放、传递作功的过程。在这个过程中,岩石受力情况极其复杂,而历时又极为短暂,因此要正确地解释岩石爆破破碎机理,就极为困难,人们已作了多年的努力,仍没有一个确切全面的唯一的解释,而是各执一词。

但将多类解释的基本观点和理论依据归类,可概括为三大假说:

5.1.1 爆生气体膨胀作用理论

这种理论是从静力学的观点出发,认为:岩石的破碎主要是由爆炸气体产物的膨胀压力引起。

(1) 炸药爆炸时,产生高压膨胀气体,在周围介质中形成压应力场。

炸药爆炸生成大量气体产物,在爆热的作用下,处于高温高压的状态,而急剧膨胀,这些膨胀气体以极高的压力作用于周围介质,而形成压应力场。

(2) 气体膨胀推力使质点产生径向位移,而产生径向压应力,其衍生拉应力,产生径向裂隙。

很高的压应力场,势必使周围岩石质点发生径向移动,这种位移又产生径向压应力,形成径向压应力的传递;质点在受径向压应力时,将产生径向压缩变形,而在切向伴随有拉伸变形生产,这个拉伸应变就是径向压应力所衍生的切向拉应力所产生。当岩石的抗拉强度低于此切向拉应力时,就将产生径向裂隙;岩石的抗拉强度远远地小于抗压强度(常为其1/10~1/15),所以拉伸破坏极易发生,而形成径向裂隙。

(3) 质点移动所受阻力不等,引起剪切应力,而导致径向剪切破坏。

质点位移受到周围介质的阻碍,阻力不平衡在介质中就会引起剪切应力,若药包附近有自由面时,质点位移的阻力在最小抵抗线方向最小,其质点位移速度最高,偏

离最小抵抗线方向阻力增大,质点位移速度降低,这样在阻力不等

的不同方向上,不等的质点位移速度,必然产生质点间的相对运动

而产生剪切应力。在剪切应力超过岩石抗剪强度的地方,将发生径

向剪切破坏。

(4) 当介质破裂,爆炸气体尚有较高的压力时,则推动破裂块体沿径向朝外运动,形成飞散。

上述破坏发生将消耗大量的爆炸能,如果爆炸气体还有足够大的压力,则将推动破碎岩块作径向外抛运动,若压力不够就可能仅是松动爆破破坏,而没有抛散,甚至只是内部爆破。

用这种理论来解释破岩原因,可简化为:

气体推动→压应力场→径向位移??

????????→→→径向剪切破坏剪切应力速度不一阻力不等径向裂隙衍生切向拉应力→外抛 5.2.2 爆炸应力波反射拉伸作用理论

这种理论是从爆轰动力学观点出发,认为:爆破时岩石的破坏主要是由自由面上应力波反射,转变成的拉应力波所造成。

当炸药在岩石中爆轰时,生成的高温、高压和高速的冲击波猛烈冲击周围的岩石,在岩石中引起强烈的应力波,它的强度大大超过了岩石的动抗压强度,因此引起周围岩石的过度破碎。当压缩应力波通过粉碎圈以后,继续往外传播,但是它的强度己大大下降到不能直接引起岩石的破碎[见图5-2(a) p143]。当它达到自由面时,压缩应力波从自由面反射成拉伸应力波,虽然此时波强度己很低,但是岩石的抗拉强度大大低于抗压强度,所以仍足以将岩石拉断。这种破裂方式亦称“片落”[见图5-2(b) p143]。随着反射波往里传播,“片落”继续发生,一直将漏斗范围内的岩石完全拉裂为止。因此岩石破碎的主要部分

是入射波和反射波作用的结果,爆生气体的作用只限于岩石的辅助破碎和破裂岩石的抛掷。

该理论的试验基础是岩石杆件的爆破试验(亦称为霍普金森杆件试验)和板件爆破试验。杆件爆破试验是用长条岩石杆件,在一端安置炸药爆炸,则靠炸药一端的岩石被炸碎,而另一端岩石也被拉断成许多块,杆件中间部分没有明显破坏,如图5-3(p143)所示。板件爆破试验是在松香平板模型的中心钻一小孔,插入雷管引爆,除平板中心形成和类似同心圆的破碎区外,在平板的边缘部分形成了由自由面向中心发展的拉裂区,如图5-4(p143)所示。这些试验说明了拉伸波对岩石的破坏作用。这种理论也称为动作用理论。

5.2.3 爆生气体和应力波共同作用理论

该理论认为,实际爆破中,爆生气体膨胀和爆炸应力波都对岩石破坏起作用,是其共同作用的结果。而哪一种作用是主要作用,应根据不同的情况来确定。经验表明:对松软的塑性土壤,波阻抗很低,应力波衰减很大,这类岩土的破坏主要靠爆生气体的膨胀作用。而对致密坚硬的高波阻抗岩石,应主要靠爆炸应力波的作用,才能获得较好的爆破效果。

即这种理论认为:岩体内最初裂隙的形成是由冲击波或应力波造成的,随后爆生气体渗入裂隙并在准静态压力作用下,使应力波形成的裂隙进一步扩展。爆生气体膨胀的准静态能量,是破碎岩石的主要能源。因此,岩石的爆破破坏与岩石特性和装药条件等因素有关,即不同岩性选用炸药不同,应使其波阻抗相互匹配。为此将岩石和炸药按波阻抗值分为三类:

第一类,高阻抗岩石。其波阻抗为15~25 MPa.s/m,其破坏主要取决于应力波,包括入射波和反射波,应选用高波阻抗、高猛度、高爆速炸药。

第二类,中阻抗岩石。其波阻抗为5~15 MPa.s/m。这类岩石的破坏,主要是入射应力波和爆生气体综合作用的结果,选用中等炸药。

第三类,低阻抗岩石。其波阻抗小于5 MPa.s/m。这类岩石的破坏,以爆生气体形成的破坏为主。选用低波阻抗、低爆速、低猛度、高爆力炸药。

5.2单个药包爆破作用

5.2.1内部作用

爆破作用只发生在岩体的内部,未能达到自由面,这种作用叫做爆破的内部作用;或者说,爆破后地表不会出现明显破坏,亦称为装药在无限介质中的爆破作用。此时,岩石的破坏特征随距药包中心距离的变化而明显不同,在耦合装药条件下可分为三个不同特征区域(p144图5.6):1、粉碎区(压缩区);

2、裂隙区(破裂区);

3、震动区。

(1)粉碎区(压缩区)

炸药爆炸产生的强冲击波和高压气体对药包周围的岩石产生着

强烈的作用,其强度远远超过了岩石的动抗压强度,使与药包接触

岩石产生压缩破坏,并将岩石压得粉碎,直至作用强度小于岩石的

动抗压强度为止,故此区域称为粉碎区。同时强烈压缩形成岩移、

压缩成空洞,即形成比原装药空间大的一个空腔。在靠药包几毫米~

几十毫米内的岩石甚至可能被熔化,而呈塑性流态。故此区域又称

为压缩区。压缩区厚度不大,一般不超过药包半径的两倍。

此区以抗压强度定界。其半径Rc 可用(5-1)式(P145)进行估算,式中爆后空腔半径Rb 可以用(5-2)式进行估算。

b c p s c R c R 212)2.0(σρ= (5-1)

式中:R c ——粉碎区半径(m);R b ——爆破后形成的空腔半径,m);σc ——岩石的单轴抗压强度(Pa );ρ

s ——岩石密度(kg/m 3

);c p ——岩石纵波速度(m/s)。

爆破后形成的空腔半径由下式计算: 40/b m b r p R σ= (5-2)

式中:rb ——炮孔半径(mm );pm ——炸药的平均爆压 (Pa) ,pm=ρsD2/8;D ——炸药爆速,m/s ;σ0——多向应力条件下的岩石强度(Pa ),

c p s c c σρσσ=0

虽然粉碎区的范围不大,但由于岩石遭到强烈粉碎,能量消耗却很大,又使岩石过度粉碎加大矿石损失,因此爆破岩石时应尽量避免形成压碎区。

(2) 裂隙区(破裂区)

岩石在受冲击波压缩作用后,压力迅速

衰减,冲击波衰减为压缩应力波,虽然不足再

将岩石压碎,却可使粉碎区外层岩石受到强烈

径向压缩而产生径向位移。由此而衍生的切向

拉伸应力,使岩石产生径向破坏,而形成径向裂隙(p146,图5-7、8)。

随着压缩应力波的进一步扩展和径向裂隙的产生,动压力急剧下降。这样,压缩应力波所到之处岩石先受到径向压缩作用,虽然没将岩石压碎,却在岩石中储有了相当的压缩变形能或称弹性变形能;而冲击波通过,应力解除后,岩石能量快速释放,岩石变形回弹,形成卸载波,即产生径向卸载拉伸应力,使岩石形成环状裂隙(p146,图5-7、8)。

爆炸气体对岩石也有同样的破坏作用,但其气楔作用更能使爆生气体象尖劈一样渗入裂隙,将压缩应力波形成的初始裂隙进一步扩大、延伸。因此,在压缩应力波和爆炸气体的共同作用下,压缩区外围岩石径向裂隙和环状裂隙的交错生成、割裂成块,故亦称破裂区。

此区以抗拉强度定界,其计算方法有两种:

1)按应力波作用计算。径向裂隙是由切向拉应力引起的,当岩石中的切向拉应力大于岩石的抗拉强度时,产生径向裂隙,其半径Rc 可用(5-3)式估算

b p r t

p R ασψ1

2)(= (5-3) 式中: Rp ——破裂区半径(m );ψ——侧应力系数,只依赖于泊松比的系数,Ψ=μ(1-μ),μ泊松比;p 2——炮孔壁初始压力峰值(Pa );σt ——岩石的抗拉强度(Pa ); α——应力波衰减系数;r b ——炮孔半径(mm )。

2)按爆生气体准静压作用计算。封闭在炮孔内的爆生气体以准静压的形式作用于炮孔壁,其应力状态类似于均匀内压的厚壁筒。根据弹性力学的厚壁圆筒理论及岩石中的抗拉强度准则,有Rp=pj σt12rb (5 4)式中pj 为作用于炮孔壁的准静态压力,视装药条件分别计算,当采用柱状不耦合装药时,有pj=18ρsD2rcrb6(5 5)式中rc 为装药半径(m)。

一般来说,岩体内最初形成的裂隙是由应力波造成的,随后爆生气体渗入裂隙起气楔作用,并在静压作用下,使应力波形成的裂隙进一步扩大。

(P146)。和(5-4)式进行

(3) 震动区

爆炸能量经压缩区和裂隙区的消耗和衰减,已余下多,在继续传播中已不能造成岩石的破坏,而只能引起岩体的弹性震动。在这个区域内能量以地震波的形式传播,传播距离很远,直至其能量完全被岩石所吸收。其范围可用(5-6)式估算。

5.2.2外部作用

就是爆破后,地表有明显破坏,亦称为爆破在有限介质中的作用。爆炸作用通达地表,自由面的存在使其爆破作用过程分为了两个阶段:(1)应力波朝离开装药的各个方向传播,这时自由面还未起作用,其岩石破坏规律与爆破内部作用相同,即形成三个作用圈(压碎、裂隙、震动);(2)应力波到达自由面,压缩波反射成拉伸波,并与入射波叠加在岩体中形成复杂应力状态。

(1) 反射拉伸波引起自由面附近岩石的片落

压缩应力波传播到自由面,一部分或全部反射回来成为同传播方向正好相反的拉伸应力波,当拉伸应力波的峰值压力大于岩石的抗拉强度时,可使脆性岩石拉裂造成表面岩石与岩体分离,形成片落(软岩则隆起),这种效应叫霍普金森(Hopkinson )效应。片落的过程如图5-9所示。

(2)反射拉伸波引起径向裂隙的延伸

入射压应力波在自由面反射形成拉伸波,其强度若不足以引起岩石的片落,也将加强岩石裂隙的发展。入射时应力场是以同心圆向四周扩散,反射时也在反射点形成反射拉伸同心圆应力场。因此,各质点受拉伸应力作用方向为同心圆弧的法线方向,这个方向势必与原应力波入射所产生的裂隙形成一定的角度。

(1)θ=90°,即径向裂隙与拉伸波传体方向成90°角时,裂隙所受拉伸应力最大,拉伸延伸效果最好。

(2)θ<90°,存在一个sinθ方向的拉伸分力,促使径向裂

(3) θ=0 ,即在最小抵抗线方向的径向裂隙与反射波方向

重合,反射应力波会在切向上引起压缩应力,使得垂直自由面

方向的径向裂隙不但不会张开,反而会重新闭合。

当药包爆炸产生外部作用时,除了将岩石破坏以外,还会

将部分破碎了的岩石向外抛掷,因此在地表形成一个爆破坑,

呈漏斗状,通常叫做爆破漏斗。

5.2.4爆破漏斗

(1)爆破漏斗几何参数

方向岩石抵抗破坏的能力最小,因此是爆破作用和岩石移动的

主导方向;③爆破漏斗半径r;④爆破作用半径R,也称破

裂半径;⑤爆破漏斗深度H;⑥爆破漏斗的可见深度h;⑦

爆破漏斗张开角θ。

此外,在爆破工程中,还有一个经常使用的指数,称为爆破作用指数n 。它是爆破漏斗半径和最小抵抗线的比值,即n=rW (5 7)

(2) 爆破作用指数与爆破强弱的分类

对于等量炸药在一定埋深范围内,埋置深度越小,其爆破作用越强,所形成的爆破坑越大;若最小抵抗线不变,即埋深不变,爆破作用越强所形成的漏斗底圆半径越大。为了反应这种爆破作用的强弱,引入了爆破作用指数n 的概念。表示为,爆破作用指数是爆破漏斗底圆半径r 与最小抵抗线W 的比值:

w

r n 根据爆破作用指数n 的不同,即根据爆破作用强弱的不同,将各种爆破归为下列类型:

①标准抛掷爆破,n=1,θ=90°,所形成的漏斗称为标准抛掷爆破漏斗,药包为标准抛掷爆破药包。 ②加强抛掷爆破,n >1,θ>90°,所形成的漏斗称为加强抛掷爆破漏斗,药包加强抛掷爆破药包。当n >3时,爆破漏斗的破坏范围不再随n 值的增加而明显增大。所以,爆破工程中加强抛掷爆破作用指数范围为1<n <3;一般情况下,取n=1.2~

2.5。

③减弱抛掷爆破,0.75<n <1,θ<90°,所

形成的漏斗称为减弱抛掷爆破漏斗,药包减弱抛

掷爆破药包。

④ 松动爆破,0<n <0.75,这时只有岩石

的破裂、破碎,没有外抛,从外表看没有明显的

漏斗形成。又可细分为标准松动爆破、加强和减

弱松动爆破,爆破时所用的药量最小。

5.4成组药包爆破时岩石破坏特征

前面论述了单药包爆破时岩石破碎机理的几个方面的问题。然而在实际爆破工程中极少采用单药包爆破,往往要靠使用成组药包爆破来达到预期的目的。成组药包爆破的应力分布变化情况和岩石破坏过程要比单药包爆破时复杂得多,研究成组药包的爆破作用机理对于合理选择爆破参数有重要的指导意义。

5.4.1单排成组药包齐发爆破

高速摄影纪录表明,多个药包齐发爆破时:

①最初应力波以同心球状向外传播;②各应力波相遇,产生相互叠加,出现复杂应力状况;③应力

重新分布,在炮眼连心线上应力得到加强,而连心线中部两侧附近出现应力降低区。

其原因:(1)根据应力波破坏理论,当两个药包的爆炸应力波波阵面相遇时,将发生应力叠加。沿炮眼连心线上的两压应力σ压方向相反,所产生的力学效应完全一致,而形成相互和的叠加,尤其波阵面切线方向上的衍生拉应力σ拉合成为σ合,而增强了炮眼连心线上的拉应力作用,即应力得到了加强,如图示。

(2)炸药爆炸,爆生气体在孔内形成的准静态压力作用时间较长,并产生切向伴生拉应力,由于炮孔连线方向受阻最小、应力集中最大,产生的切向伴生拉应力在炮孔壁炮孔连线方向上最大(见图5-21),因此裂隙将由孔口开始向炮孔连线发展,若炮眼相距较近,合应力较大,超过岩石的抗拉强度,则沿炮眼连心线将产生径向裂隙,使两炮孔沿中心连线断裂。

应力降低区的形成:应力降低区发生在,两药包的辐射状应力波作用线互成直角的相交处,此处应力波叠加发生压缩和拉伸应力的相互抵消,而产生应力降低。如图示(图5-22,P.153),1#药包对单元体A,沿径向作用压应力,切线方向出现衍生拉应力;2#药包同样如此。因此1#、2#药包同时起爆,使

得岩石单元体A所受到的由1#药包爆轰引起的压(拉)应

力,正好与2#药包所引起的拉(压)应力相抵消或削弱,

应力相互的减叠加,使总应力变小,而形成应力降低区。

可见,适当减小最小抵抗线或增大孔距,使应力降低区处在破碎岩石之外的空中,有利于减少大块的产生。此外,相邻两排炮眼的V形布置,起到应力补充作用,比矩形布置有利于减少大块产生。

那么最小抵抗线与孔距应如何配置?通常取决于装药密集(临近)系数,也称炮孔密集(临近)系数m,其定义为:炮孔间距a与最小抵抗线W的比值,即:

m=a / W (5-8)根据工程实践,取得以下结论:

1)当m≥2,即a≥2W时,两装药各自形成单独的爆破漏斗[图5-23(a)]。

2)2>m>1时,两装药形成一个爆破漏斗,但往往两装药之间底部破碎不充分[图5-23(b)]。

3)当m=0.8~1时,两装药形成一个爆破漏斗,且漏斗底部平坦,漏斗体积最大[图5-23(c)]。

4)当m<0.8时,两装药距离较近,大部分能量用于抛掷岩石,漏斗体积反而减小[图5-23(d)]。

5.4.2多排成组药包齐发爆破

应力情况更为复杂,岩体受力的实际效应是多重应力叠加的结果。这种多重应力叠加,一方面造成极高的应力状态,有利于改善爆破碎效果;同时由于是多排的齐发爆破,只有第一排具有两具自由面,因此后排爆破受到很大的钳制作用,而会恶化爆破效果。所以,多排齐发爆破得不到实际使用,但采用微差爆破技术改变了自由面情况,使多排爆破享有单排爆破的条件,不仅进一步改善了爆破效果,还极大的提高了爆破效率。

5.5 能量平衡原理与装药量计算

5.5.4 装药量计算

爆破破碎岩石需用炸药。炸药太少,不足以将岩石破碎;太大,又造成浪费和增大危险。因此,药量计算成为爆破技术中极为重要的问题。目前,这个问题的解决不是很完满,至今仍主要是从实践得到大致范围,再用理论推导来解释、提炼上升为数学公式,再返回实践去检验和完善,因此得到的多是经验公式和一些试验回归方程,即仍主要处在摸索的阶段。

我们从最早的思维来看药量计算的设计思想:要将一定体积的岩石从岩体上爆破下来,并达到所要求的破碎度。因此,首先应将岩块从岩体中分离出来,其次将其破碎到要求的破碎度,所以,爆破能需要往分离和破碎这两个方向分配。

根据这个思路我们以岩石爆破的基本单元爆破漏斗的形成为例,推导药量计算公式:

设:所需总药量为Q ,应为两个分量之和:Q =Q 1+Q 2。

①将漏斗块体从岩体中分离出来形成爆破漏斗,显然所需药量同漏斗的表面积成正比:

22'11w r r +??=πC Q

②将漏斗块体破碎,所需药量与块体体积成正比:

w r 3

1C Q 222??'=π 式中:'1C 、'

2C 为单位破坏能系数。

为了简化问题,当爆破作用指数n =1时,r =w ,则: w C Q ???=2w '11π=C 1W 2

322w 3

1C Q ??'=π=C 2W 3

可见:Q1与表征漏斗表面积的W2,成正比;Q2与表征漏斗体积的W3,成正比(W3——近似等于n=1时的爆破漏斗体积)。

故:Q=C1W2 +C2W3= 表面分量+ 体积分量(5-9)实际上,爆破还常常要将岩石抛移一定距离。在其他条件不变得情况下,抛移距离和埋置深度,即跟w有关,w↑(↓),抛移↓(↑)。可见炸药的抛移分量是w的函数,按上式指数递增,设想为C3W4,即:

Q=C1W2 +C2W3+ C3W4 = 表面(分离)分量+ 体积(破碎)分量+ 抛移分量(5-10)在一般岩土工程爆破中,岩块破碎所消耗的爆破能,远大于岩块分离和抛移所消耗能量,即岩体爆破破坏能耗以破碎分量为主,即近似地认为爆破药量同爆破的岩石体积成正比:Q≈C2W3,得到爆破药量计算的“体积公式”。

事实上,将C2的考虑大一点,即包含分离、抛移分量常数在里面,则可以认为在一定的炸药和岩石条件下,爆落的土石方体积同所用的装量药成正比,即:

Q标=KW3

式中:Q标-实现标准n=1时的装药量;K-n=1时的单位岩体用药量;W-最小抵抗线。

n 的增大或减小,在其他条件不变的情况下,受药量的支配;或作用指数的改变对应着药量的改变,所以对应其他情况下爆破的药量计算,按下列公式进行:

Q=f(n)KW3[f(n)-爆破作用指数函数] 显然:f(n)>1,加强抛掷;f(n)<1,减弱抛掷;f(n)=1,标准抛掷。

具体确定f(n) 的方法很多,其中较常用:

f(n)=0.4+0.6n3→ Q=(0.4+0.6n3)KW3

此式可作抛掷爆破药量计算的通式,尤其用于加强抛掷爆破药量计算,更为接近实际。

对于松动爆破,经验公式:

Q松=(0.33-0.55)kw3

更为适用。

上述是以爆破漏斗为例进行的分析,对其他爆破情况也有类似的关系:

(1)对一定岩石,破碎每立方米所需平均装药量是一个定值,称单位炸药消耗量q。

(2)爆破用药量与破碎岩石的体积所成正比:

Q=q·V

这是目前应用最多,最基本的药量计算公式,尤其在矿山是岩体破碎为主,主要使用该公式。在其他工程爆破中,这也是药量计算的基本指导公式。

5.5.5单位岩石炸药消耗量

对特定岩石进行爆破时,爆破每单位体积的岩石和所需要的炸药量是一个定值,这个定植称为单位岩石炸药消耗量,通常用q来表示。其确定主要有以下几个途径:

1)查表。可从各种经验数据表格中查出。但此时多以2号岩石炸药为标准或参照,若使用其他炸药,则应乘以炸药换算系数e(见表5-1,p163.)。

2)工程类比法。参照条件相近工程的单位用药量系数确定q值。

3)试验法。做爆破漏斗试验确定。选择与爆区地质条件相近的平坦地形,一般取最小抵抗线W=1~3 m,集中药包进行实际爆破。爆后根据最小抵抗线W、装药量Q以及爆后实测的爆破漏斗底圆半径r,计算n值并由式(5-39)计算q值。试验应进行3次以上,并根据各次的试验结果选取接近标准抛掷爆破漏斗的装药量。试验是繁复的,但对于一些重大的工程是必不可少的。

目前,工程上常以2号岩石炸药作为标准炸药,规定2号岩石炸药的e=1,并以其做功能力320 mL 或猛度12 mm作为标准,其他炸药品种根据以下两式:

e b = 320/所换算炸药的做功能力值;

或e m=12/所换算炸药的猛度值求算e值。

也可按上述两式的平均值求算e值,即e=(e b+e m)/2,常用炸药的换算系数e值见表5-1中(p163)。

5.6影响爆破作用的主要因素

5.6.1 炸药性能的影响

影响爆破作用的主要炸药性能参数:炸药密度ρ、爆速D、炸药波阻抗ρc、爆轰压力P H、爆炸压力ρ、爆炸气体体积V、及爆炸能量利用率η等。

这里着重讲三个因素:

(1)爆轰压力P H的影响

我们知道,P H↑→冲击波压力值↑,以应力波形式传播的爆轰能量↑;在岩石中应力↑,破坏应变↑,就越有利于改善破碎效果。这对高波阻抗岩尤为明显,但太高会造过粉碎,浪费爆炸能,而恶化破碎效果;尤其对低波阻抗岩石P H太高,无益于对岩石的破碎。

(2)爆炸压力P的影响

P的作用时间远远地大于P H的作用时间,这使在应力波作用下所形成的裂隙,能较长时间地受爆生气体的尖楔作用,而得到大大地扩展和延伸,对于低波阻抗岩石这形式的破坏甚至居于主要地位。

(3)炸药爆炸能量利用率η的影响

炸药为爆破破碎岩石提高能源,显然提高炸药能量利用率,能更有效地破碎岩石,改善爆破效果。

为此,首先应清楚爆破过程中炸药爆炸能量的分配情况。

若不考虑炸药的热化学损失,其能量主要分配在以下方面:

①形成压缩区。即在药包周围附近区域岩石产生强烈的压缩变形和粉碎破坏;

②分离、破碎岩体。克服岩石内聚力与摩接力,将岩石的岩体中分离出来,破碎成碎块;

③推移,抛掷破碎岩块。

④产地震效应、空气冲击波及响声效应等。

对于一般工程爆破或矿山爆破而言,第②项是我们的目的,而其他能耗都是在作无用功,因此提高η就是要增大用于破碎岩体的能耗②的比率,而降低其他项①、③、④的比率。

5.6.2自由面对爆破作用的影响

岩石与空气的交界面就是自由面,也是最典型的自由面,除此之外岩石与液体的交界面,岩石与松散介质的交界面,以及二种不同性质岩石的交界面等等都可以视为自由面。自由面是产生应力波反射拉伸的条件,反射拉伸波有利于岩石的破碎;同时,自由面是岩石破坏阻力减小面,岩石爆破更易在自由面方向发生破裂、破碎和移动;此外,自由面在存在改变了岩石应力状态及强度极限。在无限介质中,岩石处于三向应力状态,而自由面附近的岩石则处于单向或双向应力状态。故自由面附近的岩石强度,比远离自由面岩石的强度减少几倍甚至十几倍。因此,一定在程度范围自由面越大、越多,岩石的夹制作用越小,爆破效果越好。一般,装药量计算公式是以单自由面来考虑的,因此现场装药量计算,还应考虑自由面数量的影响。

炸药消耗量与自由面数目的关系:

5.6.3 炸药与岩石匹配关系对爆破作用的影响

5.6.3.1 波阻抗匹配

炸药的波阻抗值越接近岩石的波阻抗值,爆炸能的传播效率越高,在岩石中引起的应变值或破坏效应也越大。因此,为了改善爆破效果,必须根据岩石的波阻抗来选用炸药品种,使它们各自的波阻抗能够很好地相互匹配。

(2)空气间隙装药

就是在装药中,在炸药与孔壁间预留有空气间隙。常用的有两种结构:

1)炮孔轴向留空气间隙

这种装药结构简单,炮孔长度上药量分布相对均

匀,爆破块度减小和均匀,炸药单耗减小,多用于深孔

崩矿。

2)沿药包周边留环状间隙

这种装药比较均匀地降低炮孔壁上所受的峰值压

力,有助于保护孔壁不受径向裂隙的破坏,这种结构多

用于预裂爆破,光面爆破等控制爆破中。

空气间隙为什么能改善爆破效果?其作用机理?(见图7-19,P.136)

1)孔壁冲击应力峰值降低

孔内留有环状间隙称为不耦合装药,炸药爆炸能直接作用在空气上,再由空气传播给岩石。使作用在孔壁上的冲击波应力峰值严重衰减,也即孔壁所受冲击压力大幅降低,从而减少了药包周围附近区域岩石的塑性变形和过粉碎,也即降低了压缩区或粉碎区的以耗。

2)爆破作用时间延长

一方面冲击波峰值压力的降低,使其能量转化为应力波能量,延长了应力波作用时间;另一方面爆炸压力峰值的衰减又转化为貯存在空气间隙中的能量,使空气间隙起着一种弹簧的作用,爆轰结束后,受压空气将大量貯存能量释放出来,增强破岩能力和延长了作功时间,即增强了破坏区的作用能力。当两段装药间有空气柱时,装药爆炸时,首先在空气柱内激起相向空气冲击波,并在空习气柱中心发生碰换,使压力增高,同时产生反射冲击波向相反方向传播,其后又发生反射和碰撞,炮孔内空气冲击波往返传播,发生多次碰换,增加了冲击压力和激起应力波的作用时间。

3)爆炸能在空间分布更为合理

空气间隙装,改善了空间的药量分布使药量在空间分布相对更为均匀合理,从而提高了爆炸能的有效利用率。

(3)药包的几何形状

药包的几何形状用药包长度L和药包直径d的比值表示,药包长度大于直径4~6倍(L/d=4~6)属于长条药包、柱状药包或直列装药,否则属于集中药包、集团装药,甚至可视为球状药包。

球状药包的爆轰波作用方向和爆轰气体产物作用方向一致,都是从爆轰中心向四周传播的,这有利于改善岩石的破效果,降低单位炸药耗量。

(4)不耦合装药

用不偶合系数来表征,所谓不偶系数,是指炮孔直径与药包直径的比值,它反映了药包在炮孔中与炮孔壁的接触情况,其值≥1,最小值=1,表示炮孔直径与药包直径相等,药包完全填满整个炮孔断面,

这时药包的爆轰可以直接作用在岩石上去,而不经过药包和孔壁间通常存在的空气间隙。这样就使能量传播时的无效损耗得以避免;相反,不偶合系数增大,药包直径<炮孔直径,药包爆炸应力波从空气再到岩石将发生衰减,爆炸压力也将随不偶合系数的增大而降低,直接的破岩能力降低。

7.5.3 爆破方法对爆破作用的影响

(1)堵塞影响

祼露药包爆破时,爆轰气体速迅扩散,此时岩石的破碎主要是爆轰波作用破碎了紧贴炸药的那部分岩石,因此要利用爆轰气体的破坏作用,需有良好的堵塞,堵塞材料一般采用炮泥,其作用是:1)阻止爆炸气体过早地从炮孔内排出,使更多的热量转化为机械能,以提高炸药的有效破碎能;

2)保证炸药充分反应,使之放出最大热量和减少有害气体的生成量;

3)阻止炽热颗粒从孔内飞出,降低爆炸气体的温度和空气冲击波的能量,这对煤矿防止煤尘和互斯爆破极为重要。

总之,良好的堵塞,能提高爆破作用改善爆破效果。一般说来,填塞长度l’应随最小抵抗线W和炮孔直径d的增大而增大。填塞的卸载时间应大于爆炸气体在整个装药全长上的作用时间。一般堵塞长度为最小抵抗线长度的0.8~1.2倍。

(3)起爆顺序的影响

成组药包爆破时,每个药包的最小抵抗线W都是计算或预估的,设计药包药量应与之相适应。起爆顺序设计要考虑:先起爆的药包,为后续起爆的创造新的自由面;否则这先后顺序一旦搞错,或有事故发生,使应爆未爆,就会使后续爆破的实际W↑,而导致爆破效果恶化,产生严重的大块、“后冲”,甚至“冲天炮”之类的事故。

(4)起爆药包位置的影响

起爆药包放在什么位置,决定药包爆轰波传播方向和应力波以及岩石破裂发展的方向。通常根据起爆药包放在孔口和孔底分为正向起爆和反向起爆。

1)正向起爆:将起爆药包放在孔口第1或第2个药卷处,

雷管聚能穴朝向孔底。这种起爆方式装药方便,施工安全,节

省导线。

2)反向起爆:起爆药包放置在孔底,雷管聚能穴朝向孔

口。这种方法的特点:

1、爆轰波传播方向与岩石朝向自由面运动的方向一致,

因而有利于反射拉伸波破碎岩石;

2、起爆药包在孔底,距自由面较远,爆炸气体不会立即从孔口冲出,而延长了作用时间,有利于

提高爆破效果;

3、起爆点破岩效力最强,有利于消除根底——炮兜,增大炮孔利用率。

所以,一般说来反向起爆优于正向起爆。

岩石爆破破碎机理研究

黄志强 (桂林工学院,广西,桂林541004) 【摘 要】岩体的软弱层面会影响到爆破破碎效果,如何确定岩石材料的缺陷在爆破破碎中的影响因子是研究岩石破碎机理的关键。通过对当前岩石爆破破碎的研究现状进行综合分析、评述,讨论了岩石爆破破碎机理研究的要点以及今后的研究重点,为后续相关研究指出了方向。 【关键词】岩石破碎;爆破机理;损伤 【中图分类号】TD231.1 【文献标识码】A 【文章编号】1008-1151(2007)12-0086-02 岩石爆破的破碎效应是影响交通土建、水利、矿山等工程效益的重要指标,它影响到生产过程中的铲装、运输和粗碎等工序的效率和成本,也影响到道路、堤坝等基础工程的渗透性、沉降性和稳定性。因此,岩石爆破破碎理论的研究一直是岩石动力学和岩石爆破研究领域的一个热点问题,研究并揭示爆破作用下岩石破碎机理对促进爆破理论和相关技术的发展、提高工程质量和效益具有十分重要的理论和实际意义。 (一)当前研究成果 岩体由于其材料的特殊性,内部具有较多的节理、裂隙、层理等不连续层面,这些不连续面对爆破破碎效果会产生严重的影响,主要体现在应力集中、应力波反射增强、能量耗散、高压爆生气体外逸等。因此在岩石爆破设计、施工中如何处理岩石中的不连续面对爆破效果的影响,是当前研究岩石爆破破碎机理的主要问题。 国内外学者进行的大量研究指出:裂隙岩石的破碎是由爆炸冲击波与爆生气体共同作用的结果,但与均匀介质材料爆破相比,岩体的破碎主要是爆炸应力波作用的结果,裂隙岩体的爆炸气体膨胀压力较小,只是当应力波将岩石破碎成块以后,起到促使碎块分离的作用;应力波在裂隙岩体的传播过程中,在裂隙之间传播的扰动将会产生新的破裂;由于裂隙的发展速度有限,爆炸载荷的速率对裂隙的成长有较大的作用,而高应变率载荷容易产生较多的裂隙。 在此基础之上,当前的相关研究主要在两方面展开,一是追求普遍适用于各种爆破计算和分析、旨在建立相关计算模型的理论研究;一是结合一定工程实践,适用于一定范围的具体工程设计和参数优化的实验研究。在理论研究方面,从岩石破碎研究的发展历程来看,可将其分为弹性理论阶段、断裂理论阶段、损伤理论阶段和分形损伤理论4个阶段。 1.弹性理论阶段 弹性力学模型将岩石视为各向同性的均质、连续的弹性体,岩石在爆炸荷载作用下的破坏是因其内部最大应力超过岩石应力极限引起的。在破碎之前,岩石处于弹性状态。这种理论以弹性力学及有限元方法为基础,运用现代计算机技术可方便的简化工程问题、建立力学模型并加以分析计算。由于这种理论模型不考虑岩石的材料缺陷,其理论基础与实际情况有一定的差距。 2.断裂理论阶段 断裂力学模型认为岩石中的裂纹扩展及断裂破坏是影响岩石爆破破碎效果的主要因素。与弹性模型不同的是该类模型将岩石视为含有微裂纹的脆性材料,岩石的破化过程就是其内部裂纹产生、扩展和断裂的过程。但断裂力学模型仍将裂纹周围看作是均匀的连续介质,因而其仅适用于宏观裂纹形成之后的断裂阶段,对材料开始劣化到宏观裂纹形成之间的力学行为和物理过程并未进行分析描述,其适用范围只限于宏观裂纹已形成的有层理或沉积类岩石。 3.损伤理论阶段 1980年美国Sandia国家实验室的Kipp和Grady开始进行岩石爆破损伤模型的研究,他们认为岩石中存在着大量随机分布的原生裂纹,在爆破作用下部分原生裂纹将被激活并发生扩展,激活的裂纹数服从指数分布。他们运用损伤因子D表示这些岩石裂纹开裂及损伤程度。经过 Seamen、Grady、Kipp、Kus 等人的努力,最后,由 Throne 进一步完善建立了一个能 【收稿日期】2007-10-29 【作者简介】桂林工学院青年扶持基金项目,桂工院科[2007]4号 【作者简介】黄志强(1977-),男,四川武胜人,桂林工学院讲师,主要从事工程力学相关科研工作。 岩石爆破破碎机理研究

岩石爆破技术的现状与发展

岩石爆破技术的现状与发展 要:结合笔者对爆破技术的研究,对近几年来国内外较为先进的岩石爆破技术的理论及控制爆破技术方面进行简要的介绍,随着岩石爆破技术的不断发展,爆破工程机械化程度的提高,人们对工程爆破作业有害效应更加的专注。岩石爆破技术的发展对爆破施工发挥起到了重要的作用。 关键词:岩石爆破技术;爆破理论;现状;发展 在破岩的过程中采用最为普遍也是效果最好的手段就是爆破。岩石爆破技术的发展不仅仅取决机械设备、测量工具等硬件设备的发展,而且还需要依托爆破理论学、岩石力学等方面的理论成果。随着岩石爆破技术的不断发展以及爆破力学的不断深入,以及测量设备的不断改进、计算机技术在爆破中的普及应用,推动了我国爆破技术向着机械化、智能化方面发展,其只要体现在下面几个方面:一是岩石爆破中使用的各种机械设备逐渐的完善,爆破施工的机械化水平快速发展;二是在对岩石等相关材质的分析上广泛的采用了全新的扫描技术和分析处理技术,根据分析出的岩石的性质来选择与之相符的爆破方案;三是爆破的规模在不断的扩大,爆破的工艺也在不断的更新;四是在爆破的过程中更多的考虑到了环境保护,采用各种控制爆破技术,尽可能的降低岩石爆破对环境及生态造成的影响。五是在岩石爆破过程中开始普遍的应用计算机进行辅助爆破,或者进行计算机模拟爆破,特别是将计算机与GPS 定位系统结合之后发展了数字钻爆系统。这些方面的特点都对我国岩石爆破技术的发展起到深远的影响。

1 岩石爆破理论 所谓的岩石爆破就是利用炸药在爆炸的过程中产生的能量来破碎岩石的方法。岩石爆破理论可以系统的分为两个部分来进行概述:一是岩体中的爆破应力波,岩土在炸药爆炸的过程中,岩体会收到冲击和扰动,而在岩体中传播的波,在波的影响下岩体的内在状态会随之发生变化,因此我们将在固定中传播的扰动波称之为应力波;二是岩石爆破破碎机理,爆破机理的研究是一个较为复杂的课题,由于岩石爆破是也在一个高压、高温、高速的三高环境下发生的,在现有的科技条件下是无法进行测试的,而岩石的状态又是不定的,目前也找不到一个合适的状态方程来对岩石的变化进行科学合理的描述,因此,对岩石爆破作用机理的研究还仅仅停留在定性的阶段,现在实际采用的都是多年积累的经验,并没有科学的根据。虽然这个两种不通的机理,但是在实际的爆破过程中这两者都发挥着作用,只是在不通岩石材质下两者发挥的作用程度不一样。 岩石得以破坏是因为在爆破的过程中产生的应力超过了岩石本身多能够承受的最大限度,岩石的破坏与爆炸时产生的能量大小和岩石的力学特性有着紧密的联系。也就是说,要想对岩石进行破坏,在假定装药的型号、形式及自由面相同的条件下,药包装药的多少只要是由岩石的力学特性决定的。在岩石爆破技术的研究过程中,岩石的力学特性与爆破破碎的关系一直都是研究的一个重点。在一定程度上岩石的力学特性决定了这次岩石爆破的难易程度,它主要表现在岩石的抗压、抗拉、抗剪等方面。炸药的单耗与岩石的这些特性是成正比关系的,对于大多

爆破理论

2. 工程爆破基本理论 爆破理论就是研究炸药爆炸与爆破对象(目标)相互作用规律的有关理论。对于内部爆破(装药置于爆破对象内部),例如岩土爆破,就是研究炸药在岩土介质中爆炸后的能量利用及其分配,也就是研究炸药爆炸产生的冲击波、应力波、地震波在岩土中的传播和由此引起的介质破坏规律,以及在高温高压爆生气体作用下介质的进一步破坏及其运动规律;对于外部爆破(装药与爆破对象之间有一定距离),例如军事上采用的接触或非接触构件爆破,就是研究炸药爆炸后产生的冲击波在传播过程中与目标的相互作用以及由此引起的爆破目标的破坏及其运动规律。它是一个复杂而特殊的研究系统。要阐明爆炸的历程、机理和规律,应包括以下研究内容: ⑴、爆破的介质在什么作用力下破坏的;破坏的规律及其影响因素; ⑵、爆破介质的特性,包括目标(岩土)的结构、构造特征、动态力学性质及其对 爆破效果的影响; ⑶、爆炸能量在介质中传递速率; ⑷、介质的动态断裂特性与破坏规律; ⑸、介质破碎的块度及碎块分布、抛掷和堆积规律; ⑹、空气冲击波与爆破地震波的传播规律、个别爆破碎块的飞散距离;以及由冲击波、地震波、个别飞石、爆体的落地震动等引起的爆破危害效应及其控制技术。 以岩石爆破为例,目前大量实验室和现场试验证明,岩体的爆破破碎有以下规律:(1)、应力波不仅使岩石的自由面产生片落,而且通过岩体原生裂隙激发出新的裂隙,或者促使原生裂隙进一步扩大,在应力波传播过程中,岩体破碎的特点是:原生裂隙的触发、裂隙生长、裂隙贯通、岩体破裂或破碎;(2)、加载速率对裂隙的成长有很大作用:作用缓慢的荷载有利于裂隙的贯通和形成较长的裂隙,而高速率的载荷容易产生较多裂隙,但却拟制了裂隙的贯通,只产生短裂隙;(3)、爆破高压气体对裂隙岩体的破碎作用很小,但它有应力波不可 替代的作用:可以使由应力波破裂了的岩体进一步破碎和分离;(4)、岩体的结构面(岩体弱面的统称,包括节理、裂隙、层理等各种界面)控制着岩体的破碎,它们远大于爆破作用力直接对岩体的破坏。 同其它学科对事物的认识规律一样,对爆破理论的研究也是由浅入深的。不同学者先后提出了各种各样的假说或理论,例如,最初提出了克服岩石重力和摩擦力的破坏假说,以后又相继提出了自由面与最小抵抗线原理,爆破流体力学理论,最大压应力、剪应力、拉应力强度理论,冲击波、应力波作用理论,反射波拉伸作用理论,爆生气体膨胀推力作用理论,爆生气体准静楔压作用理论,应力波与爆生气体共同作用理论,能量强度理论,功能平衡理论,利文斯顿(Livingston)爆破漏斗理论和爆破断裂力学等等理论。这些理论观点各异,有些相互矛盾,有些互相渗透,有些不够全面,存在片面性,而且大部分视爆体为连续均匀的介质,与实际情况尚有一定差距。 目前,在爆破界比较倾向一致的是“爆炸冲击波、应力波与爆生气体共同作用”理论,

核电站基岩爆破开挖损伤区研究

第24卷 增1 岩石力学与工程学报 V ol.24 Supp.1 2005年8月 Chinese Journal of Rock Mechanics and Engineering Aug .,2005 收稿日期:2005–05–11;修回日期:2005–06–21 基金项目:国家自然科学基金资助项目(50374063,50439030);国家重点基础研究发展规划(973)项目(2002CB412705) 作者简介:李俊如(1965–),女,硕士,1987年毕业于重庆大学矿山工程物理专业,现任副研究员,主要从事岩石动力学方面的研究工作。E-mail :jrli@whrsm. https://www.360docs.net/doc/e116019134.html, 。 核电站基岩爆破开挖损伤区研究 李俊如1,夏 祥1,李海波1,王晓炜2,周青春1 (1. 中国科学院 武汉岩土力学研究所,湖北 武汉 430071;2. 中广核工程有限公司,广东 深圳 518124) 摘要:根据岭澳核电站二期工程基岩爆破现场进行的4组声波试验,并基于爆前爆后声波波速变化率确定的损伤门槛值得到了各次爆破岩体的损伤范围。研究结果表明,周围岩体在爆孔的装药区段深度范围内,损伤程度最大,而近地面和爆孔底部以下的岩体损伤则较小;距爆区越近,岩体损伤变量越大,爆孔底部以下的损伤深度也越大;爆破作用下岩体的损伤深度要小于水平方向的损伤范围,其比例大约为1∶3;岩体的损伤范围随单孔药量增大的趋势明显。 关键词:岩石力学;损伤范围;核电站;声波测试; 基岩爆破 中图分类号:TU 459+.3 文献标识码:A 文章编号:1000–6915(2005)增1–4674–05 STUDY ON BLAST-INDUCED BEDROCK DAMAGE EXTENSION FOR A NUCLEAR POWER STATION PROJECT LI Jun-ru 1,XIA Xiang 1,LI Hai-bo 1,WANG Xiao-wei 2,ZHOU Qing-chun 1 (1. Institute of Rock and Soil Mechanics ,Chinese Academy of Sciences ,Wuhan 430071,China ; 2. China Guangdong Nuclear Power Station Engineering Co.,Ltd.,Shenzhen 518124,China ) Abstract :Four groups of sonic wave tests have been performed in the bedrock blasting excavation at the Ling ′ao nuclear power station project of Guangdong Province ,China. The changes of sonic wave speed before and after the detonation are obtained. Based on the relationship of sonic wave changing ratio and the critical damage parameter ,the damage extention of each blast and sonic wave test is determined. It is found that surrounding rock in the depth of charging section is the most seriously damaged. In the area adjacent to the ground and beneath the bottom of the charge hole ,the rock is less damaged under blasting. The damage parameters and depth under the bottom of charge holes increase clearly with the decreasing distance from the donation. It has also been observed that the horizontal damage distance of rock under explosion is approximate 3 times of the damage depth. The blast-induced damage extention distinctly increases with the single charge weight. Key words :rock mechanics ;damage extension ;nuclear power station ;sonic wave testing ;rock blasting 1 引 言 广东岭澳核电站厂址位于深圳市东南45 km ,位于大亚湾核电站东北方向1~2 km 的沿海地带,设计总装机容量为360×104 千瓦,分两期进行,其中一期(1# ,2# )两台机组已先后于2002年和2003年 投入使用。即将营建的二期工程3#,4#两台机组, 将布置在一期1#,2#机组以东约340 m 处,场平标高7.00 m PRD 。根据现场地质勘察报告,二期工程场区基岩未发现断裂,主要由长英角岩、堇青石角岩和钠长石化细粒斑状花岗岩、细粒花岗岩构成,原岩是晚泥盆世春湾组碎屑岩。根据设计要求,需要对基岩爆破开挖,而爆破会对下卧基岩造成一定

爆破技术的发展现状以及发展趋势样本

爆破技术的发展现状及发展趋势 采矿10-1高宇 10010 2 摘要: 随着爆破技术和相邻学科的发展, 爆破理论的研究也有了长足的进步。特别是岩体结构力学、岩石动力学和计算机模拟爆破技术的发展, 使爆破理论的研究更实用化, 更系统化了。 关键字: 爆破技术爆破理论 引言: 当今岩体力学已从以材料力学为基础的连续介质岩体力学发展为以工程地质为基础的非连续介质岩体力学。岩体结构面特征对爆破的影响日益引起人们的重视。 岩石动力学作为爆炸力学、冲击力学与爆破工程相结合的一门边缘学科, 它的产生和发展无疑对岩石爆破破碎原理的研究是一种推动力量。 计算机模拟爆破技术的发展, 不但能够预算出最优的爆破效果, 而且能够在计算机上再现岩石爆破的动态过程, 从而大大减少现场试验所消耗的人力、物力, 并能准确地查明各种因素对爆破效果的影响。它代表着90年代爆破技术的最高水平, 也是爆破技术由工艺过渡到科学的重要标志之一。可是, 从总体上看, 爆破理论的发展依然滞后爆破技术的要求, 理论研究和生产实际仍有不小的差距。再加上爆破过程的瞬时性和岩石性质的模糊性、不确定性、致使爆破理论众说纷法, 争论不止。美国矿业局W.L.福尔内( Faurney) 等人认为: ”岩石破碎的过程依然没有阐明, 在公开文献中尚有许多混乱和相互矛盾的论点……”南非的C.V.B.坎宁安( Cunninghan) 在论及岩石爆破过程中动压与静压哪个占主导地位时谈到”60年代以来, 一直为人们所争论, 毫无疑问, 今后仍将争论一段时间”。南非矿业研究会高级工程师J.R布里克曼( Brinkman) 在 1987年召开的第二届爆破破岩国际会议( 2nd International Symposium on Rock Fragmentation byBlasting) 上谈到: ”岩石爆破破碎机理当前仍存在着相互矛盾的观点”。

博士论文 岩体爆破理论模型研究的意义

武汉大学 博士学位论文 岩体爆破理论模型与应用研究 研究生姓名: 指导教师姓名、职称:教授 学科专业名称:岩土工程

研究方向:工程爆破 2005年4月日

Theory Model of Rock Mass Blasting and Its Application Ph.D.Candidate: Yao Jinjie Mentor: Prof.Zhu Yiwen April,2005

郑重声明 本人的学位论文是在导师指导下独立撰写并完成的,学位论文如有剽窃、抄袭、假造等违反学术道德、学术规范和侵权行为,本人愿意承担由此而产生的法律后果和法律责任,特此郑重声明。 学位论文作者(签名): 年月日

摘要 本文对岩体爆破的理论模型及其应用进行了研究。在回顾岩体爆破理论模型研究发展的历史和成就的基础上,建立了一种新的爆破损伤统计演化理论模型、建立了爆破参数设计的神经网络模型、建立了损伤岩体控制爆破的计算模型、建立了爆破器材优化的理论模型,理论模型用于生产实践取得了初步成果。 人类进行岩石爆破的历史已经有二百多年,岩体爆破是目前岩土工程中对岩石开挖所采用的最有效的主要方法,岩石爆破技术在国民经济建设的很多领域得到了广泛应用;在目前迅速发展的国民经济建设中,爆破工程的应用程度范围越来越广泛,在水利水电、矿山、交通等各个行业的应用带来了巨大的社会效益和经济效益;长期以来,岩体爆破的理论模型研究一直是岩体爆破和岩石动力学研究领域的的一个热点课题,并且日益受到工程爆破学术界和工程应用部门的关注,岩体爆破理论模型的研究具有非常重要的理论和实践意义。 回顾岩石爆破的理论的发展历程,先后经过了经验理论、弹性理论、断裂理论和损伤理论几个阶段的发展。经验理论阶段比较著名的理论有炸药量与岩石破碎体积成比例理论、L.W.利文斯顿的爆破漏斗理论、冲击波拉伸破坏理论等;在上世纪70~80年代出现的Harries模型和Favreau模型是具有代表性的弹性爆破理论模型,他们都将岩石视为均质弹性体处理;随着断裂力学的发展和岩石断裂理论研究的深入,岩石中裂纹扩展及断裂破坏问题也渗入了爆破理论研究领域,断裂理论爆破模型主要有BCM模型和NAG-FRAG模型;美国Sandia国家实验室从上世纪80年代初就开展了岩石爆破损伤模型的研究,Kipp和Grady提出了最初的损伤模型,杨军等在分形岩石力学研究的背景下,提出了一种岩石爆破分形损伤的理论模型。 岩体具有复杂的地质构造结构,岩体中普遍存在的结构面形成了岩体的初始损伤。损伤力学中对损伤参量的定义是指损伤面积与有效面积之比,已有的岩石爆破损伤模型对损伤参量的定义分为两种,一种是表示为(体积)弹性模量的降低,一种是表示为已经破裂的结构面面积与潜在的节理面结构面面积之比。 本文将岩体的损伤与岩体爆破之后的块体总表面积联系起来,引入爆堆块体的总表面积S∑,把S∑作为有效面积,损伤量W的定义仍然表示为损伤面积与有

岩石爆破理论模型

岩石爆破理论模型 摘要:岩石爆破模型的研究是爆破理论和技术发展的关键,通过研究爆破过程 及其参数的变化规律可揭示爆破作用的本质,为完善和发展爆破理论及技术提供基础。 关键词:岩石爆破模型;弹性;断裂;损伤 1、岩石爆破机理 在岩石爆破机理研究中,一般认为造成岩石破坏的原因是冲击波和爆炸生成气体膨胀压力共同作用的结果;但是关于爆炸冲击波和爆炸生成气体准静态压力哪个起主要作用,目前仍存在着两种不同的观点。一种观点认为冲击波的作用只表现在对形成初始径向裂纹起先导作用,而大量破碎岩石则是依靠爆炸生成气体膨胀压力作用。另一种观点则认为爆破过程中哪种载荷起主要作用要取决于岩石的阻抗波,即高波阻抗岩石应力波起主要作用,低波阻抗岩石爆炸生成气体起主要作用;对于均质岩体以应力波作用为主;对于整体性不好、节理裂隙发育的岩体,以爆炸生成气体作用为主。 爆生气体膨胀作用炸药爆炸生成高温高压气体,膨胀做功引起岩石破坏。爆生气体膨胀力引起岩石质点的径向位移,由于药包距自由面的距离在各个方向上不一样,质点位移所受的阻力就不同,最小抵抗线方向阻力最小,岩石质点位移速度最高。正是由于相邻岩石质点移动速度不同,造成了岩石中的剪切应力,一旦剪切应力大于岩石的抗剪强度,岩石即发生剪切破坏。破碎的岩石又在爆生气体膨胀推动下沿径向抛出,形成一倒锥形的爆破漏斗坑。 按理论基础可将爆破模型分为以下几类:以弹性理论处理爆破问题的弹性力学模型;以断裂理论特别是线弹性断裂力学为基础的断裂力学模型;以研究损伤演化特别是细观损伤演化为框架的损伤力学模型;以及将岩石由损伤累积而导致的破坏视为一种逾渗转变的逾渗模型。 2、弹性力学模型 2、1 G.Harries模型 G.Harries模型是建立在弹性应变波基础上的高度简化的二维模型,将岩石视为均质连续的弹性介质。假设岩石为以炮孔轴线为中心的厚壁圆筒,爆炸应力波使与炮孔轴线垂直的平面内质点产生径向位移,当径向位移派生出的切向应变值超过岩石的动态极限抗拉应变T时,岩石中形成径向裂隙。径向裂隙数由下式决定: N=εθ/T 式中 N为径向裂隙条数;εθ为作用于炮孔上的最大切向拉应变。采用MonteCarlo方法确定爆破裂纹分割的块度。该模型首次解决了物理模型使用的局限性和难以定量的问题,但由于没有考虑天然节理裂隙对应力波传播和破碎块度的影响,所以不可避免地影响计算结果的准确性和可靠性。 2、2 R.F.Favreau模型 R.F.Favreau模型是在爆炸应力波理论基础上建立的三维弹性模型,以岩石动态抗拉强度为破坏判据。该模型不仅充分考虑了爆炸应力波和爆生气体综合作

第4章岩石爆破理论

第4章岩石爆破理论 4.1 岩石爆破特性及爆炸应力波 岩石爆破理论的发展 岩石爆破理论在20世纪70年代确立了冲击波拉伸破坏理论、爆炸气体膨胀压碎破坏理论、冲击波和爆炸气体综合作用理论。随着爆破技术和相邻学科的发展,特别是岩体结构力学、岩石动力学、断裂、损伤力学和计算机模拟爆破技术的发展,使爆破理论的研究更实用化,更系统化。计算机模拟,用以研究裂纹的产生、扩展。但是,从总体上看,爆破理论的发展仍然滞后爆破技术的要求,理论研究和生产实际仍有不小的差距。岩石爆破理论的研究内容应该包括:(1)岩石特性,包括岩体结构、构造特征和岩石动力学性质及其对爆破效果的影响; (2)炸药能量向岩石的传递效率; (3)岩石的动态断裂与破坏; (4)爆破过程的数值模拟,预测爆破块度和爆堆形态。 岩石中的爆炸应力波 在介质中传播的扰动称为波。由于任何有界或无界的质点是相互联系着的,其中任何一处的质点受到外界作用而产生变形和扰动时,就要向其他部分传播,这种在压力状态下介质质点的运动或扰动的传播称为应力波。炸药在岩石和其他固体介质中爆炸所激起的应力扰动(或应变扰动)的传播称为爆炸应力波。 应力波分类 (1)按传播速度分类 按传播途径不同,应力波分为两类:在介质内部传播的应力波称为体积波;沿着介质内、外表面传播的应力波称为表面波。体积波按波的传播方向和在传播途径中介质质点扰动方向的关系又分为纵波和横波。 纵波又称P波,其特点是波的传播方向与介质质点运动方向一致,在传播过程中引起压缩和拉伸变形。因此,纵波又可分为压缩波和稀疏波。 横波又称S波,特点是波的传播方向与介质质点运动方向垂直,在传播过程中会引起介质产生剪切变形。

岩石爆破损伤断裂的细观机理

第20卷 第3期爆炸与冲击Vol.20,No.3 2000年7月EXPLOSION AND SHOC K WAVE S Jul.,2000 文章编号:1001-1455(2000)03-0247-06 岩石爆破损伤断裂的细观机理 杨小林1,王树仁2 (1.焦作工学院,河南焦作 454100; 2.中国矿业大学北京校区,北京 100083) 摘要:基于现有岩石爆破机理和岩石细观损伤力学,认为岩石爆破损伤断裂过程包含有爆炸 应力波的初期动态损伤演化阶段和后期爆生气体作用下的准静态损伤演化阶段,并分别建立了这 两个阶段的损伤模型和断裂准则,阐述了岩石爆破损伤断裂的细观理论。 关键词:岩石爆破;应力波;爆生气体;损伤机理 中图分类号:TD235 1+1 文献标识码:A 1 引 言 以往采用的经典固体力学方法解释岩石在爆炸载荷作用下的力学行为,无法揭示岩石爆破破碎的全过程,也难以确定岩石内的损伤和破坏程度;而采用细观力学方法则是深入了解岩石内部从损伤到破碎全过程的有效手段。 岩石爆破损伤断裂过程包含有爆炸应力波动作用和爆生气体准静态作用两个阶段,由于岩石对动态和静态加载的响应差别较大,因此其损伤断裂机理也有所不同;而且爆生气体对岩石的损伤断裂作用在爆破近区和中远区又不相同。在爆破近区气体可能要渗入岩石内部裂纹中,裂纹的扩展以气体驱动下的模式扩展;而在爆破中远区的微裂纹扩展是在气体膨胀压力场和原岩应力作用下发生的。现有的岩石爆破损伤模型[1~2]只考虑了应力波作用下的岩石内部由于微裂纹扩展所造成的损伤问题,显然不能全面合理地反映岩石爆破损伤断裂的实际情况。在现有岩石爆破损伤模型和岩石细观损伤力学的基础上,我们探讨了岩石在爆炸应力波和爆生气体作用下损伤断裂的基本理论。 2 岩石爆破损伤断裂过程 岩石爆破损伤断裂的细观机理是以岩石爆破机理和岩石细观损伤力学为理论基础的。岩石爆破理论包含两部分内容:一是爆炸应力波的动作用机理;二是爆生气体的准静态作用机理。尽管基于二者之一发展了不同的岩石爆破机理,但目前已基本上得到共识,认为岩石的爆破破坏是二者共同作用的结果,只是在不同的岩石和装药条件下,二者的作用程度不同。 根据岩石爆破理论[3],炸药在无限大的岩体中爆炸时,在岩石内部将产生爆炸冲击波作用下的粉碎区(近区)、爆炸应力波和爆生气体作用下的裂隙区(中区)以及爆炸振动波的弹性振动区(远区)。由于在爆破近区,岩石被强烈压缩破碎,且作用范围小,而爆破远区是弹性振动 收稿日期:1999-08-18;修回日期:1999-12-31 作者简介:杨小林(1963 ),博士,副教授。

岩石爆破技术的现状与发展

岩石爆破技术的现状与发展 结合笔者对爆破技术的研究,对近几年来国内外较为先进的岩石爆破技术的理论及控制爆破技术方面进行简要的介绍,随着岩石爆破技術的不断发展,爆破工程机械化程度的提高,人们对工程爆破作业有害效应更加的专注。岩石爆破技术的发展对爆破施工发挥起到了重要的作用。 标签:岩石爆破技术;爆破理论;现状;发展 在破岩的过程中采用最为普遍也是效果最好的手段就是爆破。岩石爆破技术的发展不仅仅取决机械设备、测量工具等硬件设备的发展,而且还需要依托爆破理论学、岩石力学等方面的理论成果。随着岩石爆破技术的不断发展以及爆破力学的不断深入,以及测量设备的不断改进、计算机技术在爆破中的普及应用,推动了我国爆破技术向着机械化、智能化方面发展,其只要体现在下面几个方面:一是岩石爆破中使用的各种机械设备逐渐的完善,爆破施工的机械化水平快速发展;二是在对岩石等相关材质的分析上广泛的采用了全新的扫描技术和分析处理技术,根据分析出的岩石的性质来选择与之相符的爆破方案;三是爆破的规模在不断的扩大,爆破的工艺也在不断的更新;四是在爆破的过程中更多的考虑到了环境保护,采用各种控制爆破技术,尽可能的降低岩石爆破对环境及生态造成的影响。五是在岩石爆破过程中开始普遍的应用计算机进行辅助爆破,或者进行计算机模拟爆破,特别是将计算机与GPS定位系统结合之后发展了数字钻爆系统。这些方面的特点都对我国岩石爆破技术的发展起到深远的影响。 1 岩石爆破理论 所谓的岩石爆破就是利用炸药在爆炸的过程中产生的能量来破碎岩石的方法。岩石爆破理论可以系统的分为两个部分来进行概述:一是岩体中的爆破应力波,岩土在炸药爆炸的过程中,岩体会收到冲击和扰动,而在岩体中传播的波,在波的影响下岩体的内在状态会随之发生变化,因此我们将在固定中传播的扰动波称之为应力波;二是岩石爆破破碎机理,爆破机理的研究是一个较为复杂的课题,由于岩石爆破是也在一个高压、高温、高速的三高环境下发生的,在现有的科技条件下是无法进行测试的,而岩石的状态又是不定的,目前也找不到一个合适的状态方程来对岩石的变化进行科学合理的描述,因此,对岩石爆破作用机理的研究还仅仅停留在定性的阶段,现在实际采用的都是多年积累的经验,并没有科学的根据。虽然这个两种不通的机理,但是在实际的爆破过程中这两者都发挥着作用,只是在不通岩石材质下两者发挥的作用程度不一样。 岩石得以破坏是因为在爆破的过程中产生的应力超过了岩石本身多能够承受的最大限度,岩石的破坏与爆炸时产生的能量大小和岩石的力学特性有着紧密的联系。也就是说,要想对岩石进行破坏,在假定装药的型号、形式及自由面相同的条件下,药包装药的多少只要是由岩石的力学特性决定的。在岩石爆破技术的研究过程中,岩石的力学特性与爆破破碎的关系一直都是研究的一个重点。在一定程度上岩石的力学特性决定了这次岩石爆破的难易程度,它主要表现在岩石

爆破基本原理

A爆破技术员应知应会的基本原理 一、岩石炸药单耗确定原理和方法 1岩石炸药单耗确定之经验法 2岩石炸药单耗确定之类比法 爆破各种岩石的单位炸药消耗量K值表

3、岩石炸药单耗确定之爆破漏斗试验法 最小抵抗线原理:药包爆炸时,爆破作用首先沿着阻力最小的地方,使岩(土)产生破坏,隆起鼓包或抛掷出去,这就是作为爆破理论基础的“最小抵抗线原理”。 药包在有限介质内爆破后,在临空一面的表面上会出现一个爆破坑,一部分炸碎的土石被抛至坑外,一部分仍落在坑底。由于爆破坑形状似漏斗,称为爆破漏斗。若在倾斜边界条件下,则会形成卧置的椭圆锥体如图2.6.14 当地面坡度等于零时,爆破漏斗成为倒置的圆锥体(图2.6.15)。mDl称为可见的爆破漏斗,其体积V mDl与爆破漏斗V mOl之比的百分数E0,称为平坦地形的抛掷率;r0(漏斗口半径)与W(最小抵抗线)的比值n称为平地爆破作用指数。 当r0=W时,n=1,称为标准抛掷爆破。在水平边界条件下,其抛掷率E=27%。标准抛掷漏斗的顶部夹角为直角。 当r0>W,则n>1,称为加强抛掷爆破。抛掷率>27%。

漏斗顶部夹角大于90°。 当r0

第五章 岩石爆破基本原理

第5章 岩石爆破基本原理 第1节 爆破破碎原理 炸药在岩体内爆炸瞬间释放出巨大的能量,使岩体产生不同程度的变形和破坏。为了达到低能耗、高效率破碎岩体的目的,并能有效地控制爆破产生的各种危害,就必须了解爆炸荷载作用下岩体的变形与破坏规律,分析爆破破碎原理,指导爆破设计与施工。只有这样,才能合理地确定爆破参数和有效地控制爆破作用。 由于炸药的爆炸反应是高温、高压和高速的瞬态过程,岩体性质和爆破条件复杂多变,加之爆破工作具有较大的危险性,因此给直接观测和研究岩体的爆破破坏过程造成了极大的困难。迄今为此,人们对岩体爆破作用过程仍然了解得不透彻,尚不能形成一套完整而系统的爆破理论。 尽管如此,随着长期实践经验的积累和现代科学技术的发展,借助先进的爆破测试技术以及模拟爆破试验,对爆破作用原理的研究取得了较大的进展,提出了多种岩体爆破机理的观点,在一定程度上反映了岩体的爆破破坏规律,具有一定的指导意义和实用价值。 一、爆破作用的基本原理 1. 爆破破坏作用的基本观点 爆破破坏作用的观点很多,大致可归纳为如下三种: (1) 爆轰气体破坏作用的观点。从静力学的观点出发,认为药包爆炸后,产生大量的高温、高压气体。这种气体膨胀产生的推力作用在药包周围的岩壁上,引起岩石质点的径向位移。当药包埋深不大时,在最小抵抗线方向(即地表方向),岩 1

石移动的阻力最小,运动速度最高。由于存在不同速度的径向位移,在岩体中形成剪切应力,当这种剪切应力超过岩石的动态抗剪强度时就会引起岩石破裂。在爆轰气体膨胀推力作用下,自由面附近的岩石隆起、开裂,并沿径向方向推出,如图5—1。这种观点不考虑冲击波的破碎作用。 (2) 应力波破坏作用观点。从爆炸动力学的观点出发,认为药包爆炸产生强烈的冲击波,冲击、压缩周围的岩体,造成邻近药包的岩体局部压碎,之后冲击波衰减为压应力波继续向外传播。当压应力波传播到岩体界面(自由面)时,产生反射拉应力波,若此拉应力波超过岩石的动态抗拉强度时,从界面开始向爆源方向产生拉伸片裂破坏,如图5—2所示。这种观点不考虑爆轰气体的膨胀推力作用。 a)b) 图5—1 爆轰气体剪力破坏作用 a)剪应力作用;b)爆轰气体膨胀推力破坏 图5—2 反射拉应力波产生片裂破坏图 2

圆柱形的岩石爆破损伤数值研究

摘要为了研究岩石在动态负载下断裂和失效机制,使用AUTODYN代码建立一个带有中心圆孔圆柱形岩石模型。根据材料特性和载荷条件,线性、冲击、压缩和理想气体4种状态方程(EOS),适用于在该数值模型中的四种材料。修改后的主应力失效准则确定材料状态,良性炸药,PETN,相对均匀的岩浆岩,闪长岩,被用在这个岩石模型。点燃位于中央的炸药使其对周围岩石生产动态载荷。这个数值模式应用到实际的爆破条件。首先分析动态负载下的岩石破裂机制,然后讨论以下因素对岩石断裂的影响:(1)耦合介质,(2)约束,(3)边界条件,(4)炸药柱起始位置及(5)空气起伏。结果表明,所有这些因素对动态负载下的岩石破裂有显著的影响。 关键词动态断裂爆破数值模型应力波裂纹扩展

裂纹的萌生和扩展的重要性。Ma等人[12] 使用AUTODYN代码,模拟地下爆炸引起冲击波通过岩体中的传播。其数值结果与独立进行的实地测试获得的结果极其相近。为了验证钻孔击穿诱发的动态断裂机制,Cho和Kaneko[13] 建立数值模型分析不同的井眼压力动态断裂过程。通过使用电子设计竞赛代码,Chen 和Zhao[14]模拟节理岩体中爆炸波传播,Gong等人[15-16] 使用TBM滚刀研究缝间距和方位与岩石碎片的关系。 普遍认为,在岩石爆破中,应力波和爆炸气体的压力两种类型的载荷,操作周围的岩石[17-20]。应力波从引爆钻孔里炸药柱开始向外传播,它后面紧跟着一个持续时间较长的气体压力荷载[21-22]。两个负荷在岩石断裂和破碎发挥非常重要的作用。本文研究将集中在应力波加载过程,因为在我们对爆破破岩的理解中,应力波作用下岩石破裂是关键的一步。应力波载荷下破裂过程被认为是所有后续裂纹扩展的性质的关键阶段作,分支和合并将主要受应力波加载所产生的初始裂纹模式。这些理论在实际爆破岩石断裂和破碎的控制和预测具有非常重要的作用。 在这项研究中应用AUTODYN的数值代码[23-24],它是通常用于解决各种各样的固体,液体和气体动力学非线性问题的有限差分法的代码。AUTODYN代码已经被Ma等[12]Zhu等人[25]成功地应用在研究岩石破裂中。在本文研究中,应用拉格朗日处理方法,对于空气耦合的情况,应用非常适合模拟的流体和气体流动问题的欧拉法处理。更多关于子网格交互,如拉格朗日-拉格朗日和拉格朗日-欧拉耦合之间的相互作用,可以在文献[23][24]中查找。AUTODYN代码中所采用的控制方程有质量守恒,动量守恒和能量守恒。 为了研究应力波加载作用下岩石动态断裂机制,Zhu等人[25] 通过使用AUTODYN代码开发了一个中间单一钻孔的圆形岩石的动态数值模型。在爆破过程中三种基本的断裂带,即破碎带、裂隙带和钻孔周围初期破裂区以及圆周剥落裂缝,已经被成功地模拟。并对爆破荷载作用下的断裂机制进行了分析,岩石断裂的影响因素进行了讨论。本文将继续以前研究,这里考虑的模型是一个圆柱形的岩石中含有一个单一的中央位置的线源的爆炸。根据载荷条件和材料特性,,线性,冲击,压缩和理想气体4种状态方程(EOS),施加到该数值模型中采用的四种材料。修改后的主应力失效准则确定物质状态,这是适合用来描述材料的拉伸失效或剪切失效。从位于中心的单一线源爆炸产生的动态荷载用数值表示。为了尽量减少炸药和岩石的各种变量和相关的不确定性,在这个模拟中用良性的炸药,PETN,和一个相对均匀的岩浆岩,闪长岩。介绍从爆炸开始随时间变化的岩石模型的材料状态和分析岩石破裂机制。最后,研究一些因素对岩石破裂的影响,并提出一些结论。在整个工作,拉伸应力为正,压缩应力为负。 2 一个圆柱形的岩石模型 在这项研究中,有一个圆柱形的岩石中含有一个单一的位于中心的线源的爆炸和耦合介质(参见图1)。筒状的岩石测量直径100毫米和长度130毫米。炸药的线源包含一个核心负载PETN炸药(1.1克/米,直径1.08毫米),由薄的聚乙烯护套包围,总直径为2.36毫米。耦合介质被填充在井眼壁与炸药之间的地方,它可以减少随后高压爆炸气体对裂缝进一步发展的影响。这是因为本文的目的是研究冲击或应力波诱发岩石开裂,而不是爆炸气体迫使岩石开裂。因为模型是二维轴对称的,筒状的岩石的轴向截面被选作二维计算模型。为了限制钻孔中所产生的的爆炸气体,填充材料被放置在钻孔的任一端或两端。未限制的状态表示爆气体的条件下在钻孔的开口端允许逃脱。在后者的应力波作用下岩石破裂情况,将所得的断裂模式的主要机理。

爆破技术

随着科学技术的不断进步,岩石爆破理论也 日趋成熟。岩石爆破技术在水电、矿山、交通等各个领域内获得了广泛应用,并且带来了巨大的经 济效益和社会效益。尤其是在葛洲坝、三峡工程等巨型国家建设项目施工过程中,高质量爆破将 会有效地保护坝体周围岩体的安全稳定,因此,这 门学科的研究具有重要的现实意义。本文就岩石爆破理论中的模型和数值计算、爆破技术等方面的现状进行分析,并且就其研究发展趋势进行了 展望。 1 岩石爆破理论 岩石爆破理论是用来说明爆破时的破岩机理, 并指导岩石爆破工程进行合理设计和施工的一门学科。爆破理论作为一门特殊的力学学科,是随着炸药、起爆器材的发明和应用、爆破量测技术的进步以及相邻学科发展而发展的[1 ] 。爆破理论的研究也经历了萌生阶段和形成与发展阶段。 1. 1 爆破理论的萌生阶段 爆破理论的萌生阶段或早期发展阶段比较有 代表性的假说有:炸药量与岩石破碎体积成比例 假说;C. W. 利文斯顿爆破漏斗假说;流体力学假 说等。 (1) 炸药量与岩石破碎体积成比例假说 该理论首先给出了集中药包标准抛掷漏斗的 装药量计算公式: Q = q·W3 (1) 式中: Q 为标准抛掷爆破的装药量, kg ; q 为 破碎单位体积岩石的炸药消耗量,kg/ m3 ; W 为最小抵抗线,m。 当装药深度不变,改变装药量的大小,破碎半 径及破碎顶角的数值也要变化。因此,根据几何相似原理得出非标准抛掷漏斗的装药量计算公式: Q = f ( n) ·q·W3式中, n 为爆破作用指数。 关于f ( n) 的具体计算有许多经验公式, 应 用较多的是[2 ] : f ( n) = 0. 4 + 0. 6 n3 (3) 该假说只是通过装药量与岩石破碎体积成比 例的关系,来计算爆破时的参数(装药量) ,对爆破 作用的各种物理现象以及岩石是受到何种作用力而破坏的爆破过程并未作实质性的说明。在计算中没有考虑岩石的物理力学性质, 但是由于计算 公式比较简单,并且具有实践经验意义,所以该式 仍是工程爆破时计算装药量的基本公式。 (2) C. W . 利文斯顿爆破漏斗假说

爆破应力波的传播研究现状述评

爆破应力波的传播研究现状述评 摘要:从研究爆破应力波的远区传播机理和确定其破岩效应出发,介绍了爆炸应力波的传播及其破岩效应研究从简单到复杂、从理想化材料到尽可能与现实实际相吻合的材料、从近到远的研究历程, 及其各阶段取得成果与不足。认为目前的研究已由过去尽量简化岩性 ( 弹性均质体 )和爆源 (球状药包 ), 向尽量反应炸药爆炸与装药结构特征、反应岩体现状与本性的方向发展;由以破岩为目的, 向爆破后续的安全问题发展。并为研究爆破对保留岩体的影响及其稳定性, 提出了今后应加强工作的具体意见。 关键词: 爆破应力波;传播机理;岩体稳定 Abstract: From the far region of the blasting stress wave propagation mechanism and determine the effect of rock fragmentation, this paper introduces the explosion stress wave propagation and its effect of rock fragmentation should study from simple to complex, from the ideal material to as much as possible, in conformity with the actual reality, from near to far, studying process, and its various stages. The results and shortage believe that the current study has been developed from the past try to simplify the litho logy (elastic isotropic body) (spherical cartridge), an explosive source and to try to reflect the features of blast explosion and charge structure, the present situation in the reaction of rock mass and the nature of the direction of development; By for the purpose of broken rock, subsequent to the blasting safety development. keywords:blasting stress wave; mechanism of propagation; stability of mass rock 1 引言 炸药在岩体中爆炸,引起周围介质扰动,并以波的形式向外传播。在爆破近区传播的是冲击波,中区是应力波,远区则是弹性波,即通常所说的爆破地震波,它实际上仍是一种弱应力波[1, 2]。因此爆破应力波对远区岩体已不再产生直接破坏和连续变形,但会造成远区岩体原有裂隙扩展和局部损伤,从而降低保留岩石的强度和稳定性。爆破应力波的传播机理和效应是研究爆破破岩为主所不必涉及的范围,却是研究爆后保留岩石的稳定性,研究软、破岩带地下工程受邻近爆破作业的影响程度所必须考虑的问题,因此越来越为工程爆破、岩土力学和采矿工程界所重视。 2 爆炸应力波在岩体中的传播特性 炸药爆炸对周围介质的作用可看作是波动力学过程,可视为应力波在介质中的传播和对介质的扰动[3]。所以要了解爆炸应力波在远区的破岩作用,就应了

相关文档
最新文档