反激变换器副边同步整流控制器STSR3应用电路详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反激变换器副边同步整流控制器STSR3应用电路详解

摘要:为大幅度提高小功率反激开关电源的整机效率,可选用副边同步整流技术取代原肖特基二极管整流器。它是提高低压直流输出开关稳压电源性能的最有效方法之一。

关键词:反激变换器;副边同步整流控制器STSR3;高效率变换器

1 概述

本文给出ST公司2003年新推出的开关电源IC产品STSR3应用电路分析。它是反激变换器副边同步整流控制器,具有数字控制的智能IC驱动器。采用STSR3作同步整流控制芯片的反激变换器基本电路简化结构见图1。STSR3的内部功能方框见图2,其引脚排列见图3。

图1 STSR3典型应用电路简化示意图

图2 STSR3内部功能方框图

图3 STSR3各引脚排列图

STSR3智能驱动器IC可提供大电流输出,以正常地驱动副边的功率MOSFET,使之作为大电流输出的高效率反激变换器中的同步整流器。根据取自隔离变压器副边的一个同步时钟输入,IC产生一个驱动信号,它具有与原边PWM信号相关的死区时间设置。

在原边开关导通时,IC的工作可防止副边发生错误状态,它提供预期的输出截止状态。这个智能的功能实现了快速的逐周逻辑控制机制,它是建立在高频振荡器由时钟脉冲信号来同步。该项预置可由IC外部元件来调节。

经传感检测同步整流器的源极—漏极电压脉冲。这个特殊的禁止功能可以关闭驱动输出,因此当有必要时即刻关掉它。该特性使电源能工作在非连续导通模式下,及避免与变换器并联工作的同步整流器反向导通。

STSR3允许开关电源工作在非连续模式PWM,连续模式PWM,以及在准谐振状态的反激变换器,均能实现同步整流任务。

STSR3的封装的SO-8片状部件,各引脚的符号与功能概述如下:

脚1 N/C,它并不接内电路;

脚2 VCC,供电输入4~5.5V;

脚3 SETANT,设置预期的关断输出;

脚4 CK,为IC工作的同步信号;

脚5 INHIBT,接非连续模式检测器;

脚6 SGLGND,所有控制逻辑信号的基准地线;

脚7 OUTGATE,输出去MOSFET栅极驱动;

脚8 PWRGND,功率信号的基准地电平。

2 STSR3的应用电路分析

STSR3同步整流器控制器具体应用于一种90W笔记本电脑稳压电源的实际电路见图4,其直流输出为+19V,4.74A。开关电源是反激式变换器,原边主芯片采用复合PFC/PWM新品CM6805。图4中给出了详细的阻容数值。下面分别介绍STSR3在电路设计上的一些特点。

图4 采用STSR3作副边同步整流控制器的实际应用电路图之一

2.1 IC供电Vcc和欠压闭锁输出

STSR3的Vcc供电范围是4~5.5V,其内部有一个齐纳二极管限制最大的供电电压为5 8V。需要外接一只100nF瓷介电容器连在脚2(Vcc)与脚6(SGLGND)之间,以确保稳定供电。该高频电容器应尽量紧靠芯片。而用另一只100nF瓷介电容器接在脚2(Vcc)与脚8(PWMGND)之间。欠压闭锁输出特性保证了正常的起动,避免了万一在Vcc过低时不希望的驱动工作状态。Vcc电压也供给输出端驱动器,因此最大的驱动电压设在5.5V,所以推荐用逻辑栅极门限电平的MOSFET。

2.2 同步工作状态

STSR3具有一种革新的特性,即内在设计使STSR3能工作在副边没有任何来自原边的同步信号条件下。STSR3的同步是直接从副边获得的,它利用同步开关管MOSFET两端上施加的电压脉冲,作为开关转换的传递信息。图2中同步信号从脚4(CK)输入,芯片内部的门限电平设置在2.6V。在CK的输入端接一个峰值检波器,该单元电路能够辨别原边MOSFET开关转换感应信号以及之后出现的正弦波形。它由非连续模式工作或者谐振复位形态引起,。

(a) 峰值检波器输入

(b) 峰值检波器输出

图5 非连续模式DCM工作波形

2.3 连续导通模式

当反激变换器工作在连续导通模式(CCM)时,在同步MOSFET开关管源极与漏极之间的电压脉冲已变为矩形波状,。该电压可以用两种不同的方式加到芯片脚CK上:一是用图7中的电阻分压器方法;二是用图8中的一只二极管和拉住电阻器方法。在大多数情况下,当同步MOSFETA管关断截止时,在电压脉冲波形上会出现一个尖峰信号。在芯片脚CK输入端,必须先消除这一尖峰电压,以避免导致虚假同步触发。在采用电阻分压器R1及R2时,可再增加一只C1高频小电容器来消除尖峰电压突起,。

图6 连续导通模式(CCM)波形

图7 用电阻分压器的同步电路

图8 用二极管D1和R1给脚4(CK)脉冲输入

反激变换器用于电信的一个典型例子,就是直流输入电压具有1:2的可变性范围,典型值为36~72V。因此,副边绕组电压也有1:2的可变范围。那么在36V输入时,由分压电阻器可计算出在脚CK的电压约为2 8V;而当直流输入为72V时,则脚CK电压达到5 6V。即使该值高于脚CK的最大电压也是可以接受的,因为它限制了流入该脚的电流为10mA。

电容器C1的数值取决于同步MOSFET管关断尖峰的幅度,并随R1的数值而变化。为了减小因R1和C1两者引起的延迟,应选用最小的电容值。

在用电源适配器的反激变换器时,其电网输入工作电压为AC85~270V,它的可变范围是1:3。在电网输入电压最低时,必须保证脚CK的电压为2.8V;因此当电网输入电压为最高值时,电压将达到8.9V,或者更高些。该电压值超过了器件允许的最大值。如果通过R1限制流入脚CK的电流值,使之低于脚CK允许的最大电流值,那么芯片仍然可以正常地工作。否则,必须加接二极管D1,以保护芯片不受损。

图8给出了用二极管D1和R1拉住电阻器的同步电路图,用这种电路不存在关断尖峰和脚CK最高电压的问题。由于同步整流器的漏极电压出现振铃,故该电路不能在非连续状态下正常工作。

相关文档
最新文档