晶圆级封装全解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同的WLP 结构
•第一种是ball on I/O 结构,如 图(a)所示。这种工艺和典型的倒 装工艺相类似。焊球通过焊点下 金属层与铝盘直接相连 图(a)或 者通过再布线层 (redistribution layer, RDL) 与Si 芯片直接相连(图(a)2)。 •通常情况下,这种结构限制在焊 球间距为0.5 mm 的6×6 阵列结 构,以满足热循环可靠性的要求。
不同的WLPwenku.baidu.com结构
第三种WLP 结构如图(c)所示,是在图(b)结构的基础 上,添加了UBM 层。由于添加了这种UBM 层,相应 增加了制造成本。这种UBM 能稍微提高热力学性能。 图(d)所示的第四种WLP 结构,采用了铜柱结构, 首先电镀铜柱,接着用环氧树脂密封。
扩散式WLP(fan-out WLP)
所示为典型的晶圆凸点制作 的工艺流程。 首先在晶圆上完成UBM 层 的制作。然后沉积厚胶并曝 光,为电镀焊料形成模板。 电镀之后,将光刻胶去除并 刻蚀掉暴露出来的UBM 层。 最后一部工艺是再流,形成 焊料球。
电镀技术可以实现很窄的凸点节 距并维持高产率。并且该项技术 应用范围也很广,可以制作不同 尺寸、节距和几何形状的凸点, 电镀技术已经越来越广泛地在晶 圆凸点制作中被采用,成为最具 实用价值的方案。
WLP 在3D 叠层封装中的应用
TSV一般采用Cu 填充。由 于Cu 和Si 的热膨胀系数不 同,TSV 在热循环过程中 存在着热机械可靠性问题。 高密度的TSV,要进行通 孔的完全填充;中等密度 的TSV,为提高可靠性、 节省工艺时间和降低成本, 不采用铜的完全填充,而 是用电化学沉积电镀薄层 铜衬里以保证电学连接, 剩余的部分则采用聚合物 填充。
扇出WLP,( 12 × 12)
扇出WLP 截面的SEM 显微照片
扩散式WLP 采用晶圆重构技 术,其工艺过程如图所示: 首先在一块层压载板上布贴 片胶带,载板通常选用人工 晶圆,载板上的胶带则起到 固定芯片位置和保护芯片有 源面的作用;然后将测试良 好的芯片(KGD)面向下重 新粘贴到一块载板上,芯片 之间的距离决定了封装时扩 散面积的大小,可以根据需 要自由控制;接着用模塑料 对芯片以及芯片之间的空隙 进行覆盖填充,再将载板和 胶带从系统中分离,载板可 以重复利用;最后就可以进 行RDL和焊球工艺步骤。
晶圆级封装(WLP)
WLP简介
WLP基本工艺 WLP的研究进展和发展趋势
晶圆级封装(Wafer Level Package,WLP)以BGA技术为基础, 是一种经过改进和提高的CSP。有人又将WLP称为圆片级—芯片 尺寸封装(WLP-CSP)。圆片级封装技术以圆片为加工对象, 在圆片上同时对众多芯片进行封装、老化、测试,最后切割成单 个器件,可以直接贴装到基板或印刷电路板上。它使封装尺寸减 小至IC 芯片的尺寸,生产成本大幅度下降。
目前WLP 的发展有 2 个主要 的趋势。一个是通过减少 WLP 的层数以降低工艺成本, 缩短工艺时间,主要是针对 I/O 少、芯片尺寸小的产品。 其结构是从上述的4M 结构 派生出来,主要分为3M 和 2M的结构。 另一个发展方向是通过一些 新材料的应用来提高WLP 性 能和可靠度。主要是针对I/O 多、芯片尺寸大的产品。比 如上文所提到的,锡银铜合 金的焊料球虽然满足了对无 铅化环保的要求,但是其回 流焊的温度会比锡铅焊料球 高,产品的热应力也相对较 大。采用新材料,锡银铜铋 合金的焊料球,因其具备较 低的熔点和较好的润湿能力, 故而将改善WLP在上板过程 中的热应力失配问题。
重布线层(RDL)的目的是对芯片的铝焊区 位置进行重新布局,使新焊区满足对焊料球 最小间距的要求,并使新焊区按照阵列排布。 常见的RDL 材料是电镀铜(plated Cu)辅 以打底的钛、铜溅射层(Sputtered Ti/Cu)。
RDL 对焊区重新分配布局
涂布第二层Polymer,使圆片表面平坦化并保护RDL 层。第二层Polymer经过光刻后开出新焊区的位置。 最后一道金属层是 UBM (Under Bump Metalization,球下金属层),采用和RDL 一样的工 艺流程制作。 植球。顺应无铅化环保的要求,目前应用在WLP 的 焊料球都是锡银铜合金。焊料球的直径一般为 250μ m。为了保证焊膏和焊料球都准确定位在对应 的UBM 上,就要使用掩模板。焊料球通过掩模板的 开孔被放置于UBM 上,最后将植球后的硅片推入回 流炉中回流,焊料球经回流融化与UBM 形成良好的 浸润结合。
凸点制作技术
凸点制作是圆片级封装工艺过 程的关键工序,它是在晶圆片的 压焊区铝电极上形成凸点。圆片 级封装凸点制作工艺常用的方法 有多种, 每种方法都各有其优缺 点, 适用于不同的工艺要求。要 使圆片级封装技术得到更广泛的 应用, 选择合适的凸点制作工艺 极为重要。在晶圆凸点制作中, 金属沉积占到全部成本的50%以 上。晶圆凸点制作中最为常见的 金属沉积步骤是凸点下金属化层 ( UBM)的沉积和凸点本身的 沉积,一般通过电镀工艺实现。
圆片级封装的优势
圆片级封装技术的优势使其 一出现就受到极大的关注并迅速 获得巨大的发展和广泛的应用。 在移动电话等便携式产品中,已 普遍采用圆片级封装型的 EPROM、IPD(集成无源器件)、 模拟芯片等器件。圆片级封装技 术已广泛用于闪速存储器、 EEPROM、高速DRAM、 SRAM、LCD 驱动器、射频器 件、逻辑器件、电源/ 电池管理 器件和模拟器件(稳压器、温度 传感器、控制器、运算放大器、 功率放大器) 等领域。
电镀制作凸点的详细工艺步骤
圆片级封装的研究进展
标准WLP(fan-in WLP) 是在晶圆未进行切片前, 对芯片进行封装,之后再 进行切片分割,完成后的 封装大小和芯片的尺寸相 同。 近几年开发出的扩散式 WLP(fan-out WLP)则 是基于晶圆重构技术,将 芯片重新布置到一块人工 晶圆上,然后按照与标准 WLP 工艺类似的步骤进行 封装,得到的封装面积要 大于芯片面积。
封装加工效率高,它以圆片形式的批量生产工艺进行制造; 具有倒装芯片封装的优点,即轻、薄、短、小; 圆片级封装生产设施费用低,可充分利用圆片的制造设备,无须投资 另建封装生产线; 圆片级封装的芯片设计和封装设计可以统一考虑、同时进行,这将提 高设计效率,减少设计费用; 圆片级封装从芯片制造、封装到产品发往用户的整个过程中,中间环 节大大减少,周期缩短很多,这必将导致成本的降低; 圆片级封装的成本与每个圆片上的芯片数量密切相关,圆片上的芯片 数越多,圆片级封装的成本也越低。圆片级封装是尺寸最小的低成本 封装。
第二种结构如图(b)所示,焊球 置于在RDL 层上,并通过2 层 聚合物介质层与Si 芯片相连, 此种结构中没有焊点下金属层。 两层聚合物层作为钝化和再布线 层。这种结构不同于第一种结构, 尽管两种结构均有再布线层。如 图b所示,高分子介电薄膜层置 于焊球和硅衬底。这种高分子层 能够作为缓冲层来降低由于温度 变化所引起的PCB 和硅的热失 配产生的热-机械应力。这种 WLP 结构能拓展到间距为0.5 mm 的12×12焊球阵列。
薄膜再分布技术
一种典型的再分布工艺,最终形成 的焊料凸点呈面阵列布局,该工艺 中,采用 BCB /PI作为再分布的介质 层,Cu 作为再分布连线金属,采用 溅射法淀积凸点底部金属层 ( UBM),丝网印刷法淀积焊膏并 回流。
圆片级封装4M 工艺流程图
涂布第一层聚合物薄膜(Polymer Layer),以加强 芯片的钝化层(Passivation),起到应力缓冲的作 用。目前最常用的聚合物薄膜是光敏性聚酰亚胺 (Photo-sensitive Polyimide),简称PI,是一种 负性胶。 早期的WLP 选用BCB(Benzocyclobutene,苯并环 丁烯)作为重布线的聚合物薄膜,但受制于低机械性 能(低断裂伸长率和拉伸强度) 和高工艺成本(需 要打底粘合层adhesion promoter), 促使材料商 开发PI 和PBO(Polybenzoxazole,聚苯并噁唑)。
圆片级封装3M 工艺机构图
圆片级封装3M 工艺机构图
扩散式WLP 的典型应用是嵌入式晶 圆级球栅阵列(embedded wafer level ball grid array,eWLB)。
扇出WLP封装的优点
3D 叠层封装在缩短互联长度、 减小形状因数、提高电性能等方 面有着很大的优势。WLP 应用 于3D封装采用倒装凸点和RDL 技术,可以实现圆片级互联,提 高互联密度。 硅通孔(TSV)技术应用于 WLP-3D 封装是实现垂直互联 的关键,它有着提高集成度、减 小互联长度、提高信号速度、降 低功耗等优点,同时还可以在一 个封装中实现存储器、专用IC、 处理器等多功能集成封装。