实验九陶瓷材料烧结工艺实验
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)浆料:为了适应注浆成型、流延成型、热压铸成型工艺的需要,必须将陶瓷粉料调制成符合各种成型工艺性能的浆料。
陶瓷成型的方法有许多种,依产品的形状、大小、复杂性与精度等要求选用合适的成型方式。最常用的方法有干压法成型、注浆成型、挤压成型、冷等静压法成型(CIP),注射成型、流延成型、热压成型与热等静压成型(HIP)以及近几年来新开发的压滤成型、凝胶注成型、固体自由成型制造技术等。
式中f为微波工作频率;ε'为材料介电损耗;ε0为空间介电常数;E为微波电场强度;Cp为材料热容;ρ为材料密度。上式给出了微波烧结陶瓷材料时微波炉功率与微波腔内场强的关系以及微波场强的大小对加热速度的影响。微波烧结的功率决定了微波烧结场场强的大小,升温速率与烧结场场强、材料热容和材料密度密切相关。这对进行微波炉设计和进行试样烧结时对实验参数的设计提供了一个基本依据。
陶瓷材料的烧结工艺也分为三个阶段,升温阶段,保温阶段和降温阶段。
在升温阶段,坯体中往往出现挥发分排出、有机粘合剂等分解氧化、液相产生、晶粒重排与长大等微观现象。在操作上,考虑到烧结时挥发分的排除和烧结炉的寿命,需要在不同阶段有不同的升温速率。
保温阶段指型坯在升到的最高温度(通常也叫烧结温度)下保持的过程。粉体烧结涉及组成原子、离子或分子的扩散传质过程,是一个热激活过程,温度越高,烧结越快。在工程上为了保证效率和质量,保温阶段的最高温度很有讲究。烧结温度与物料的结晶化学特性有关,晶格能大,高温下质点移动困难,不利于烧结。烧结温度与材料的熔点有关系,对陶瓷而言是其熔点的—倍,对金属而言是其熔点的 倍。
研磨与筛分
对原料进行研磨的目的主要有两个:(1)使物料粉碎至一定的细度;(2)使各种原料相互混合均匀。陶瓷成形所用的粉料要有一定的粒度、颗粒分布范围的要求,粒度过小,则不易排气、压实,易出现分层现象;同还要求颗粒分布范围要窄,否则也不易压实,同时还会影响产品的强度。
陶瓷工业生产中普遍采用的球磨机来进行陶瓷原料的研磨。球磨主要是靠内装一定研磨体的旋转筒体来工作的。当筒体旋转时带动研磨体旋转,靠离心力和摩擦力的作用,将研磨体带到一定高度。当离心力小于其自身重量时,研磨体落下,冲击下部研磨体及筒壁,而介于其间的粉料便受到冲击和研磨,故球磨机对粉料的作用可分成两个部分:(1)研磨体之间和研磨体与筒体之间的研磨作用;(2)研磨体下落时的冲击作用。
本实验采用干压成型:将水分适当的粉料,置于钢模中,在压力机上加压形成一定形状的坯体。干压成型的实质是在外力作用下,颗粒在模具内相互靠近,并借内摩擦力牢固地把各颗粒联系起来,保持一定形状。
陶瓷的烧结
烧结(也叫烧成)是指在高温作用下,坯体发生一系列物理化学变化,由松散状态逐渐致密化,且机械强度大大提高的过程。在烧结过程中包括有机物的挥发、坯体内应力的消除、气孔率的减少;在烧结气氛作用下,粉末颗粒表面氧化物的还原、原子的扩散、粘性流动和塑性流动;烧结后期还可能出现二次再结晶过程和晶粒长大过程。烧结过程主要分为三个过程见图2:
(3)安全无污染。微波烧结的快速烧结特点使得在烧结过程中作为烧结气氛的气体的使用量大大降低,这不仅降低了成本,也使烧结过程中废气、废热的排放量得到降低。
(4)使用微波法快速升温和致密化可以抑制晶粒组织长大,从而制备纳米粉末、超细或纳米块体材料。以非晶硅和碳混合料为原料,采用微波烧结法可以制备粒度为20~30 nm的β-SiC粉末,而用普通方法时,制备的粉末粒度为50~450 nm。采用微波烧结制备的WC-Co硬质合金,其晶粒粒度可降低到100 nm左右。
为提高球磨机的粉碎效率,主要应考虑以下几个影响因素:
1、球磨机转速。当转速太快时,离心力大,研磨体附在筒壁上与筒壁同步旋转,失去研磨和冲击作用。当转速太慢时,离心力太小,研磨体升不高就滑落下来,没有冲击能力。只有转速适当时,磨机才具有最大的研磨和冲击作用,产生最大的粉碎效果。合适的转速与球磨机的内径、内衬、研磨体种类、粉料性质、装料量、研磨介质含量等有关系。
陶瓷材料制备工艺
陶瓷材料制备的一般工艺流程如图1所示。
图1. 陶瓷材料制备的一般工艺流程
配方设计
陶瓷坯料(body material)一般是由几种不同的原料配制而成。性能不同的陶瓷产品,其所用原料的种类和配比不同,也即所谓坯料组成或配方不同。
陶瓷成分设计原则有:
1)根据科研需要或用户的要求确定产品(充分考虑产品的物理化学性能和实用性能要求);
2) 化学组成表示法
即用坯料中各种化学组分所占质量百分数来表示坯料组成。其优点是可以根据坯料中化学成分的多少来推断或比较坯体的某些性能。
3) 示性矿物组成表示法
普通陶瓷坯体一般是由粘土、石英及熔剂类矿物原料组成。用这三类矿物的百分含量可表示坯料的组成,这样的表示方法叫示性矿物表示法。它有助于了解坯料的一些工艺性能,比如烧成性能等。
4) 实验式表示法
实验式表示法也称坯式表示法,它是采用各种氧化物摩尔数来表示坯料组成的一种方法,将坯料中的氧化物分为碱性、中性和酸性氧化物,并计算出其摩尔数后按比例排列。
坯式是陶瓷理论研究中常用的方法,它可以明显地表示出各组分之间的数量关系,进而分析坯料的性能。实际工作中,往往是同时用两种或两种以上的方法表示组成。
2、研磨体的比重、大小和形状。应根据粉料性质和粒度要求全面考虑,研磨体比重大可以提高研磨效率,而且直径一般为筒体直径的1/20,且应大、中、小搭配,以增加研磨接触面积。圆柱状和扁平状研磨体因其接触面积大,研磨作用强,而圆球状研磨体的冲击力较集中。
3、料、球、水的比例。球磨机筒体的容积是固定的。原料、磨球(研磨体)和水(研磨介质)的装载比例会影响到球磨效率,应根据物料性质和粒度要求确定合适的料、球、水比例。
实验九
姓名:许航 学号:3 姓名:王颖婷 学号:3
系别:材料科学与工程系 专业:材料物理
组号:A9 实验时间:5月11号
1实验目的
1)掌握陶瓷主要制备工艺的原理、方法与一定的操作技能。
2)通过实验了解陶瓷产品的设计程序与工艺过程。
3)掌握制备陶瓷材料的典型工艺流程,包括配方计算、称量、混料、筛分、造粒、成型、排塑、烧结、加工、性能测试等
所有的陶瓷(材料及其制品)都有其特定的性能要求。如:日用餐具要有一定的强度(strength)、白度(whiteness)、抗热冲击性(热稳定性);对于电瓷有强度和介电性能要求;而特种陶瓷对性能及其热稳定性要求更高。
陶瓷的性能一方面受到其本征物理量(如热稳定系数、电阻率、弹性模量等)的影响,同时又与其显微结构密切相关。而决定显微结构和本征物理量的是陶瓷的组成及其加工工艺过程。其中陶瓷组成对显微结构、性能起决定作用。
① 粘结剂:常用的粘结剂有:聚乙烯醇(PVA)、聚乙烯醇缩丁醛、聚乙二醇、甲基纤维素、羧甲基纤维素、羟丙基纤维素、石蜡等。
② 增塑剂:常用的增塑剂有:甘油、酞酸二丁酯、草酸、乙酸二甘醇、水玻璃、粘土、磷酸铝等。
③ 溶剂:能溶解粘结剂、增塑剂,并能和物料构成可塑物质的液体。如水、乙醇、丙酮、苯、醋酸乙酯等。
2)参考前人的经验和数据;
3)了解各种原料对产品性质的影响;
4)应满足生产工艺的要求 ;
5)了解原料的品位、来源和到厂价格。
陶瓷坯体组成的表示方法可分为4种:
1)配料量表示法
配料量表示法也称配料比表示法,是生产中常用的方法。它直接列出所用原料的名称和质量比(各种原料质量比之和应为100)。这种方法便于工厂计量配料,直观方便。
与常规烧结相比,微波烧结具有如下特点:
(1)烧结温度大幅度降低,与常规烧结相比,最大降温幅度可达500℃左右。
(2)比常规烧结节能70%~90%,降低烧结能耗费用。由于微波烧结的时间大大缩短,尤其对一些陶瓷材料烧结过程从过去的几天甚至几周降低到用微波烧结的几个小时甚至几分钟,大大得高了能源的利用效率。
微波烧结的原理及特点
微波是一种高频电磁波,其频率范围为0.3~300 GHz。但在微波烧结技术中使用的频率主要为2、45 GHz,Sutton对该频率波段的微波烧结进行详细研究。目前也有28 GHz、60 GHz其至更高频率的研究报道。微波烧结是利用微波电磁场中陶瓷材料的介质损耗使材料整体加热至烧结温度而实现烧结和致密化。在微波电磁场作用下,陶瓷材料会产生一系列的介质极化,如电子极化、原子极化、偶极子转向极化和界面极化等。参加极化的微观粒子种类不同,建立或消除极化的时间周期也不一样。由于微波电磁场的频率很高,使材料内部的介质极化过程无法跟随外电场的变化,极化强度矢量P总是滞后于电场E,导致产生与电场同相的电流,从而构成材料内部的耗散,在微波波段,主要是偶极子极化和界面极化产生的吸收电流构成材料的介质耗散。在绝热环境下,当忽略材料在加热过程中的潜能(如反应热、相变热等)变化时,单位体积材料在微波场作用下的升温速率为:
粉料的颗粒分布的测定方法有很多,本实验选用筛析法,即:将一定量的陶瓷粉料用振动筛筛析,用各规格筛的筛余来表示其颗粒的分布。
陶瓷的造粒及成型
为使粉料更适合成型工艺的要求,在需要时应对已粉碎、混合好的原料进行某些预处理:
(1) 塑化:传统陶瓷材料中常含有粘土,粘土本身就是很好的塑化剂;只有对那些难以成型的原料,为提高其可塑性,需加入一些辅助材料:
4)利用实验找出材料的最优烧结工艺,包括烧结温度和烧结时间
5)了解压敏陶瓷等功能陶瓷的制备和性能检测
2 实验背景知识
陶瓷
陶瓷(ceramics)是我们日常生活接触较多,在国民经济中有许多重要应用的无机非金属材料之一。传统概念的陶瓷是指所有以粘土为主要原料,并与其他矿物原料经过破碎混和成型烧成等过程而制得的制品,主要是常见的日用陶瓷、建筑卫生陶瓷等普通陶瓷(ordinary ceramics )。随着社会的发展,出现了一类性能特殊,在电子、航空、生物医学等领域有广泛用途的陶瓷材料,称之为特种陶瓷(specieal ceramics )。
陶瓷材料的微波烧结
微波烧结概念由Tinga等人于20世纪50年代提出,但直至80年代才受到重视。80年代中后期微波烧结技术被引入到材料科学领域,逐渐发展成为一种新型的粉末冶金快速烧结技术。进人90年代,该技术向着基础研究、实用化和工业化发展,尤其在陶瓷材料领域成了研究热点。目前,我国学者对微波烧结陶瓷的研究主要集中于结构陶瓷,而国外许多大学、研究机构及大公司同时开展了结构陶瓷和电子陶瓷等方面的微波烧结研究。与常规烧结相比,微波烧结具有烧结速度快、高效节能以及改善材料组织、提高材料性能等一系列优点。21世纪随着人们对纳米材料研究的重视,该技术在制备纳米块体金属材料和纳米陶瓷方面具有很大的潜力,该技术被誉为“21世纪新一代烧结技术”。
冷却阶段是陶瓷材料从最高温度到室温的过程,冷却过程中伴随有液相凝固、析晶、相变等物理化学变化。冷却方式、冷却速度快慢对陶瓷材料最终相的组成、结构和性能等都有很大的影响,所以所有的烧结实验需要精心设计冷却工艺。
由于烧结的温度如果过高,则可能出现材料颗粒尺寸大,相变完全等严重影响材料性能的问题,晶粒尺寸越大,材料的韧性和强度就越差,而这正是陶瓷材料的最大问题,所以要提高陶瓷的韧性,就必须降低晶粒的尺寸,降低烧结温度和时间。但是在烧结时,如果烧结温度太低,没有充分烧结,材料颗粒间的结合不紧密,颗粒间仍然是靠机械力结合,没有发生颗粒的重排,原子的传递等过程,那么材料就是不可用的。
初期烧结颈形成阶段,通过形核、长大等原子迁移过程,颗粒间的原始接触点或面转变成晶粒结合,形成烧结颈;中间烧结颈长大阶段,原子向颗粒粘结面的大量迁移使烧结颈扩大,颗粒间距缩小,孔隙的结构变得光滑,形成连续的空隙网络;最终烧结阶段:烧结的最终阶段是一个很缓慢的过程,借助于体积扩散机制将发生孔隙的孤立、球化及收缩。
选择塑化剂要根据成型方法、物料性质、制品性能要求、添加剂的价格以及烧结时是否容易排除等条件,来选择添加剂的种类及其加入量;
(2) 造粒:粉末越细小,其烧结性能越良好;但由于粉末太细小,其松装比重小、流动性差、装模容积大,因而会造成成型困难,烧结收缩严重,成品尺寸难以控制等困难。为增强粉末的流动性、增大粉末的堆积密度,特别是采用模压成型时,有必要对粉末进行造粒处理,加工成20~40目的较粗团粒,。常用的方法是,用压块造粒法来造粒:将加好粘结剂的粉料,在低于最终成型压力的条件下,压成块状,然后粉碎、过筛;
陶瓷成型的方法有许多种,依产品的形状、大小、复杂性与精度等要求选用合适的成型方式。最常用的方法有干压法成型、注浆成型、挤压成型、冷等静压法成型(CIP),注射成型、流延成型、热压成型与热等静压成型(HIP)以及近几年来新开发的压滤成型、凝胶注成型、固体自由成型制造技术等。
式中f为微波工作频率;ε'为材料介电损耗;ε0为空间介电常数;E为微波电场强度;Cp为材料热容;ρ为材料密度。上式给出了微波烧结陶瓷材料时微波炉功率与微波腔内场强的关系以及微波场强的大小对加热速度的影响。微波烧结的功率决定了微波烧结场场强的大小,升温速率与烧结场场强、材料热容和材料密度密切相关。这对进行微波炉设计和进行试样烧结时对实验参数的设计提供了一个基本依据。
陶瓷材料的烧结工艺也分为三个阶段,升温阶段,保温阶段和降温阶段。
在升温阶段,坯体中往往出现挥发分排出、有机粘合剂等分解氧化、液相产生、晶粒重排与长大等微观现象。在操作上,考虑到烧结时挥发分的排除和烧结炉的寿命,需要在不同阶段有不同的升温速率。
保温阶段指型坯在升到的最高温度(通常也叫烧结温度)下保持的过程。粉体烧结涉及组成原子、离子或分子的扩散传质过程,是一个热激活过程,温度越高,烧结越快。在工程上为了保证效率和质量,保温阶段的最高温度很有讲究。烧结温度与物料的结晶化学特性有关,晶格能大,高温下质点移动困难,不利于烧结。烧结温度与材料的熔点有关系,对陶瓷而言是其熔点的—倍,对金属而言是其熔点的 倍。
研磨与筛分
对原料进行研磨的目的主要有两个:(1)使物料粉碎至一定的细度;(2)使各种原料相互混合均匀。陶瓷成形所用的粉料要有一定的粒度、颗粒分布范围的要求,粒度过小,则不易排气、压实,易出现分层现象;同还要求颗粒分布范围要窄,否则也不易压实,同时还会影响产品的强度。
陶瓷工业生产中普遍采用的球磨机来进行陶瓷原料的研磨。球磨主要是靠内装一定研磨体的旋转筒体来工作的。当筒体旋转时带动研磨体旋转,靠离心力和摩擦力的作用,将研磨体带到一定高度。当离心力小于其自身重量时,研磨体落下,冲击下部研磨体及筒壁,而介于其间的粉料便受到冲击和研磨,故球磨机对粉料的作用可分成两个部分:(1)研磨体之间和研磨体与筒体之间的研磨作用;(2)研磨体下落时的冲击作用。
本实验采用干压成型:将水分适当的粉料,置于钢模中,在压力机上加压形成一定形状的坯体。干压成型的实质是在外力作用下,颗粒在模具内相互靠近,并借内摩擦力牢固地把各颗粒联系起来,保持一定形状。
陶瓷的烧结
烧结(也叫烧成)是指在高温作用下,坯体发生一系列物理化学变化,由松散状态逐渐致密化,且机械强度大大提高的过程。在烧结过程中包括有机物的挥发、坯体内应力的消除、气孔率的减少;在烧结气氛作用下,粉末颗粒表面氧化物的还原、原子的扩散、粘性流动和塑性流动;烧结后期还可能出现二次再结晶过程和晶粒长大过程。烧结过程主要分为三个过程见图2:
(3)安全无污染。微波烧结的快速烧结特点使得在烧结过程中作为烧结气氛的气体的使用量大大降低,这不仅降低了成本,也使烧结过程中废气、废热的排放量得到降低。
(4)使用微波法快速升温和致密化可以抑制晶粒组织长大,从而制备纳米粉末、超细或纳米块体材料。以非晶硅和碳混合料为原料,采用微波烧结法可以制备粒度为20~30 nm的β-SiC粉末,而用普通方法时,制备的粉末粒度为50~450 nm。采用微波烧结制备的WC-Co硬质合金,其晶粒粒度可降低到100 nm左右。
为提高球磨机的粉碎效率,主要应考虑以下几个影响因素:
1、球磨机转速。当转速太快时,离心力大,研磨体附在筒壁上与筒壁同步旋转,失去研磨和冲击作用。当转速太慢时,离心力太小,研磨体升不高就滑落下来,没有冲击能力。只有转速适当时,磨机才具有最大的研磨和冲击作用,产生最大的粉碎效果。合适的转速与球磨机的内径、内衬、研磨体种类、粉料性质、装料量、研磨介质含量等有关系。
陶瓷材料制备工艺
陶瓷材料制备的一般工艺流程如图1所示。
图1. 陶瓷材料制备的一般工艺流程
配方设计
陶瓷坯料(body material)一般是由几种不同的原料配制而成。性能不同的陶瓷产品,其所用原料的种类和配比不同,也即所谓坯料组成或配方不同。
陶瓷成分设计原则有:
1)根据科研需要或用户的要求确定产品(充分考虑产品的物理化学性能和实用性能要求);
2) 化学组成表示法
即用坯料中各种化学组分所占质量百分数来表示坯料组成。其优点是可以根据坯料中化学成分的多少来推断或比较坯体的某些性能。
3) 示性矿物组成表示法
普通陶瓷坯体一般是由粘土、石英及熔剂类矿物原料组成。用这三类矿物的百分含量可表示坯料的组成,这样的表示方法叫示性矿物表示法。它有助于了解坯料的一些工艺性能,比如烧成性能等。
4) 实验式表示法
实验式表示法也称坯式表示法,它是采用各种氧化物摩尔数来表示坯料组成的一种方法,将坯料中的氧化物分为碱性、中性和酸性氧化物,并计算出其摩尔数后按比例排列。
坯式是陶瓷理论研究中常用的方法,它可以明显地表示出各组分之间的数量关系,进而分析坯料的性能。实际工作中,往往是同时用两种或两种以上的方法表示组成。
2、研磨体的比重、大小和形状。应根据粉料性质和粒度要求全面考虑,研磨体比重大可以提高研磨效率,而且直径一般为筒体直径的1/20,且应大、中、小搭配,以增加研磨接触面积。圆柱状和扁平状研磨体因其接触面积大,研磨作用强,而圆球状研磨体的冲击力较集中。
3、料、球、水的比例。球磨机筒体的容积是固定的。原料、磨球(研磨体)和水(研磨介质)的装载比例会影响到球磨效率,应根据物料性质和粒度要求确定合适的料、球、水比例。
实验九
姓名:许航 学号:3 姓名:王颖婷 学号:3
系别:材料科学与工程系 专业:材料物理
组号:A9 实验时间:5月11号
1实验目的
1)掌握陶瓷主要制备工艺的原理、方法与一定的操作技能。
2)通过实验了解陶瓷产品的设计程序与工艺过程。
3)掌握制备陶瓷材料的典型工艺流程,包括配方计算、称量、混料、筛分、造粒、成型、排塑、烧结、加工、性能测试等
所有的陶瓷(材料及其制品)都有其特定的性能要求。如:日用餐具要有一定的强度(strength)、白度(whiteness)、抗热冲击性(热稳定性);对于电瓷有强度和介电性能要求;而特种陶瓷对性能及其热稳定性要求更高。
陶瓷的性能一方面受到其本征物理量(如热稳定系数、电阻率、弹性模量等)的影响,同时又与其显微结构密切相关。而决定显微结构和本征物理量的是陶瓷的组成及其加工工艺过程。其中陶瓷组成对显微结构、性能起决定作用。
① 粘结剂:常用的粘结剂有:聚乙烯醇(PVA)、聚乙烯醇缩丁醛、聚乙二醇、甲基纤维素、羧甲基纤维素、羟丙基纤维素、石蜡等。
② 增塑剂:常用的增塑剂有:甘油、酞酸二丁酯、草酸、乙酸二甘醇、水玻璃、粘土、磷酸铝等。
③ 溶剂:能溶解粘结剂、增塑剂,并能和物料构成可塑物质的液体。如水、乙醇、丙酮、苯、醋酸乙酯等。
2)参考前人的经验和数据;
3)了解各种原料对产品性质的影响;
4)应满足生产工艺的要求 ;
5)了解原料的品位、来源和到厂价格。
陶瓷坯体组成的表示方法可分为4种:
1)配料量表示法
配料量表示法也称配料比表示法,是生产中常用的方法。它直接列出所用原料的名称和质量比(各种原料质量比之和应为100)。这种方法便于工厂计量配料,直观方便。
与常规烧结相比,微波烧结具有如下特点:
(1)烧结温度大幅度降低,与常规烧结相比,最大降温幅度可达500℃左右。
(2)比常规烧结节能70%~90%,降低烧结能耗费用。由于微波烧结的时间大大缩短,尤其对一些陶瓷材料烧结过程从过去的几天甚至几周降低到用微波烧结的几个小时甚至几分钟,大大得高了能源的利用效率。
微波烧结的原理及特点
微波是一种高频电磁波,其频率范围为0.3~300 GHz。但在微波烧结技术中使用的频率主要为2、45 GHz,Sutton对该频率波段的微波烧结进行详细研究。目前也有28 GHz、60 GHz其至更高频率的研究报道。微波烧结是利用微波电磁场中陶瓷材料的介质损耗使材料整体加热至烧结温度而实现烧结和致密化。在微波电磁场作用下,陶瓷材料会产生一系列的介质极化,如电子极化、原子极化、偶极子转向极化和界面极化等。参加极化的微观粒子种类不同,建立或消除极化的时间周期也不一样。由于微波电磁场的频率很高,使材料内部的介质极化过程无法跟随外电场的变化,极化强度矢量P总是滞后于电场E,导致产生与电场同相的电流,从而构成材料内部的耗散,在微波波段,主要是偶极子极化和界面极化产生的吸收电流构成材料的介质耗散。在绝热环境下,当忽略材料在加热过程中的潜能(如反应热、相变热等)变化时,单位体积材料在微波场作用下的升温速率为:
粉料的颗粒分布的测定方法有很多,本实验选用筛析法,即:将一定量的陶瓷粉料用振动筛筛析,用各规格筛的筛余来表示其颗粒的分布。
陶瓷的造粒及成型
为使粉料更适合成型工艺的要求,在需要时应对已粉碎、混合好的原料进行某些预处理:
(1) 塑化:传统陶瓷材料中常含有粘土,粘土本身就是很好的塑化剂;只有对那些难以成型的原料,为提高其可塑性,需加入一些辅助材料:
4)利用实验找出材料的最优烧结工艺,包括烧结温度和烧结时间
5)了解压敏陶瓷等功能陶瓷的制备和性能检测
2 实验背景知识
陶瓷
陶瓷(ceramics)是我们日常生活接触较多,在国民经济中有许多重要应用的无机非金属材料之一。传统概念的陶瓷是指所有以粘土为主要原料,并与其他矿物原料经过破碎混和成型烧成等过程而制得的制品,主要是常见的日用陶瓷、建筑卫生陶瓷等普通陶瓷(ordinary ceramics )。随着社会的发展,出现了一类性能特殊,在电子、航空、生物医学等领域有广泛用途的陶瓷材料,称之为特种陶瓷(specieal ceramics )。
陶瓷材料的微波烧结
微波烧结概念由Tinga等人于20世纪50年代提出,但直至80年代才受到重视。80年代中后期微波烧结技术被引入到材料科学领域,逐渐发展成为一种新型的粉末冶金快速烧结技术。进人90年代,该技术向着基础研究、实用化和工业化发展,尤其在陶瓷材料领域成了研究热点。目前,我国学者对微波烧结陶瓷的研究主要集中于结构陶瓷,而国外许多大学、研究机构及大公司同时开展了结构陶瓷和电子陶瓷等方面的微波烧结研究。与常规烧结相比,微波烧结具有烧结速度快、高效节能以及改善材料组织、提高材料性能等一系列优点。21世纪随着人们对纳米材料研究的重视,该技术在制备纳米块体金属材料和纳米陶瓷方面具有很大的潜力,该技术被誉为“21世纪新一代烧结技术”。
冷却阶段是陶瓷材料从最高温度到室温的过程,冷却过程中伴随有液相凝固、析晶、相变等物理化学变化。冷却方式、冷却速度快慢对陶瓷材料最终相的组成、结构和性能等都有很大的影响,所以所有的烧结实验需要精心设计冷却工艺。
由于烧结的温度如果过高,则可能出现材料颗粒尺寸大,相变完全等严重影响材料性能的问题,晶粒尺寸越大,材料的韧性和强度就越差,而这正是陶瓷材料的最大问题,所以要提高陶瓷的韧性,就必须降低晶粒的尺寸,降低烧结温度和时间。但是在烧结时,如果烧结温度太低,没有充分烧结,材料颗粒间的结合不紧密,颗粒间仍然是靠机械力结合,没有发生颗粒的重排,原子的传递等过程,那么材料就是不可用的。
初期烧结颈形成阶段,通过形核、长大等原子迁移过程,颗粒间的原始接触点或面转变成晶粒结合,形成烧结颈;中间烧结颈长大阶段,原子向颗粒粘结面的大量迁移使烧结颈扩大,颗粒间距缩小,孔隙的结构变得光滑,形成连续的空隙网络;最终烧结阶段:烧结的最终阶段是一个很缓慢的过程,借助于体积扩散机制将发生孔隙的孤立、球化及收缩。
选择塑化剂要根据成型方法、物料性质、制品性能要求、添加剂的价格以及烧结时是否容易排除等条件,来选择添加剂的种类及其加入量;
(2) 造粒:粉末越细小,其烧结性能越良好;但由于粉末太细小,其松装比重小、流动性差、装模容积大,因而会造成成型困难,烧结收缩严重,成品尺寸难以控制等困难。为增强粉末的流动性、增大粉末的堆积密度,特别是采用模压成型时,有必要对粉末进行造粒处理,加工成20~40目的较粗团粒,。常用的方法是,用压块造粒法来造粒:将加好粘结剂的粉料,在低于最终成型压力的条件下,压成块状,然后粉碎、过筛;