气基直接还原工艺与粉煤综合利用

气基直接还原工艺与粉煤综合利用
气基直接还原工艺与粉煤综合利用

电厂粉煤灰综合利用

火电厂固体三废综合利用途径 由于阳城电厂一期除灰系统设计为水力除灰方式,湿灰的利用途径较少,仅是煤矿采空区回填在少量利用,大部分用于无害化填埋深沟造田方式。二期为干除灰系统,基本可以全部直接利用,2011年通过积极寻找合作伙伴,推广二期粉煤灰利用,用于水泥厂、搅拌站、修路等项目,年利用粉煤灰约40万吨;通过所属多经公司自建的年产1.2亿块粉煤灰蒸压砖及年产15万立方加气混凝土砌块的砖厂,直接利用粉煤灰、炉渣、脱硫石膏等各种废弃物约4.5万吨(目前因受市场因素影响,砖厂未达到设计产能,按设计产能可消耗粉煤灰、脱硫石膏、炉渣约32万吨);通过与晋城当地石膏深度加工企业合作,2011年利用脱硫石膏约2000吨(河南部分地市于2012年开始大量拉运脱硫石膏用于石膏建筑材料的生产,仅河南全年可利用石膏约10万吨,润城当地石膏建材厂于10月份投产,每天可消耗石膏500吨,目前已达成了合作意向,北留镇当地还有两家石膏建材厂,目前正在试生产阶段,也已达成合作意向);剩余的粉煤灰、脱硫石膏、炉渣全部用于无害化填埋深沟,覆土后可用于造田及种植名贵绿植。 拟扩建年产15万立方的加气块生产线 为了更好的完成阳城电厂节能减排指标,履行好应尽

的社会责任,同源公司投资建设的砖厂拟扩建年产15万立方的加气块生产线。该项目计划于十二五期间完成可研的编制及资金筹集,并争取开工建设。 (1)生产工艺 该生产线利用粉煤灰、水泥、石灰、石膏、铝粉生产粉煤灰加气混凝土砌块,用饱和蒸汽作为养护介质,用料浆浇注发泡成型、六面切割及蒸压釜高压养护。此工艺机械化、自动化程度较高,技术水平先进。工艺设备选择经济合理,既能保证产量,又能保证良好的产品质量。 原料由汽车运进厂区,储存在水泥仓或料场内;粉煤灰由气力输送泵送至粉煤灰仓。其中,生石灰经球磨机磨细后送至仓中储存备用。生产加气混凝土砌块时,将各种原料运至配料工段待用。在配料工段,将粉状物料与料浆分别计量,加入浇注搅拌机中,适当加水、加温进行搅拌,最后浇注到模具中。料浆在模具中发气、膨胀、硬化,然后将坯体切割成所需规格后送入蒸压釜中蒸养,成品经检验后入库。空模具经清理刷油后重新使用。 1)原料制备 粉料的制备:生石灰由鄂式破碎机粗碎后,出料粒度在20~80mm之间;粗碎后经斗式提升机送入粗石灰仓中储存;进入双仓球磨机粉磨,细度为80微米孔筛筛余

太原粉煤灰综合利用项目商业计划书

太原粉煤灰综合利用项目 商业计划书 规划设计/投资分析/产业运营

报告摘要 火电行业是粉煤灰最主要的产生来源,据中国电力联合会数据显示,2017年1-6月份,全国规模以上电厂火电发电量22215亿千瓦时,同比增长7.1%,增速比上年同期提高10.2个百分点。2016年中国粉煤灰产生量约为5.65亿吨,可以推测2017年中国粉煤灰产生量约为6.0亿吨,较2016年略有增长。 2017年,继续受建筑建材行业下行,水泥行业去产能,煤炭价格波动等因素影响,我国粉煤灰综合利用遭遇严峻挑战,几乎全国范围内粉煤灰市场都出现了量价齐降的问题。与此同时,2018年1月1日环境保护税法即将实施、新修订的国家标准《用于水泥和混凝土中的粉煤灰》GB1596-2017发布,对粉煤灰的综合利用造成了巨大挑战。 该粉煤灰项目计划总投资3654.36万元,其中:固定资产投资3243.51万元,占项目总投资的88.76%;流动资金410.85万元,占项目总投资的11.24%。 达产年营业收入3825.00万元,净利润643.26万元,达产年纳税总额396.14万元;达产年投资利润率23.47%,投资利税率28.44%,投资回报率17.60%,全部投资回收期7.18年,提供就业职位55个。

太原粉煤灰综合利用项目商业计划书目录 第一章概况 第二章建设背景及必要性 第三章市场研究分析 第四章产品规划及建设规模 第五章土建方案说明 第六章运营管理模式 第七章风险评价分析 第八章 SWOT分析 第九章项目实施进度 第十章投资方案 第十一章经济评价 第十二章总结说明

第一章概况 一、项目名称及建设性质 (一)项目名称 太原粉煤灰综合利用项目 (二)项目建设性质 该项目属于新建项目,依托xx经济开发区良好的产业基础和创新 氛围,充分发挥区位优势,全力打造以粉煤灰为核心的综合性产业基地,年产值可达4000.00万元。 二、项目承办单位 xxx公司 三、战略合作单位 xxx有限责任公司 四、项目建设背景 粉煤灰的应用不仅可以减少水泥用量,降低混凝土生产成本,而且可 以改善混凝土的工作性能。随着我国建筑向高层化、大型化、现代化发展,具有高耐久性、长寿命的高性能混凝土应用将越来越普遍。粉煤灰等工业 废渣是制备高性能混凝土的关键,因此,利用粉煤灰生产高性能混凝土是 粉煤灰综合利用的重要方向。

回转窑直接还原法

回转窑直接还原法(direct reduction process with rotary kiln) 以连续转动的回转窑作反应器,以固体碳作还原剂,通过固相还原反应把铁矿石炼成铁的直接还原炼铁方法。回转窑直接还原是在950~1100℃进行的固相碳还原反应,窑内料层薄,有相当大的自由空间,气流能不受阻碍的自由逸出,窑尾温度较高,有利于含铁多元共生矿实现选择性还原和气化温度低的元素和氧化物以气态排出,然后加以回收,实现资源综合利用。由于还原温度较低,矿石中的脉石都保留在产品里,未能充分渗碳。由于还原失氧形成大量微气孔,产品的微观类似海绵,故也称海绵铁。 高炉炼铁法有久远历史,已发展成高效、节能的冶金方法,是生产铁的基本方法,但它有一定局限性。随着人类对钢铁需求的增长和技术进步,早在18世纪又提出开发直接还原技术的想法,直到20世纪初才出现了工业化生产。20世纪60年代后,由于石油和天然气的大量开发,为钢铁工业提供了丰富和廉价的新能源;选矿技术进步,为直接还原生产提供了优质精矿原料;电力工业开发,电炉技术和能力的迅速发展,导致优质废钢供应紧张;而高新技术发展需要大量优质钢和纯净钢,这又需要纯净的优质炼钢炉料。总之,诸方面均为直接还原的开发开创了有利条件。70年代起,直接还原技术,工业规模,实际产量都取得重大进步和稳步发展。1975年世界直接还原炼铁的生产能力为436万t,实际产量为281万t,占生铁产量的0.6%,到1995年分别跃增到4460万t,3075万t和5.7%。至今气基直接还原炼铁法的生产能力和实际产量都占主导地位,约占总生产能力和总产量的90%,其中以米德莱克斯Midrex法和希尔(HYL)法占绝对优势。煤基直接还原法仅占10%左右,其中主要为回转窑直接还原法。回转窑直接还原法开发于50~60年代。60年代末发展较快,世界各地建设了一批工业生产窑,但由于工艺不够成熟,技术和装备上遇到一系列困难。如入窑料粉化严重,频繁出现窑衬粘结,无法实现正常运行,一度限制了该工艺发展。70年代中,重视对原料、燃料的性能研究,开发和改进送煤、送风技术,改革操作工艺,完善和提高设备,开发废热回收技术,保证了窑的正常操作,使生产率提高,能耗大幅度下降;同时,加强生产过程监测和自动化管理,促使回转窑直接还原技术步入成熟;此外70年代能源危机,天然气价格大幅度上涨,天然气又是重要化工原料,资源有限等,由此也促进了回转窑直接还原法的发展。1980~1995年期间,生产能力从216.2万t增加到365.5万t,直接还原铁产量从37万t增长到246万t。印度生产能力达151万t,南非为108万t。 筒史 1907年琼斯(J.T.Jones)最早提出回转窑直接还原法。在回转窑卸料端设煤气发生炉,热煤气从卸料端入窑,在距窑加料端1/3窑长处导入空气,与热煤气燃烧形成氧化加热带。铁矿石和还原煤从加料端加入,被高温废气干燥、预热、氧化去硫,随窑体转动铁矿石向卸料端前移,同时被热煤气和还原煤还原,然后从卸料端排出。后来改进为两台窑作业,一台氧化加热,另一台窑内铁矿石被油或煤粉不完全燃烧产生的还原气所还原,但因这样作业不经济,1912年停产。1926年鲍肯德(Bourcond)、斯奈德(Snyder)在实验室进行了用发生炉煤气的回转窑直接还原实验成功。同年还出现了用回转窑进行还原、增碳、得到熔融铁水的巴塞特(Basset)法。1930年克虏伯(krupp)公司开发了克虏伯一雷恩(krupp—Renn)法,用低质

20161025 煤基竖炉直接还原技术

武汉科思瑞迪科技有限公司(以下简称“科思瑞迪”)坐落于武汉市东湖新技术开发区,是以武汉桂坤科技有限公司为主体,整合相关社会资源,汇集了冶金、工业炉、机电技术等各专业技术人才,集数十年研发、工程及生产经验,组建的一家专业从事煤基竖炉直接还原技术的开发、推广及应用的科技公司。该公司的技术及成套核心设施已经在中国、越南、缅甸等国的工程项目中得到了应用,取得了良好的社会及经济效益。 煤基竖炉直接还原技术 李森蓉李建涛 (武汉科思瑞迪科技有限公司) 摘要:本文对煤基竖炉直接还原技术从工艺流程、技术指标、技术特点等方面进行了较为详实的介绍和分析;该技术生产海绵铁的质量有保证,市场发展前景可期,市场竞争力强。 关键词:煤基竖炉直接还原铁技术特点产品质量 直接还原是指铁矿石或含铁氧化物在低于熔化温度下还原成金属产品的炼铁过程;其所得的产品称为直接还原铁,简称DRI(Direct Reduction Iron),也称海绵铁。优质DRI由于其成分稳定,有害元素含量低,粒度均匀,不仅可以补充废钢资源的不足,而且还可以作为电炉炼钢的原料以及转炉炼钢的冷却剂,对保证钢材的质量特别是合金钢的质量,起着不可替代的作用,是冶炼特钢的优质原料;同时,高品位DRI还可以供粉末冶金行业使用【1】。 直接还原铁生产方法中,主要分为气基法和煤基法。由于我国天然气资源缺乏,但是煤炭资源丰富,煤基直接还原技术成为我国直接还原铁生产的重要工艺方法【2】。煤基直接还原是指直接以廉价的非焦煤作还原剂生产直接还原铁的方法。 在我国煤基直接还原技术主要是回转窑法和隧道窑法【3】,近几年也相继建设了多座转底炉装置,同时也建设了一些煤基连续式竖炉装置。在直接还原技术日益发展、大力提倡环保节能减排的今天,一些新的更先进的直接还原工艺及设备被迫切需要【4,5】。 煤基竖炉直接还原技术是一项符合中国能源结构特点的可大型化生产高品质海绵铁的直接还原铁生产技术【6】,可广泛用于处理高品位铁精粉制取高纯度还原铁粉用于粉末冶金领域,也可用于处理普通品位的铁精粉制取炼钢用海绵铁,处理复合铁矿生产普通铁水及提取钒、钛、硼等高附加值资源。 1发展历程 自2006年至今,已经成功的在中国大陆和国外设计安装了5代炉型五条生产线: 1)一条1000吨/年中试生产线; 2)一条5万吨/年和两条10万吨/年生产线:

粉煤灰综合利用现状分析

龙源期刊网 https://www.360docs.net/doc/e33435929.html, 粉煤灰综合利用现状分析 作者:刘雪娥 来源:《中国房地产业·下旬》2018年第01期 【摘要】粉煤灰是火力发电行业的副产品,产生量巨大,加强粉煤灰综合利用意义重 大。随着国家相关政策出台,粉煤灰利用也有所突破。本文就粉煤灰综合利用的现状就行阐述,分析了粉煤灰利用还存在的问题,并提出应对措施。 【关键词】粉煤灰;建筑工程;氧化铝 我国是世界最大的煤炭生产和消费国,2015年生产原煤37.5亿t,消费煤炭39.65亿t。[1]我国的粉煤灰主要来自以煤为燃料的火电厂和城市集中供热锅炉,随着电力工业的发展,2015年全国粉煤灰产生量达到5.7亿t,按照全国平均综合利用率70%计算[2],仍有约1.7亿t粉煤灰未被利用,带来了严重的社会和环境问题。随着《粉煤灰综合利用管理办法》、《中华人民共和国固体废弃物污染环境防治法》等管理办法、法规等的出台以及各种优惠政策的实施,粉煤灰综合利用也取得许多进展,本文就粉煤灰综合利用现状进行阐述,分析粉煤灰利用还存在的问题,并提出解决措施。 1、粉煤灰综合利用现状 1.1粉煤灰在农业中的应用 粉煤灰掺入土壤中使用能降低土壤容重、改变孔隙率、改善土体结构和提高土层内表面的温度,从而促进农作物生长、提高产量[3]。粉煤灰的施用还会对土壤微生物活性和酶活性的 影响,能够对耕地、碱化土壤、沙化土壤、矿区土壤就行改良,缓解土地资源危机[4]。此 外,粉煤灰中含有农作物生长所需的钙、镁、锌、锰、硼等营养元素,可以提高种子发芽率,增加作物抗病能力,提高作物产量。[5]因此,粉煤灰可用于生产粉煤灰复合肥、粉煤灰磁化 肥等用于农业工程中。[5] 1.2粉煤灰在建筑工程中的应用 粉煤灰可作为填筑材料,在填筑工程中替代砂、土等传统填料,以降低成本;粉煤灰经过处理成为原状灰之后可用作拌制混凝土的原料,能够改善混凝土的强度、干燥时的收缩性、导热率;粉煤灰可替代粘土用于水泥生产,还可作为混合材与水泥熟料共同制成粉煤灰水泥,由于强度要求高、抗裂性、耐腐蚀性要求较 高的海事工程、水利工程等;粉煤灰还能用于砖块中,制成保温砌块、空心砌块、粉煤灰砖以及路面砖,广泛地应用在车行道、人行道、园林道路、广场、亭院、仿古建筑道路以及停车场等道路建设中。[6]粉煤灰经铝酸酯活化后可用于合成粉煤灰聚烯烃产品。[7]以粉煤灰,

粉煤灰的综合利用现状及对策分析

粉煤灰的综合利用现状及对策分析 徐凤宇 (贵州大学明德学院,贵州贵阳550004) 摘要:本文主要通过阐述粉煤灰对环境的危害,说明其利用的必要性;从粉煤灰的化学组成及物理结构特点入手,综述国内外对粉煤灰的综合利用现状;具体介绍了粉煤灰在建材制品、化学工业、农业以及环境保护等领域中的应用,针对利用中存在的问题,提出了一定的可行性方案;为粉煤灰的综合利用与全面推广奠定了一定的理论基础;最后对粉煤灰今后的发展方向及应用热点作了展望,旨在促进固体废弃资源的合理化利用与加快推进我国粉煤灰综合利用的产业化进程和资源的可持续发展战略。 关键词:粉煤灰;综合利用;发展方向 0 前言 资源的综合利用化程度是反映人类文明程度和科技发展水平的重要指标;粉煤灰堆存量逐渐增加,对生态环境造成了很大的威胁,因此需要根据其特性不断开展粉煤灰的综合利用,使其“化害为利、变废为宝”,从而实现可持续发展。 1 粉煤灰对环境的危害 电厂的粉煤灰对环境的影响主要表现在: ①贮灰需占据大量的土地或农田,浪费土地资源,污染土壤; ②扬尘污染空气。只要有四级以上的风力,即可将表层灰粒剥离扬弃,扬灰高度可达20~50 m ,悬浮于大气中的粉煤灰不仅影响能见度,而且在潮湿环境中会对建筑物、工程设施等表面造成腐蚀③湿法排灰会浪费水资源并造成地表水体的污染,粉煤灰进入水体,使水浊度大大增加,形成的沉积物会堵塞河床、使湖泊变浅,悬浮物和可溶物会恶化水质。④贮存在灰场的粉煤灰、飘浮于大气中的粉煤灰降落到地面都会污染土壤,造成土质碱化及其他影响,影响农作物、植物生长及养殖业、畜牧业生产;⑤粉煤灰中含有重金属元素、有毒物质、放射性物质等有害物质,污染环境并影响人体健康。 2 粉煤灰利用的必要性 目前,我国燃煤电厂及化工行业每年排放的粉煤灰工业废渣逐年增多,2000 年全国粉煤灰的年排放量累计达到1.16 亿吨,而且仍以每年800 万吨的排放量递增。预计2008年我国粉煤灰年产量将达到1.8亿吨,造成严重的“黑色污染”,所以粉煤灰高效的综合利用迫在眉睫。 3粉煤灰的基本性能 3.1粉煤灰的化学组成 粉煤灰由有机物和无机物组成,有机物的主要成分为碳、氢与氧;无机物的主要成分为高岭石、方解石和黄铁矿。无机物燃烧后经除尘器收集形成灰渣,其化学成分以氧化硅和氧化铝为主,其中Sio2、Al2o3、Fe2o3 3种成分占70%以上。Cao和Mgo的含量较小随原煤的组成和产出时代不同而变化,一般在0.2%~10%之间变动,各成分所占比例如(表1)所示。 表1粉煤灰的主要成分含量 成分Sio2 Al2o3 Fe2o3 K2o Cao Tio2 N So2 P2o5 含量(%)50.33 30.50 7.40 0.95 3.55 1.05 0.128 0.18 0.013 3.2粉煤灰的物理结构

粉煤灰综合利用方案

. 崇信电厂 粉煤灰综合利用报告 一、粉煤灰综合利用方案 为了更有效的拓宽粉煤灰开发和利用渠道,提高粉煤灰利用挡次,以进一步提高企业经济与社会效益。近几年来,各电站普遍对粉煤灰进行精加工。即选用以下 几种方式:分选、磨细、分选+磨细组合方式。 1、选用分选或磨细或两者组合方式的先决条件 a)应确保电除尘器或布袋收尘器及气力输灰系统运行可靠; b)应力求煤源包括掺烧煤源的稳定,掺烧煤种应力求掺均,特别是应重视灰中Cao和f—Cao含量的变化。 2、选用分选方案 分选即将电除尘器或布袋收尘器第一电场分离下来的粗灰下行筛选,将掺混在粗灰内的部分一、二级细灰分离出来进入细灰库,将分离后残留的粗灰进入粗灰库。再按质销售。所以在选用分选分案时应首先将原灰进行检测。若原灰中一、二级 细灰的含量低于20%,则选用分选方案意义不大,即效益太低。若接近40%, 则可选用。 选用分选方案的优点 a)系统简单; b)施工时间短,见效快。一般安装、调试仅需2—3月; c)分选技术日趋完善,分级机的运行可靠性提高; d)分选后粉煤灰外层玻璃体未遭破坏,其化学内能和表面自由能大,活性. . 较高,对混凝土强度的贡献较大。如三峡水电站掺用粉煤灰全部是经分选后的一 级灰.。

3、选用磨细方案 所谓磨细即将电除尘器或布袋收尘器第一电场分离下来的粗灰全部进球磨机进行碾磨,而磨细灰可全部达国家一级或二级灰标准。再进入细灰库。 选用磨细方案的优点 a)粗粉煤灰可100%全部利用。产量高,磨细灰质量也较稳定. b)当碾磨高钙灰时,能降低和改善士f—Cao的功能。 4、选用分选和磨细的组合方案 所谓分选和磨细的组合方式即上述两种方式的叠加。即对选用分选方案经分离后残留的粗灰再进至球磨机进行碾磨。其磨细灰与分选后细灰均进至细灰库内。该组合方式的优缺点更明显,即同时吸取分选和磨细方案的优点,当然,其投资、维护工作量、运行费用等环保问题的处理均明显增加。但其经济效益和社会效益可观。一般情部下,投资回收期也就一年左右。 5、如何正确选择上述粉煤灰精加工方案。 电站锅炉若已投产1—2台,燃用煤种稳定为低钙灰煤种,且在原灰中一、二级细灰的含量达30—40%左右,一般推荐选用分选方案, 电站锅炉若已投产3~4台或更多台数,燃用煤种稳定为低钙灰煤种。上述各锅炉已装置分选系统,考虑到粗灰能100%全部利用及改善周边环境状况,推荐选用磨细方案,可增装1台球磨机为碾磨全部粗灰的补充, 若该锅炉燃用高钙灰的煤种,又未选用分选系统,则为了降低和改善f—Cao含量,可考虑选用 磨. . 细方案。 不管选用分选或磨细或组合方案,投用后应抓紧做好性能和出力试验,完善粉煤灰计量装置,建立和完善粉煤灰质保体系,包括定期监测粉煤灰细度和各项指标等内容。尽快开拓粉煤灰在周边地区应用力度,建立销售网络,健全运作机制,可以说,粉煤灰应用的前景是相当好的。 二、我国粉煤灰的主要应用途径及评价 目前我国粉煤灰的综合利用技术有近200项,其中得到实施应用的近70项,主 要有以下几类: 1、建材制品方面的应用

达涅利ENERGIRON直接还原技术

世界金属导报/2010年/6月/22日/第014版 设备制造 达涅利ENERGIRON直接还原技术 1简介 本文根据CO2排放量分析,比较三种炼钢工艺对环境的影响: ?传统联合炼钢厂,高炉-氧气顶吹转炉(BF-BOF)。 ?现代联合炼钢厂,直接还原工艺(基于天然气)-电弧炉(DRP-EAF)。 ?现代联合炼钢厂,直接还原工艺(基于可气化煤)-电弧炉(DRP-EAF)。 达涅利和HYL开发的ENERGIRON气基直接还原技术是先进的铁矿石冶炼工艺,此项技术的目标是: ?通过减少温室气体排放降低对环境的影响。 ?根据主要能量来源,利用各种工业气体,如天然气或煤气化产生的合成煤气或焦炉煤气。 炼钢产业的特征就是大量使用化石燃料,而化石燃料排放导致全球变暖的温室气体(GHG),给环境造成极大的影响,这些气体主要是CO2。CO2的排放量和特点由炼钢厂使用主要燃料的特性所决定。 在传统联合炼钢高炉工艺中,用来还原氧化铁的主要能源是煤。在现代联合炼钢DRP直接还原工艺中,用来还原氧化铁的主要能源可以是天然气或煤或任何工业气体。 2联合炼钢厂的CO2排放 2.1传统联合炼钢厂的CO2排放 图1显示的是传统联合炼钢厂典型的能量平衡。 这个工厂设备包括:炼焦炉设备、烧结车间、生产铁水(HM)高炉、氧气顶吹转炉(BOF)、钢包炉/真空脱气设备、生产热轧带卷(HRC)的薄板坯连铸机和带钢热轧机。 能从传统联合炼钢厂中回收的主要气态燃料副产品包括:烧结车间气体(sPG)、炼焦炉设备气体(COG)、鼓风炉气体(BFG)和氧气顶吹转炉气体(BOFG)。 传统联合炼钢厂的能量平衡显示大多数气态燃料主要用于产生能量或燃烧发热。传统联合钢厂烟道气排放CO2每吨钢水约为2.104t。 2.2现代联合炼钢厂的CO2排放 图2显示的是现代联合炼钢厂典型的能量平衡,这些ENERGIRON直接还原炼钢厂的主要燃料是天然气。 这个工厂包括:球团车间、生产直接还原铁(DRI)的ENERGIRON直接还原炼钢车间(DRP)、电弧炉(EAF)、钢包炉/真空脱气设备、生产热轧带卷(HRC)的薄板坯连铸机和带钢热轧机。 现代联合炼钢厂中回收的主要气态燃烧副产品包括:球团车间气体(PPG)、直接还原炼钢车间气体(DRPG)、电弧炉气体(EAFG)和钢包炉&真空脱气设备产生气体(LF-VDG)。 现代联合炼钢厂的能量平衡显示大多数气态燃料主要用于产生能量或燃烧发热。基于DRP 天然气现代联合钢厂烟道气排放CO2每吨钢水约为0.812t。 ENERGIRON天然气基直接还原技术的碳平衡见图3。当使用天然气作为还原气体时,ENERGIRON DR工厂能耗为2.30 Gcal/tDRI。从图3可知,这种能量形式输入的碳总量约为140kg/tDRI,其中20Kg/tDRI~35Kg/tDRI将进入DRI,105Kg/tDRI~120kg/tDRI转换成了CO,。ENERGIRON技术能对挑选出的CO2气流进行收集和储存,采用这种方法,在所产生的CO2总量中,仅有约46%排向大气层。 2.3现代联合炼钢厂的CO。排放 图4显示的是现代联合炼钢厂典型的能量平衡,这些ENERGIRON直接还原炼钢厂主要使用

气基还原HYL-Ⅲ工艺介绍

HYL-Ⅲ流程是HojalatayLamiaS.A.(Hylsa)公司在墨西哥的蒙特利尔开发成功的。这一工艺的前身是该公司早期开发的间歇式固定床罐式法(HYL-I、HYL-Ⅱ)。1975年一座日产25t的中间试验装置投入运转。1980年,将一套1960年建成的固定床装置改造成能力为年产25万t的HYL-Ⅲ装置并投入生产。1983年,又将一套1974年投产的固定床改造成年产50万t的竖炉。用HYL-Ⅲ代替HYI-I、HYL-Ⅱ体现了由间歇运行到连续运行的讲步趋势。 还原气以水蒸气为裂化剂,以天然气为原料通过催化裂化反应制取。还原气转化炉以天然气和部分炉顶煤气为燃料。燃气余热在烟道换热器中回收,用以预热原料气和水蒸气。从转化炉排出的粗还原气首先通过一个热量回收装置,用于水蒸气的生产。然后通过一个还原气洗涤器清洗冷却,冷凝出过剩水蒸气,使氧化度降低。净还原气与一部分经过清洗。加压的炉顶煤气混合,通入一个以炉顶煤气为燃料的加热炉,预热至900~960°C。 从加热炉排出的高温还原气从竖炉的中间部位进入还原段。在与矿石的对流运动中,还原气完成对矿石的还原和预热,然后作为炉顶煤气从炉顶排出竖炉。炉顶煤气首先经过清洗,将还原过程产生的水蒸气冷凝脱除,提高还原势。并除去灰尘,以便加压。清洗后的炉顶煤气分为两路。一路作为燃料气供应还原气加热炉和转化炉。另一路加压后与净还原气混合,预热后作为还原气使用。 可使用球团矿和天然块矿为原料。加料和卸料都有密封装置。料速通过卸料装置中的蜂窝轮排料机进行控制。在还原段完成还原过程的海绵铁继续下降进入冷却段。冷却段的工作原理与MIDREX类似。可将冷还原气或天然气等作为冷却气补充进循环系统。海绵铁在冷却段中温度降低到50℃左右,然后排出竖炉。 HYI-Ⅲ的气耗约为10~11.3GJ·t-1。,电耗90kw·h·t。海绵铁金属化率约为91%。与MIDREX流程相比HYL-Ⅲ具有下列特点: (1)采用高压操作。炉内最高压力达600kPa。 (2)以水蒸气为裂化剂,不存在裂化剂引起催化剂硫中毒的问题。因此对矿石含硫没有特殊限制。 (3)竖炉运转失常时不影响还原气转化炉的工作。 (4)在对设备不做大改动的前提下可改换转化炉工作方式。

粉煤灰综合利用项目

粉煤灰综合利用项目(详细内容点击查看如下): 一、粉煤灰分选二、粉煤灰磨细三、分选+磨细四、粉煤灰电选脱碳五、粉煤灰知识参考大全 粉煤灰加工处理方式的选择?(分选方案、磨细方案、分选+磨细组合方案) 为了更有效拓宽粉煤灰开发和利用渠道,提高粉煤灰利用挡次,以进一步提高企业经济与社会效益。近几年来,各电站普遍对粉煤灰进行精加工。即选用1、分选2、磨细3、分选+磨细组合方式。 一、选用分选或磨细或两者组合方式的先决条件. 1、应确保电除尘器或布袋收尘器及气力输灰系统运行可靠. 2、应力求煤源包括掺烧煤源的稳定,掺烧煤种应力求掺均,特别是应重视灰中Cao和f—Cao含量的变化。 二、选用分选方案 分选即将电除尘器或布袋收尘器第一电场分离下来的粗灰下行筛选,将掺混在粗灰内的部分一、二级细灰分离出来进入细灰库,将分离后残留的粗灰进入粗灰库。再按质销售。所以在选用分选分案时应首先将原灰进行检测。若原灰中一、二级细灰的含量低于20%,则选用分选方案意义不大,即效益太低。若接近40%,则可选用。 选用分选方案的优点 (1)系统简单 (2)施工时间短,见效快。一般安装、调试仅需2—3月。 (3)分选技术日趋完善,分级机的运行可靠性提高. (4)分选后粉煤灰外层玻璃体未遭破坏,其化学内能和表面自由能大,活性较高,对混凝土强度的贡献较大。如三峡水电站掺用粉煤灰全部是经分选后的一级灰. 三、选用磨细方案 所谓磨细即将电除尘器或布袋收尘器第一电场分离下来的粗灰全部进球磨机进行碾磨,而磨细灰可全部达国家一级或二级灰标准。再进入细灰库。 1、选用磨细方案的优点 (1)粗粉煤灰可100%全部利用。产量高,磨细灰质量也较稳定. (2) 当碾磨高钙灰时,能降低和改善士f—Cao的功能。 四、选用分选和磨细的组合方案 所谓分选和磨细的组合方式即上述两种方式的叠加。即对选用分选方案经分离后残留的粗灰再进至球磨机进行碾磨。其磨细灰与分选后细灰均进至细灰库内。 该组合方式的优缺点更明显,即同时吸取分选和磨细方案的优点,当然,其投资、维护工作量、运行费用等环保问题的处理均明显增加。但其经济效益和社会效益可观。一般情部下,投资回收期也就一年左右。 五、如何正确选择上述粉煤灰精加工方案。 1、电站锅炉若已投产1—2台,燃用煤种稳定为低钙灰煤种,且在原灰中 一、二级 细灰的含量达30—40%左右,一般推荐选用分选方案. 2、电站锅炉若已投产3~4台或更多台数,燃用煤种稳定为低钙灰煤种。上述各锅炉已装置分选系统,考虑到粗灰能100%全部利用及改善周边环境状况,推荐选用磨细方案,可增装1台球磨机为碾磨全部粗灰的补充。 若该锅炉燃用高钙灰的煤种,又未选用分选系统,则为了降低和改善f—

粉煤灰综合利用方案

崇信电厂 粉煤灰综合利用报告 一、粉煤灰综合利用案 为了更有效的拓宽粉煤灰开发和利用渠道,提高粉煤灰利用挡次,以进一步提高企业经济与社会效益。近几年来,各电站普遍对粉煤灰进行精加工。即选用以下几种式:分选、磨细、分选+磨细组合式。 1、选用分选或磨细或两者组合式的先决条件 a)应确保电除尘器或布袋收尘器及气力输灰系统运行可靠; b)应力求煤源包括掺烧煤源的稳定,掺烧煤种应力求掺均,特别是应重视 灰中Cao和f—Cao含量的变化。 2、选用分选案 分选即将电除尘器或布袋收尘器第一电场分离下来的粗灰下行筛选,将掺混在粗灰的部分一、二级细灰分离出来进入细灰库,将分离后残留的粗灰进入粗灰库。再按质销售。所以在选用分选分案时应首先将原灰进行检测。若原灰中一、二级细灰的含量低于20%,则选用分选案意义不大,即效益太低。若接近40%,则可选用。 选用分选案的优点 a)系统简单; b)施工时间短,见效快。一般安装、调试仅需2—3月; c)分选技术日趋完善,分级机的运行可靠性提高; d)分选后粉煤灰外层玻璃体未遭破坏,其化学能和表面自由能大,活性较

高,对混凝土强度的贡献较大。如三峡水电站掺用粉煤灰全部是经分选 后的一级灰.。 3、选用磨细案 所谓磨细即将电除尘器或布袋收尘器第一电场分离下来的粗灰全部进球磨机进行碾磨,而磨细灰可全部达一级或二级灰标准。再进入细灰库。 选用磨细案的优点 a)粗粉煤灰可100%全部利用。产量高,磨细灰质量也较稳定. b)当碾磨高钙灰时,能降低和改善士f—Cao的功能。 4、选用分选和磨细的组合案 所谓分选和磨细的组合式即上述两种式的叠加。即对选用分选案经分离后残留的粗灰再进至球磨机进行碾磨。其磨细灰与分选后细灰均进至细灰库。 该组合式的优缺点更明显,即同时吸取分选和磨细案的优点,当然,其投资、维护工作量、运行费用等环保问题的处理均明显增加。但其经济效益和社会效益可观。一般情部下,投资回收期也就一年左右。 5、如正确选择上述粉煤灰精加工案。 电站锅炉若已投产1—2台,燃用煤种稳定为低钙灰煤种,且在原灰中一、二级细灰的含量达30—40%左右,一般推荐选用分选案, 电站锅炉若已投产3~4台或更多台数,燃用煤种稳定为低钙灰煤种。上述各锅炉已装置分选系统,考虑到粗灰能100%全部利用及改善边环境状况,推荐选用磨细案,可增装1台球磨机为碾磨全部粗灰的补充, 若该锅炉燃用高钙灰的煤种,又未选用分选系统,则为了降低和改善f—Cao含量,可考虑选用磨细案。 不管选用分选或磨细或组合案,投用后应抓紧做好性能和出力试验,完善粉

粉煤灰综合利用现状

二、粉煤灰综合利用现状 粉煤灰是火力发电厂燃煤粉锅炉排除的一种工业废渣。早在1914年,美国Anon发表了《煤灰火山特性的研究》,首先发现粉煤灰中氧化物具有火山灰特性。国外对粉煤灰的研究,可追溯到1920年后的电厂大型锅炉改造,也就从此开始有人研究粉煤灰的综合利用。而粉煤灰在混凝土中应用比较系统的研究工作是由美国伯克利加州理工学院的R.E.维斯在1933年后进行的,后来其应用不断扩展到各个利用领域。但粉煤灰问题真正引起人们重视是在二战结束之后,尤其是冷战时期爆发的石油危机之后,许多国家发电厂的燃料结构都发生变化,都加快转向以煤炭为主要燃料的进程。随之而来的是大量灰渣的排放,这更一步促进人们重视粉煤灰资源的综合利用。于是在一些工业发达国家里,粉煤灰的综合利用逐渐形成了一个新兴产业。 目前,国内外粉煤灰综合利用途径归纳起来主要有以下7种: 1 .粉煤灰加气混凝土。粉煤灰加气混凝土是新型、轻质保温节能的墙体材料。主要原料为粉煤灰,占70 %左右,其它为石灰、水泥、石膏、发气剂等,将这些原料经过加工配料、搅拌、浇注、发气稠化、切割、蒸压养护等工序制成。可用作屋面保温、维护墙、隔断墙,亦可做最高楼层为五层的承重墙,特别适用于高层建筑填充墙、寒冷地区的外墙和地震区使用,可减轻墙重,增加使用面积[3-5] 2.粉煤灰混凝土空心砌块。近年来,粉煤灰混凝土空心砌块发展较快,其主要原料为粉煤灰、集料、水泥等,原料经计量配料、搅

拌、成型、养护等工序制成。在普通混凝土砌块和轻集料混凝土砌块中,也可掺入粉煤灰,但作为掺合料加入。而在粉煤灰混凝土砌块中,粉煤灰既是掺合料又是细集料,掺量较高[6-7] 。 3.水泥粉煤灰膨胀珍珠岩混凝土保温砌块。其工艺流程基本上与粉煤灰混凝土空心砌块相似。珍珠岩砌块具有重量轻、保温性能好,且有一定的强度等特点,影响密度与强度的因素有:珍珠岩的掺量,粉煤灰与水泥的比例以及工艺流程的控制。还可加入适量的外加剂,以提高砌块强度。 4.粉煤灰混凝土路面砖。粉煤灰混凝土路面砖以水泥和粉煤灰为混合胶结料再配以粗骨料等,原料经计量搅拌、成型、养护制成,变更成型的模具可制成方砖、连锁路面砖、仿古砖,绿化种草砖、路沿块及其它形状的路面砖等。成型采用分层面料,即粉煤灰混凝土料和彩色料,还可制成各种彩色的路面砖。粉煤灰混凝土路面砖不但具有普通混凝土路面砖的优点和用途,而且重量轻、导热系数小,长期性能更好。用于车行道、人行道、园林道路、广场、亭院、仿古建筑道路、停车场、护坡和绿化等[9-10] 。 5.粉煤灰砖。以粉煤灰、石灰为主要原料,掺加适量石膏和骨料,经坯料制备,压制成型,高压或常压蒸汽养护而成的粉煤灰砖。以粉煤灰为主,采用水泥为主要胶结料,经坯料制备、压制成型,常压蒸注养护或自然养护而制成的粉煤灰砖。利用85 % -90 %的粉煤灰与部分添加剂为主要原料,经搅拌半硬塑挤出或半干压法成型砖坯,经燃烧而成的无粘土烧结粉煤灰砖。这种砖打破了

国内粉煤灰综合利用现状综述

国内粉煤灰综合利用现状综述 发表时间:2016-03-23T15:43:44.320Z 来源:《基层建设》2015年27期供稿作者:肖茁良祝鹏烽陈露辉叶恒达 [导读] 南华大学城市建设学院本文从环境保护、可持续发展和经济建设等角度,简述了目前国内外粉煤灰的利用现状。 南华大学城市建设学院湖南衡阳 421001 摘要:本文从环境保护、可持续发展和经济建设等角度,简述了目前国内外粉煤灰的利用现状,并指出了,目前在我国粉煤灰开发过程中主要面临市场、技术、区域不平衡这三大难题。 关键词:粉煤灰;综合利用;综述;问题 引言 我国的煤炭资源十分丰富,以煤炭为电力生产基本燃料。我国的能源工业稳步发展,发电能力年增长率为7.3%,电力工业的迅速发展,带来了粉煤灰排放量的急剧增加,燃煤热电厂每年所排放的粉煤灰总量逐年增加,预计到2015年将达到6.2亿吨,居世界首位。粉煤灰的大量排放给我国的国民经济建设及生态环境造成巨大的压力。另一方面,我国又是一个人均占有资源储量有限的国家,粉煤灰的综合利用,变废为宝、变害为利,已成为我国经济建设中一项重要的技术经济政策,是解决我国电力生产环境污染,资源缺乏之间矛盾的重要手段,也是电力生产所面临解决的任务之一。经过开发,粉煤灰在建材、回填、筑路、农业等各领域得到广泛的应用。 1 国内粉煤灰综合利用现状 目前,我国粉煤灰综合利用工作长期以来一直受到国家的重视。早在20世纪50年代就已经开始在建筑工程中作混凝土、砂浆的掺和料;在建筑工业中用来生产砖;在道路工程中作路面基层材料等;尤其在水电建设大坝工程中使用最多。20世纪60年代开始,粉煤灰利用重点转向墙体材料,研制生产粉煤灰密实砌块、墙板、粉煤灰烧结陶粒和粉煤灰粘土烧结砖等;20世纪70年代,国家为建材工业利用粉煤灰投资不少,而利用问题并没有得到解决;到20世纪80年代,国家把资源综合利用作为经济建设的一项重大经济技术政策,使粉煤灰综合利用得到了蓬勃的发展;1990年粉煤灰排放量为6.7×107t,利用率为28.3%;1995年排放量为9.9×107t利用率已达42%;2000年排放量为12×107t,利用率为58%;2005年排放量为30×107t,利用率为66%;2010年排放量高达48×107t,利用率为69%。由此可知,粉煤灰的排放量、利用率呈同步增长,尤其上海近几年来粉煤灰利用率100%,居全国之首。 2.1用于生产建筑材料 2.1.1粉煤灰水泥 目前国内主要生产粉煤灰硅酸盐水泥和粉煤灰无熟料水泥两种类型。根据粉煤灰的掺量又分两种不同情况:(1)生产普通硅酸盐水泥和矿渣硅酸盐水泥,粉煤灰掺量≤15%;生产粉煤灰水泥:用粉煤灰做混合材,掺量大小为20%-40%[1]。 2.1.2粉煤灰砖 我国从1965年开始生产粉煤灰烧结砖,其产量高于蒸制砖。粉煤灰空心砌块具有吃灰量大、质量轻、强度高、能耗低的特点。它的性能与普通砖相比,强度相同,而质量约轻20%;导热系数小;能改善物理性质,砖还不易风裂,易于干燥,可减少晾坯时间和场地;其防渗性能、隔热保温性能、施工性能(韧性好便于开槽打洞)均优于黏土砖,具有显著的环境效益[2]。 2.1.3粉煤灰混凝土 粉煤灰混凝土是指以一定量粉煤灰取代部分水泥配制而成的混凝土。粉煤灰是一种火山灰质材料,本身并无胶凝性能,在常温下有水存在时,粉煤灰可以在混凝土中进行二次反应,生成难溶于水的水化硅酸钙凝胶,这样不仅降低了溶出的可能,也填充了混凝土内部的孔隙,对混凝土强度和抗渗性都有提高作用。由此可知,粉煤灰是一种理想的混凝土掺合料,我国对粉煤灰混凝土的研究开发已经过半个世纪的历程。 2.1.4粉煤灰陶粒 它是以粉煤灰为原料,加入胶结料和水,经成球、烧结而成的人造轻骨料,用灰量大、质轻、保温、隔热、抗冲击,用其配制的轻混凝土容重大,抗压强度高,适用于高层建筑或大跨度构件,可减轻质量,提高保温性[3]。 2.1.5水泥粉煤灰膨胀珍珠岩混凝土保温砌块 以水泥作胶结料,粉煤灰既作胶结料又作细集料,膨胀珍珠岩作轻集料经过按配合比计量并预混合均匀,加水搅拌、成型、脱模、养护至规定龄期的过程即得水泥粉煤灰膨胀珍珠岩混凝土保温砌块。其性能要求:材料密度770kg/m3;材料导热系数0.176W/(m·K);抗压强度2.05MPa;空心率42%;吸水率32.3%。具有质量轻、保温性能好的特点。影响密度与强度的因素有:珍珠岩掺量、粉煤灰与水泥比例以及过程控制。为了提高砌块强度,还可加入适量的外加剂[3]。 2.1.6粉煤灰砂浆 粉煤灰、水泥、砂掺入少量外加剂可以配制砌筑、抹灰、粘面砂浆。由于砂浆在建筑工程中用量很大,为保证利用质量,必须按照《粉煤灰在混凝土和砂浆中应用技术规程》(JGJ 28—1986)和《粉煤灰混凝土应用技术规程》(DG/TJ 08—230—2006)等相关规定来实施[4]。 2.1.7在建筑材料其他方面的应用 粉煤灰矿物棉容重轻、导热系数低、吸音效果好,是一种优质保温节能材料;作为石膏制品的填充剂,不仅掺量可达35%,还可作促凝剂,提高石膏制品的防水性;在GRC轻质隔板的基础上,配料时加入部分粉煤灰可用来生产轻质隔墙板;利用粉煤灰做沥青填充料生产防水油毡,可使成本大大降低;利用粉煤灰和废旧泡沫塑料可以用来生产具有防水隔热功能的绿色建筑材料。此外,还可以利用制备纤维化灰绒、陶砂滤料等[3]。 2.2用于回填工程 用粉煤灰代土或其他材料在建筑物的地基、桥台、挡土墙做回填,由于其容重轻,可在较差的低层上应用,减少基土上的荷载,降低沉降量。同时粉煤灰最佳压实含水率较高,对含水率变化不敏感,抗剪强度比一般天然材料高,便于潮湿天气施工,可缩短工期,降低造

粉煤灰高附加值综合利用

粉煤灰高附加值综合利用 1991年春,在北京召开的全国粉煤灰综合利用会议上,时国家计委负责人曾提出:粉煤灰利用要向冶金、有色、……等方面开拓,如从粉煤灰中提出氧化铝,利用粉煤灰炼制炼钢脱氧剂等。2004年9月,国家发改委在《关于组织实施资源综合利用关键技术国家重大产业技术开发专项的通知》中,明确提出利用粉煤灰生产高附加值铝硅系列合金。 粉煤灰、煤渣、煤矸石含有大量SiO2及Al2O3,还含有Fe2O3、TiO2、CaO、MgO、及碱金属氧化物。利用粉煤灰、煤渣、煤矸石炼制铝硅铁合金,已有先例。前苏联利用页岩渣和页岩焦灰渣,炼得含铝33.36%,硅42-46%,铁14-18%,钙1.2-3%,钛1.2-2%的合金,利用电厂排放的粉煤灰生产类似上述合金亦当毫无问题。可用作炼钢脱氧剂,炼镁还原剂。登电集团从乌克兰引进技术兴建的电热法炼制铝硅中间合金炉业已投产有时,运行良好。其工艺技术可以借鉴。 电厂喷吹煤粉中所含有的铝硅酸盐类矿物,经1250℃以上高温煅烧,以粉煤灰形态排出时,业已莫来石化,有着很好的化学活性和很强的反应能力,只是粘结性稍差,可采用相应工艺加以解决,以使球团强度尤其是耐热强度,能满足冶炼工艺要求,减少炉渣,粉尘产生,提高金属收率,降低能耗。

运用高梯度磁分选,可把灰中Fe2O3除去绝大部份。从事粉煤灰综合利用的黄明教授,运用高梯度磁分选,把灰中Fe2O3清除到0.6%以下,剩余的Fe2O3还原后可再在合金出炉时予以清除。 使用普通粉煤灰炼制铝硅合金时可能产出合金成份大致如下:Si:57%,Al:38%,Fe:1.2%,Ti:2%,其它:0.8%。 如炉渣与粉尘比>1.5,炉渣回炉,炼制1吨如上述相同的合金,约需粉煤灰2650公斤,还原剂碳1200公斤。实际生产中,同以高岭土为原料一样,当炉况正常,配料合理,球团质量合格,炉温稳定保持在2000-2200℃之间时,合金组份中铝的回收率可达88%,硅的回收率可达80%以上,倘炉况不稳,还原反应工艺紊乱,会使回收率降低。炉温过高或过低,炉料制备粗放,球团质量差尤其是耐热强度不够,会造成大量金属挥发,产生大量烟尘、炉渣、导致物料、电能过量消耗。因而,应保持炉况正常,严格控制炉温,及时排出还原金属和炉渣,以减少金属挥发损失,防止涨炉底。这就要求反应区能量密度足够大,足以保证能连续出炉,要求三相三电极矿热炉的有功功率只小在1.3MW以上,交流单相单电极矿热炉的有功功率只小在1.0MW以上。 炼制硅铁时,铁能破坏SiC生成硅铁,温度在1600℃以上。炼硅时,SiC与SiO2反应生成硅的温度为1812℃。而炼制铝硅合金温度必须严格控制在2000-2200℃之间,对工艺和炉子的功能要求很高。冶炼过程铝硅酸盐(高岭土、兰晶石、硅线石、红柱

粉煤灰综合利用技术发展现状

粉煤灰综合利用技术发展现状 发表时间:2019-09-12T09:34:25.453Z 来源:《基层建设》2019年第17期作者:吴伟丰 [导读] 摘要:针对粉煤灰的综合利用这一方面,归纳与总结了当前国内对粉煤灰综合利用技术发展的水平,指出了国内技术与发达国家在本技术领域的差距与原因,以及未来发展粉煤灰资源化应用技术的方向。 广州大学土木工程学院广州广州 510006 摘要:针对粉煤灰的综合利用这一方面,归纳与总结了当前国内对粉煤灰综合利用技术发展的水平,指出了国内技术与发达国家在本技术领域的差距与原因,以及未来发展粉煤灰资源化应用技术的方向。 关键词:粉煤灰;资源化;高附加值;综合利用 我国有丰富的煤炭资源,当前电力工业的发展,仍然是以燃煤的火力发电为主。随着火电厂规模的不断扩大,粉煤灰排放量急剧增长。据统计,2014年粉煤灰排放量已高达5.78亿吨,已成为现今国内最大宗工业固废。 如何做好粉煤灰的综合利用,已成为目前电力行业乃至全国面对的一大迫切问题。自从发现粉煤灰具有火山灰效应以来,粉煤灰在建筑材料中已经得到广泛应用,而且在污水治理、农业、金属回收及其它功能材料方面也有了一定的应用。但是与世界发达国家相比,我国目前粉煤灰资源化综合利用水平偏低,利用率较低且主要集中在建筑材料等低附加值方面。 1. 国内技术发展现状 随着技术的发展和进步,我国每年的粉煤灰综合利用率都在稳步提高。我国“八五”期间的粉煤灰综合利用率为35.8%,到2014年已经提高到了70.07%,粉煤灰利用率一直在持续提高。 目前我国粉煤灰的综合利用技术有近200项,其中得到实施应用的近70项,主要有以下几类[1,3,5,6,8]: (1)建材制品方面的应用。此类用灰量约占粉煤灰利用总量的35%左右,主要制品有:粉煤灰水泥(掺量30%以上),代粘土做水泥原料, 普通水泥(掺量30%以下),硅酸盐承重砌块和小型空心砌块,加气混凝土砌块及板,烧结陶粒,烧结砖,蒸压砖,蒸养砖,高强度双免浸泡砖,双免砖,钙硅板等。 (2)建设工程方面。此类用灰量约占总用灰量的10%,主要有:粉煤灰用于大体积混凝土, 泵送混凝土,高低标号混凝土,灌浆材料等。 (3)用于道路工程。这部分用灰量占总用灰量的20%,主要有:粉煤灰、石灰石砂稳定路面基层, 粉煤灰沥青混凝土,粉煤灰用于护坡、护堤工程和刚粉煤灰修筑水库大坝等。 (4)农业应用[4]。这部分用灰量占总用灰量的15%,主要用于:改良土壤,制作磁化肥,微生物复合肥,农药等。 (5)从粉煤灰中提取矿物和高附加值利用[8]。这部分用灰量约占总利用量的5%,如:从粉煤灰中提取微珠、碳、铁、铝、洗煤重介质,冶炼三元合金,制造高强轻质耐火砖,作为塑料、橡胶等的填充料,制作保温材料和涂料等。 2. 国外技术发展水平 国外粉煤灰的综合利用最早可追溯到20世纪20年代,当时一些发达国家开始对粉煤灰进行研究。国外粉煤灰的资源化利用备受重视,综合利用率很高,如荷兰达到100%,意大利达到92%,丹麦90%,比利时73%等,粉煤灰已广泛应用于建材、建工、交通、农业、化工和冶金等行业。粉煤灰利用率最高、技术经济效果最好的利用方式主要体现在建材工业和建筑工程领域。针对粉煤灰的某些特定组分,发达国家最早从精细化工利用方面,提取粉煤灰中的特性组分开展研究,并取得了比较满意的成果[1,2,3,4,6]。 国外粉煤灰利用新途径和新工艺有以下几种: (1)粉煤灰处理矿山酸性废水 粉煤灰处理污水机理复杂,一般认为是吸附、凝聚、助凝和沉淀综合作用的结果。Penney等利用粉煤灰处理矿山酸性废水,使废水中重金属含量减少并提高了废水pH值;GSteenbruggen,GGHollman利用粉煤灰合成沸石,通过沸石化过程,阳离子交换容量从0.02meq?g-1增加到2.4meq?g-1。吸附实验表明,沸石化粉煤灰吸附重金属离子的能力大小为:Cu>Cd-Zn>Ni。在南非,Gitari等对粉煤灰处理矿山酸性废水效果进行了测试,并提出了处理废水中硼、镁、锶、钼和巴等溶解物的新工艺。 (2)烟气脱硫处理[4] 1988年美国EPA和美国Acuetx公司开发出AD-V ACH几工艺,用脱硫灰和Ca(OH)2混合制备高活性吸收剂,喷入尾部烟道。相对于原来50%的脱硫率,再循环率为2时,可获得80%的附加脱硫率。用研磨的粉煤灰制备的吸收剂,在△T为11℃,Ca /S小于或等于1.2时,更可获得90%的脱硫率,钙利用率在70%-80%之间。 (3)粉煤灰综合利用新工艺 ①波兰Groszowice水泥厂用碱溶法可从含30% Al2O3的粉煤灰中提取氧化铝,其工艺流程为:粉煤灰、纯碱和石灰石在高温下熔融冷却,用水浸泡熔块,浸出液经脱硅处理后,用烟气中CO2进行碳酸化,析出Al(OH)3沉淀,煅烧即得到Al2O3,熔块浸渣可作为生产硅酸盐水泥的原料。 ②在一些粉煤灰综合利用的传统途径上,国外学者经过不断探索,也提出一些综合利用新工艺,如现有粉煤灰砖烧结温度在925-1050℃,存在抗冲击强度低等缺点,印度学者Chandra等将叶蜡石、六偏磷酸钠、纯碱等混合制成烧结活化剂,可明显降低粉煤灰砖烧结温度,并提高砖的抗冲击强度40%以上。 ③粉煤灰在制备新型材料方面也具备一定用途。美国学者LuZhe等研究将精细煤粒燃烧后产生的粉煤灰用于制备聚合物复合材料。在韩国,KimChul-Hwan等研究将粉煤灰作为一种新的造纸原料,并通过电子显微镜分析粉煤灰提高纸张抗拉强度和内部粘结强度的原理。 3. 国内市场需求状况 近年来,随着资源需求量的增加,粉煤灰产量呈逐年上升趋势。中国1995年粉煤灰排放量约1.25亿吨,2000年粉煤灰排放量约1.5亿吨,2009年粉煤灰排放量约3.75亿吨,根据灰色预测模型估计到2020年中国粉煤灰排放量将达到9亿吨。如果不对粉煤灰加以处理,一旦排放到环境中,将会对水、空气、土壤造成不同程度的污染和破坏,同时对生物体也产生极大危害。随着人们对环境保护的迫切需要,粉煤灰综合利用成为了一个新兴的产业。 电力行业石粉煤灰的产生大户,从2002年起,我国火电装机容量呈现出爆炸式增长,粉煤灰产生量也急剧增加。从2001年的1.54亿吨增加到了2013年的5.8亿吨,增加了3.1倍。2014年粉煤灰产生量约5.78亿吨,较2013年的5.80亿吨略有降低。这主要是由于燃煤发电量减少导

相关文档
最新文档