微生物燃料电池的意义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微生物燃料电池的意义

降低系统的基础和运行费用,研发适合废水处理工艺特点的MFC结构型式,为进一步的研究提供切实可行的依据与支撑,促进该项技术早日应用于有机废水处理的工程实践,需要在现有研究水平的基础上充分把握MFC研究中多学科交叉的特点,开展MFC的电化学特性和有机物降解特性的基础研究;弄清阳极特性对MFC性能的影响及阴极电子受体在MFC功率密度提高中起到的重要作用;在兼顾发电和同步废水处理的双重目标基础上,开发和设计更加适用于有机废水处理的MFC反应器构型式,为MFC反应器设计与运行的优化提供切实可行的理论依据,具有重要的科学意义和参考价值。

微生物燃料电池阳极修饰的研究进展(山东轻工业学院食品与生物工程学院,宋娟,小论文)

微生物燃料电池(Microbial fuel cell,MFC)是利用微生物作为反应主体,将燃料(有机物质)的化学能直接转化为电能的一种装置,能在处理废水的同时产生电能,且不排放污染物,作为一类理想的新型清洁能源已成为科学家的研究热点。

微生物燃料电池阳极特性对产电性能的影响(清华,黄霞,小论文)

微生物燃料电池(Microbial Fuel Cel,l简称MFC)技术是近年迅速发展起来的一种融合了污水处理和生物产电的新技术,它能够在处理污水的同时收获电能,因此受到广泛的关注。

目前微生物燃料电池的产电能力还很低,离实际应用尚有较大的距离,因此,如何提高MFC的产电性能是该领域的研究热点。

微生物燃料电池阳极产电微生物和阴极受体特性及研究进展(中国科学院,付洁,小论文)为了解决不可再生能源(如煤,石油等)日益短缺造成的能源危机和减小温室气体大量排放给环境带来的巨大污染,寻找绿色环保型替代能源已成为各国研究者关注的热点。微生物燃料电池以其独特的优势在近些年引起了学者的广泛关注。微生物燃料电池(MierobialFueleell,MFe)是一种通过微生物的代谢作用将蕴藏在有机物中的化学能转化成电能的装置。与其他燃料电池相比,它具有以下优点:①燃料来源广泛,生活污水、发酵废糟等都可以作为燃料;②反应条件温和,一般可在室温下进行川;③清洁、环保,不会引起环境污染。

填料型微生物燃料电池产电特性的研究(清华,

梁鹏,小论文)

微生物燃料电池(microbial fuel cell, MFC)在净化污水的同时收获电能,有可能降低污水处理的成本,因而近年来受到了广泛关注.然而,目前MFC 输出功率很低,以空气阴极MFC为例,国外文献中报道的最大输出功率密度为1 500 mW/m2,远低于氢氧燃料电池的功率密度,因而当务之急是提高MFC的产电能力。

碳纳米管阳极微生物燃料电池产电特性的研究(同上)

由于微生物燃料电池(microbial fuel cell, MFC)能够在净化污水的同时,将有机物中的化学能转化为电能,为节能低耗型污水处理新工艺的研究提供了一个新的思路,因此近年受到广泛关注.但现有的MFC产电能力较低,这使MFC的实际应用受到限制.因此,提高MFC的产电能力是目前研究的主要目标之一.从MFC的构成来看,阳极作为产电微生物附着的载体,不仅影响产电微生物的附着量,同时还影响电子从微生物向阳极的传递,对提高MFC产电性能有至关重要的影响.因此,从提高MFC的产电能力出发,选择具有潜力的阳极材料开展研究,解析阳极材质和表面特性对微生物

产电特性的影响,对提高MFC的产电能力具有十分重要的意义.

基于升流式厌氧污泥床反应器的微生物燃料电池的研究(苏州大学,王万全,小论文)

微生物燃料电池(MFCs)是利用微生物的催化作用直接将燃料的化学能转换为电能的装置。生活污水和工业废水中含有大量的有机物可作为其燃料而获得电能,同时有机物得到降解。因此,MFCs 的研究与开发已成为当前污染治理、开发新型能源的研究热点。

微生物燃料电池及其应用研究进展(中国石油大学,詹亚力,小论文)

三个利用方向

利用MFC输出电能的特点进行新型能源的开发, 利用MFC电流与水中有机物之间的定量关系进行新型污水水质检测方法的研究,

利用MFC的特殊环境对特殊性能的微生物进行驯化。

开发前景

替代能源;传感器;污水处理新工艺;利用微生物燃料电池的特殊环境进行未培养菌的富集;

替代能源——生物质制氢被认为是未来氢燃料电

池的原料来源,而MFC与生物质制氢的共同特点是均以生物质作为原料,但在生物质制氢过程中,葡萄糖等生物质中还有相当部分的氢未被利用,而且氢气还只是从生物质获取能源的中间产品,而MFC则可以直接将葡萄糖中的氢全部消耗并转化成H2O,生物质转化成能源的效率较高。正是由于MFC能够直接将生物质转化成电能,因此Wilkinson展望了用食物直接喂养机器人的可能性。

传感器开发——BOD5被广泛用于评价污水中可生化降解的有机物含量,但由于传统的BOD测定方法需要5天的时间,因此,出现了大量关于BOD 传感器的研究,其中以MFC工作原理为基础的BOD传感器的研究也是研究人员关注的焦点。利用MFC工作原理开发新型BOD传感器的关键在于:①电池产生的电流或电荷与污染物的浓度之间呈良好的线性关系;②电池电流对污水浓度的响应速度较快;③有较好的重复性。

考虑到实际污水中存在硝酸盐和硫酸盐等具有高氧化还原电势的电子受体,它们会降低MFC的电流响应信号,Chang等尝试在阳极池中加入叠氮化物和氰化物等呼吸抑制剂,达到了消除硝酸盐

和硫酸盐影响的效果,结果显示,通过加入呼吸抑制剂,使MFC型BOD传感器可用于准确测量含氧和含硝酸盐的贫营养地表水中的BOD含量。此外,MFC作为贫营养水体(如地表水、污水处理厂排出液等)的传感器电池的主要障碍在于O2通过阴极和质子交换膜的扩散速率大,在阴极的还原速率低,因此导致电池输出电流的输出信号很小。Kang等有针对性地对MFC的阴极进行了改进,明显提高了MFC电流输出的重复性和信噪比。污水处理——目前,以有机污水为燃料、回收利用污水中有机质的化学能一直是MFC研究中的主要目的,但在研究中,对于MFC处理后污水水质的监测结果使研究人员对以MFC工作原理为基础,开发新的污水处理工艺产生了浓厚兴趣。

微生物燃料电池构造研究进展(广东工业大学环境科学与工程学院,李登兰,小论文)

资源短缺、能源危机使得生物产能的研究日益受到重视.生物产电、微生物燃料电池(Microbial fuel cel,l MFC)近20多年的研究吸引了多学科的参与,为学科间的交叉发展提供了广阔的空间.由于MFC是把微生物呼吸产能直接转换为电能,与现有的其它利用有机物产能的技术如产氢、产乙醇、

相关文档
最新文档