第十章 细胞骨架与细胞运动

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
来自百度文库第十章细胞骨架与细胞运动
第十章细胞骨架与细胞运动1.3种细胞骨架之间有什么联系?答:其表现在:①细胞骨架在细胞内的分布与布局来看,它们相互配合,在功能上相互呼应。微管和中间纤维大都是从细胞核出发向细胞周边呈放射状伸延,并在细胞内许多部位平行分布。在靠近质膜下的细胞质中发现中等纤维在最上面,微管在次层,微丝组成的应力纤维在下层。3种纤维间有肌动蛋白丝连接。②从功能上看活细胞内的3种骨架均起支撑作用,微丝与微管参与细胞运动,三者均参与细胞内物质运输;均有可能参与细胞外来的信息传递。③三种骨架均在细胞的统一调控下互相密切配合完成细胞的生命活动。2.微管在体外组装需要哪些条件,组装过程如何进行?答:需要的条件有:①在生理温度下;②有GTP和Mg2+;③含有一定量MAPS;④中等离子强度、弱酸~;⑤微管蛋白浓度要大于临界浓度,大约为1mg/ml,当这些条件达到时,二聚体自动聚合为微管,当条件改变如温度低于4℃或加入过量的Ca2+、Mg2+浓度降低、酸碱度改变时,微管发生解聚。微管组装时,首先是α、β微管蛋白形成α、β异二聚体,α、β异二聚体形成短的原纤维,即核心形成,接着二聚体在其两端和侧面增加使之扩展成片状带,至13根原纤维时,即合拢成一段微管。3.中间纤维是如何组装的?答:①两个相邻亚基的对应α螺旋形成双股超螺旋,即二聚体;②二聚体以反向平行的方式组成四聚体,即一个二聚体的头部与另一个二聚体的尾部相连;③每个四聚体进一步组装成原丝;④两根原丝相互缠绕,以半分子长度交错的原则形成原纤维,即八聚体;⑤四根原纤维互相缠绕最终形成中间纤维,在横切面上有32个蛋白单体。1.什么是细胞骨架?在细胞内的主要功能是什么?答:细胞骨架是细胞内以蛋白质纤维为主要成分的网络结构,主要的三类蛋白纤丝(filamemt)构成,包括微管、肌动蛋白纤维和中间纤维。细胞骨架对于维持细胞的形态结构及内部结构的有序性,以及在细胞运动、物质运输、能量转换、信息传递、细胞分化等一系列方面起重要作用。①作为支架(scaffold),为维持细胞的形态提供支持结构,例如红细胞质膜的内部主要是靠以肌动蛋白纤维为主要成分的膜骨架结构维持着红细胞的结构。②在细胞内形成一个框架(framework)结构,为细胞内的各种细胞器提供附着位点。细胞骨架是胞质溶胶的组织者,将细胞内的各种细胞器组成各种不同的体系和区域网络。③为细胞内的物质和细胞器的运输/运动提供机械支持。例如从内质网产生的膜泡向高尔基体的运输、胞吞作用形成的吞噬泡向溶酶体的运输通常都是以细胞骨架作为轨道的;在有丝分裂和减数分裂过程中染色体向两极的移动,以及含有神经细胞产生的神经递质的小泡向神经细胞末端的运输都要依靠细胞骨架的机械支持。④为细胞从一个位置向另一位置移动提供支撑。一些细胞的运动,如伪足的形成也是细胞骨架提供机械支持。典型的单细胞靠纤毛和鞭毛进行运动,而细胞的这种运动器官主要是细胞骨架构成的。⑤为信使RNA提供锚定位点,促进mRNA翻译成多肽。用非离子去垢剂提取细胞成分可发现细胞骨架相当完整,许多与蛋白质合成有关的成分同不被去垢剂溶解的细胞骨架结合在一起。⑥参与细胞的信号传导。有些细胞骨架成分常同细胞质膜的内表面接触,这对于细胞外环境中的信号在细胞内的传导起重要作用。⑦是细胞分裂的机器。有丝分裂的两个主要事件,核分裂和胞质分裂都与细胞骨架有关,细胞骨架的微管通过形成纺锤体将染色体分开,而肌动蛋白丝则将细胞一分为二。2.如何用荧光显微镜研究细胞骨架?其基本原理是什么?答:用荧光显微镜研究细胞骨架主要是基于两方面的原理:一是组成细胞骨架的蛋白亚基能够同小分子的荧光染料共价结合,使细胞骨架带上荧光标记,发出荧光。二是可以制备细胞骨架的荧光抗体,然后用荧光抗体进行细胞骨架的研究。借助于这两方面原理,可用荧光显微镜研究细胞骨架的动力学。例如,用小分子的荧光染料标记细胞骨架的蛋白亚基,就可以追踪细胞骨架蛋白在细胞活动中的作用,包括组装、去组装、物质运输等。这种方法还有一个好处,就是在活细胞时就可以观察。可用荧光抗体研究以很低浓度存在的蛋白质在细胞内的位置,因为标记的荧光抗体同特异的蛋白具有很高的亲和性,只要有相应的蛋白存在,就一定会有反应,因为这种反应是特异的,通过荧光显微镜观察就可确定。荧光抗体既可以直接注射活细胞进行反应,也可以加到固定的细胞或组织切片中进行反应和分析。用这种方法对微管、肌动蛋白纤维、中间纤维进行了成功定位。3.微管组装的基本过程怎样?答:离体实验表明,微管蛋白的体外组装分为成核(nucleation)和延长(elongation)两个反应,其中成核反应是微管组装的限速步骤。成核反应结束时,形成很短的微管,此时二聚体以比较快的速度从两端加到已形成的微管上,使其不断加长。虽然在体外组装过程中二聚体可以在微管的两端加减,然而在大多数体外实验的条件下,二聚体的加减优先在微管的一端进行,这一端被称为正端(+),另外一端则被称为负端(-)。根据体外实验的结果推测微管组装的主要过程是∶首先, α微管蛋白和β微管蛋白形成长度为8nm的αβ二聚体, αβ二聚体先沿纵向聚合形成一个短的原纤维,这种原纤维可能是不够稳定的。第二步是以原纤维为基础,经过侧面增加二聚体而扩展为弯曲的片状(sheet)结构,这种片状结构的稳定性大大提高。第三步是αβ二聚体平行于长轴重复排列形成原纤维。当螺旋带加宽至13根原纤维时,即合拢形成微管的壁。游离的、在β微管的交换位点结合有GTP的αβ微管蛋白二聚体再不断加到这一微管的端点使之延长。在同一根微管的13条原纤维中,所有αβ二聚体的取向都是相同的,所以微管的两端是不等价的,这就是微管的极性。在αβ二聚体微管蛋白掺入到新生微管之后不久,β亚基上的GTP被水解成GDP,如果聚合作用比水解作用快,那么,就会在微管的一端产生结合有GTP的帽子结构,这就是(+)端,通常(+)端聚合作用的速度是(-)端聚合作用的两倍。4.微管体外组装需要哪些基本条件?GTP在组装中起什么作用?答: 1972年,Richard Weisenberg首次在体外组装微管获得成功。他将脑的匀浆物置于37℃,然后添加Mg2+,GTP和EGTA(EGTA是Ca2+的螯合剂,抑制聚合作用)。他发现,只要降低或提高反应温度就可以使微管去组装和重组装。通过体外组装实验,还发现在反应系统中添加微管碎片能够加速微管的组装,加入的微管碎片起着“种子”的作用。根据这一实验,推测微管组装的基本条件是: αβ微管蛋白二聚体、GTP、Mg2+和合适的温度。聚合过程需要加入GTP,但对于微管的组装来说不需要GTP水解成GDP。实验中发现αβ微管蛋白二聚体加入到微管之后不久所结合的GTP就被水解成GDP。推测GTP的作用有两个:一是αβ微管蛋白二聚体与GTP结合之后才能作为微管组装的构件,二是通过GTP水解使微管去组装,保持微管的动态性质。5.什么是微管的动态不稳定性?造成的根本原因是什么?答:微管一直处于组装和去组装的动态状态,称为动态不稳定性。影响微管稳定性的决定因素有两个:游离微管蛋白的浓度和GTP水解成GDP的速度。高浓度的微管蛋白适合微管的生长,低浓度的微管蛋白引起GTP的水解,形成GDP帽,使微管解聚。GTP的低速水解适合于微管的连续生长,而快速的水解造成微管的解聚,细胞内的微管处于动态不稳定状态(dynamic instability)。6.什么是微管的GTP帽和GDP帽?对微管的动态性质有什么影响?答:所谓微管的GTP或GDP帽就是微管正端αβ微管蛋白二聚体结合GTP或GDP的状态。如果微管正端结合的是结合GTP的微管蛋白二聚体组成的GTP帽结构,微管就趋于生长,如果微管的正端结合的是结合GDP的微管蛋白二聚体组成的GDP帽结构,这种微管就趋于缩短。决定微管正端是GTP帽还是GDP帽,又受两种因素影响,一是结合GTP的游离微管蛋白二聚体的浓度,二是GTP帽中GTP水解的速度。当(+)端形成GTP帽,而游离微管蛋白二聚体的浓度又很高时,微管趋向于生长。于结合GTP的游离微管蛋白二聚体的浓度降低,引起微管延长的速率下降,随着GTP水解的不断进行最后GTP帽结构转变成GDP,逐渐使微管变得不稳定,趋于解聚。细胞内微管的这两种状态是不断发生的,因为细胞内不断有微管解聚,又不断地有新微管的组装。7.什么是轴突运输?有什么特点?答:在神经元细胞中,轴突末端到细胞体的距离很长,并且轴突末梢要释放大量的神经递质,所以神经元必须不断供给大量的物质,包括蛋白质、膜,以补充因轴突部位的胞吐而丧失的成分。于核糖体只存在于神经细胞的细胞体和树突中,在轴突和轴突末梢没有蛋白质的合成,所以蛋白质和膜必须在细胞体中合成,然后运输到轴突,这就是轴突运输。轴突中以微管为基础的运输有两种方式∶顺向运输和逆向运输。神经细胞的细胞体是神经细胞的中心,是圆形的部分。细胞体中有细胞核、内质网、高尔基体,以及其它的细胞器。细胞体中合成的蛋白质有些以分泌小泡的形式向轴突末梢运输,如神经递质等。这些分泌小泡主要是靠驱动蛋白通过微
相关文档
最新文档