堆栈和堆的区别

堆栈和堆的区别
堆栈和堆的区别

栈、堆栈和堆有什么区别?

答:栈和堆栈都指的是Stack,它们与堆(heap)是不同的概念,要注意区分开来。

栈(stack)是限定仅在一端进行插入或删除的线性表。虽然这个限制减小了栈的灵活性,但是它也使得栈更有效且更容易实现。许多应用都只是需要提供受限制的插入和删除操作,在这种情况下使用较简单的栈结构比使用一般的线性表更有效。

从堆和栈的功能和作用来通俗的比较,堆主要用来存放对象的,栈主要是用来执行程序的.而这种不同又主要是由于堆和栈的特点决定的:

在编程中,例如C/C++中,所有的方法调用都是通过栈来进行的,所有的局部变量,形式参数都是从栈中分配内存空间的。实际上也不是什么分配,只是从栈顶向上用就行,就好像工厂中的传送带(conveyor belt)一样,Stack Pointer会自动指引你到放东西的位置,你所要做的只是把东西放下来就行.退出函数的时候,修改栈指针就可以把栈中的内容销毁.这样的模式速度最快,当然要用来运行程序了.需要注意的是,在分配的时候,比如为一个即将要调用的程序模块分配数据区时,应事先知道这个数据区的大小,也就说是虽然分配是在程序运行时进行的,但是分配的大小多少是确定的,不变的,而这个"大小多少"是在编译时确定的,不是在运行时.

堆是应用程序在运行的时候请求操作系统分配给自己内存,由于从操作系统管理的内存分配,所以在分配和销毁时都要占用时间,因此用堆的效率非常低.但是堆的优点在于,编译器不必知道要从堆里分配多少存储空间,也不必知道存储的数据要在堆里停留多长的时间,因此,用堆保存数据时会得到更大的灵活性。事实上,面向对象的多态性,堆内存分配是必不可少的,因为多态变量所需的存储空间只有在运行时创建了对象之后才能确定.在C++中,要求创建一个对象时,只需用new命令编制相关的代码即可。执行这些代码时,会在堆里自动进行数据的保存.当然,为达到这种灵活性,必然会付出一定的代价:在堆里分配存储空间时会花掉更长的时间!

1、什么是堆栈?

答:堆栈是一个在计算机科学中经常使用的抽象数据类型. 堆栈中的物体具有一个特性:最后一个放入堆栈中的物体总是被最先拿出来, 这个特性通常称为后进先处(LIFO)队列.

堆栈中定义了一些操作. 两个最重要的是PUSH和POP. PUSH操作在堆栈的顶部加入一个元素. POP操作相反, 在堆栈顶部移去一个元素, 并将堆栈的大小减一.

现代计算机被设计成能够理解人们头脑中的高级语言. 在使用高级语言构造程序时最重要的技术是过程(procedure)和函数(function). 从这一点来看, 一个过程调用可以象跳转(jump)命令那样改变程序的控制流程, 但是与跳转不同

的是, 当工作完成时,函数把控制权返回给调用之后的语句或指令. 这种高级抽象实现起来要靠堆栈的帮助.

堆栈也用于给函数中使用的局部变量动态分配空间, 同样给函数传递参数和函数返回值也要用到堆栈.

堆内存

堆内存是区别于栈区、全局数据区和代码区的另一个内存区域。堆允许程序在运行时动态地申请某个大小的内存空间。在学习C程序设计语言时,会遇到两个很相似的术语:堆内存和栈内存。这堆内存和栈内存两个术语虽然只有一字之差,但是所表达的意义还是有差别的,堆内存和栈内存的区别可以用如下的比喻来看出:使用堆内存就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。使用栈内存就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。操作系统中所说的堆内存和栈内存,在操作上有上述的特点,这里的堆内存实际上指的就是(满足堆内存性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈内存实际上就是满足先进后出的性质的数学或数据结构 在标准C语言上,使用malloc等内存分配函数获取内存即是从堆中分配内存,而在一个函数体中例如定义一个数组之类的操作是从栈中分配内存。从堆中分配的内存需要程序员手动释放,如果不释放,而系统内存管理器又不自动回收这些堆内存的话(实现这一项功能的系统很少) 动态分配堆内存,那就一直被占用。如果一直申请堆内存,而不释放,内存会越来越少,很明显的结果是系统变慢或者申请不到新的堆内存。而过度的申请堆内存(可以试试在函数中申请一个1G的数组!),会导致堆被压爆,结果是灾难性的。 我们掌握堆内存的权柄就是返回的指针,一旦丢掉了指针,便无法在我们视野内释放它。这便是内存泄露。而如果在函数中申请一个数组,在函数体外调用使用这块堆内存,结果将无法预测。我们知道在c/c++中定义的数组大小必需要事先定义好,他们通常是分配在静态内存空间或者是在栈内存空间内的,但是在实际工作中,我们有时候却需要动态的为数组分配大小,这时就要用到堆内存分配的概念。在堆内存分配时首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。堆内存是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆内存的大小受限于计算机系统中有效的虚拟内存。由此可见,堆内存获得的空间比较灵活,也比较大。堆内存是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.另外,在WINDOWS

java基础总结

第一章初识java 一、java语言的历史 ●第一代java语言:Oak 二、java语言的现状 ?Java SE:主要用于桌面程序的开发。 ?Java EE:主要用于网页程序的开发。 ?Java ME:主要用于嵌入式系统程序的开发。(安卓)三、java语言的特点 ●跨平台(不同的操作系统都可运行) ●简单(没有直接使用指针) ●面向对象(世间万物皆为对象) ●半编译半解释(java文件---class文件----虚拟机) ●分布式(多个客户端访问、通过服务器的配置分发到 不同的服务器) ●健壮(异常的处理) ●安全(任何语言都具备、虚拟机沙箱原理) ●多线程、高性能、动态 四、java语言与C、C++语言的不同与区别 ●自动内存管理:Java对于内存的分配是动态的,并具 有垃圾回收机制。 ●不在类外定义全局变量。 ●Java中将不再使用goto语句。

●Java中取消了指针。 ●运行时系统对类型转换进行类型相容性检查 ●Java不支持头文件,使用import与其它类通讯。 ●Java中不包含结构和联合;所有的内容都封装在类中。 ●Java中不支持宏,它通过final 关键字来声明一个常 量。 ●Java不支持多重继承,可以通过Java中的接口实现 多重继承的功能。 ●CC++ 一般情况下都是偏硬件的,java一般偏软件(应 用、基于浏览器) ●(补充).net、php (网页制作比较快捷)、在安全级 别要求高的企业一般使用java(银行、政府系统) 五、环境的搭建 1、默认路径如下 ●C:\Program Files\Java\jdk1.6.0_02:提供编程中需要 的api包 ●C:\Program Files\Java\jre1.6.0_02:虚拟机文件所在的 位置 2.安装后各个文件夹代表的含义

栈和队列习题答案

第三章栈和队列习题答案 一、基础知识题 设将整数1,2,3,4依次进栈,但只要出栈时栈非空,则可将出栈操作按任何次序夹入其中,请回答下述问题: (1)若入、出栈次序为Push(1), Pop(),Push(2),Push(3), Pop(), Pop( ),Push(4), Pop( ),则出栈的数字序列为何(这里Push(i)表示i进栈,Pop( )表示出栈) (2)能否得到出栈序列1423和1432并说明为什么不能得到或者如何得到。 (3)请分析1,2 ,3 ,4 的24种排列中,哪些序列是可以通过相应的入出栈操作得到的。 答:(1)出栈序列为:1324 (2)不能得到1423序列。因为要得到14的出栈序列,则应做Push(1),Pop(),Push(2),Push (3),Push(4),Pop()。这样,3在栈顶,2在栈底,所以不能得到23的出栈序列。能得到1432的出栈序列。具体操作为:Push(1), Pop(),Push(2),Push(3),Push(4),Pop(),Pop(),Pop()。 (3)在1,2 ,3 ,4 的24种排列中,可通过相应入出栈操作得到的序列是: 1234,1243,1324,1342,1432,2134,2143,2314,2341,2431,3214,3241,3421,4321 不能得到的序列是: 1423,2413,3124,3142,3412,4123,4132,4213,4231,4312 链栈中为何不设置头结点 答:链栈不需要在头部附加头结点,因为栈都是在头部进行操作的,如果加了头结点,等于要对头结点之后的结点进行操作,反而使算法更复杂,所以只要有链表的头指针就可以了。 循环队列的优点是什么如何判别它的空和满 答:循环队列的优点是:它可以克服顺序队列的"假上溢"现象,能够使存储队列的向量空间得到充分的利用。判别循环队列的"空"或"满"不能以头尾指针是否相等来确定,一般是通过以下几种方法:一是另设一布尔变量来区别队列的空和满。二是少用一个元素的空间,每次入队前测试入队后头尾指针是否会重合,如果会重合就认为队列已满。三是设置一计数器记录队列中元素总数,不仅可判别空或满,还可以得到队列中元素的个数。 设长度为n的链队用单循环链表表示,若设头指针,则入队出队操作的时间为何若只设尾指针呢答:当只设头指针时,出队的时间为1,而入队的时间需要n,因为每次入队均需从头指针开始查找,找到最后一个元素时方可进行入队操作。若只设尾指针,则出入队时间均为1。因为是循环链表,尾指针所指的下一个元素就是头指针所指元素,所以出队时不需要遍历整个队列。 指出下述程序段的功能是什么 (1) void Demo1(SeqStack *S){ int i; arr[64] ; n=0 ; while ( StackEmpty(S)) arr[n++]=Pop(S); for (i=0, i< n; i++) Push(S, arr[i]); } .. // 设Q1已有内容,Q2已初始化过 while ( ! QueueEmpty( &Q1) ) { x=DeQueue( &Q1 ) ; EnQueue(&Q2, x); n++;} for (i=0; i< n; i++) { x=DeQueue(&Q2) ; EnQueue( &Q1, x) ; EnQueue( &Q2, x);} 答: (1)程序段的功能是将一栈中的元素按反序重新排列,也就是原来在栈顶的元素放到栈底,栈底的

栈和队列的基本操作

《数据结构与算法》实验报告 专业班级学号 实验项目 实验二栈和队列的基本操作。 实验目的 1、掌握栈的基本操作:初始化栈、判栈为空、出栈、入栈等运算。 2、掌握队列的基本操作:初始化队列、判队列为空、出队列、入队列等运算。 实验容 题目1: 进制转换。利用栈的基本操作实现将任意一个十进制整数转化为R进制整数 算法提示: 1、定义栈的顺序存取结构 2、分别定义栈的基本操作(初始化栈、判栈为空、出栈、入栈等) 3、定义一个函数用来实现上面问题: 十进制整数X和R作为形参 初始化栈 只要X不为0重复做下列动作 将X%R入栈 X=X/R 只要栈不为空重复做下列动作 栈顶出栈输出栈顶元素 题目2: 利用队列的方式实现辉三角的输出。 算法设计分析 (一)数据结构的定义 1、栈的应用 实现十进制到其他进制的转换,该计算过程是从低位到高位顺序产生R进制数的各个位数,而打印输出一般从高位到低位进行,恰好与计算过程相反。因此,运用栈先进后出的性质,即可完成进制转换。 栈抽象数据结构描述 typedef struct SqStack /*定义顺序栈*/ { int *base; /*栈底指针*/ int *top; /*栈顶指针*/ int stacksize; /*当前已分配存储空间*/ } SqStack;

2、队列的应用 由于是要打印一个数列,并且由于队列先进先出的性质,肯定要利用已经进队的元素在其出队之前完成辉三角的递归性。即,利用要出队的元素来不断地构造新的进队的元素,即在第N行出队的同时,来构造辉三角的第N+1行,从而实现打印辉三角的目的。 队列抽象数据结构描述 typedef struct SeqQueue { int data[MAXSIZE]; int front; /*队头指针*/ int rear; /*队尾指针*/ }SeqQueue; (二)总体设计 1、栈 (1)主函数:统筹调用各个函数以实现相应功能 int main() (2)空栈建立函数:对栈进行初始化。 int StackInit(SqStack *s) (3)判断栈空函数:对栈进行判断,若栈中有元素则返回1,若栈为空,则返回0。 int stackempty(SqStack *s) (4)入栈函数:将元素逐个输入栈中。 int Push(SqStack *s,int x) (5)出栈函数:若栈不空,则删除栈顶元素,并用x返回其值。 int Pop(SqStack *s,int x) (6)进制转换函数:将十进制数转换为R进制数 int conversion(SqStack *s) 2、队列 (1)主函数:统筹调用各个函数以实现相应功能 void main() (2)空队列建立函数:对队列进行初始化。 SeqQueue *InitQueue() (3)返回队头函数:判断队是否为空,若不为空则返回队头元素。 int QueueEmpty(SeqQueue *q) (4)入队函数:将元素逐个输入队列中。 void EnQueue(SeqQueue *q,int x) (5)出队函数:若队列不空,则删除队列元素,并用x返回其值。 int DeQueue(SeqQueue *q) (6)计算队长函数:计算队列的长度。 int QueueEmpty(SeqQueue *q) (7)输出辉三角函数:按一定格式输出辉三角。 void YangHui(int n)

java中堆和栈的区别

Java中堆与栈的区别 简单的说: Java把内存划分成两种:一种是栈内存,一种是堆内存。 在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。 当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。 堆内存用来存放由new创建的对象和数组。 在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。 1. 栈(stack)与堆(heap)都是Java用来在Ram中存放数据的地方。与C++不同,Java 自动管理栈和堆,程序员不能直接地设置栈或堆。 2. 栈的优势是,存取速度比堆要快,仅次于直接位于CPU中的寄存器。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。另外,栈数据可以共享,详见第3点。堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。 3. Java中的数据类型有两种。 一种是基本类型(primitive types), 共有8种,即int, short, long, byte, float, double, boolean, char(注意,并没有string的基本类型)。这种类型的定义是通过诸如int a = 3; long b = 255L;的形式来定义的,称为自动变量。值得注意的是,自动变量存的是字面值,不是类的实例,即不是类的引用,这里并没有类的存在。如int a = 3; 这里的a是一个指向int类型的引用,指向3这个字面值。这些字面值的数据,由于大小可知,生存期可知(这些字面值固定定义在某个程序块里面,程序块退出后,字段值就消失了),出

PTA第三章栈与队列练习题

1-1 通过对堆栈S操作:Push(S,1), Push(S,2), Pop(S), Push(S,3), Pop(S), Pop(S)。输出得序列为:123。(2分) T F 作者: DS课程组 单位: 浙江大学 1-2 在用数组表示得循环队列中,front值一定小于等于rear值。(1分) T F 作者: DS课程组 单位: 浙江大学 1-3 若一个栈得输入序列为{1, 2, 3, 4, 5},则不可能得到{3, 4, 1, 2, 5}这样得出栈序列。(2分) T F 作者: 徐镜春 单位: 浙江大学 1-4 If keys are pushed onto a stack in the order {1, 2, 3, 4, 5}, then it is impossible to obtain the output sequence {3, 4, 1, 2, 5}、(2分) T F 作者: 徐镜春 单位: 浙江大学 1-5 所谓“循环队列”就是指用单向循环链表或者循环数组表示得队列。(1分) T F 作者: DS课程组 单位: 浙江大学 1-6 An algorithm to check for balancing symbols in an expression uses a stack to store the symbols、(1分) T F 2-1 设栈S与队列Q得初始状态均为空,元素a、b、c、d、e、f、g依次进入栈S。若每个元素出栈后立即进入队列Q,且7个元素出队得顺序就是b、d、c、f、e、 a、g,则栈S得容量至少就是: (2分) 1. 1 2. 2 3. 3 4. 4 作者: DS课程组

栈和队列的基本操作的实现

封面: 安徽大学 网络工程 栈和队列的基本操作的实现 ______2010\4\12

【实验目的】 1.理解并掌握栈和队列的逻辑结构和存储结构; 2.理解栈和队列的相关基本运算; 3.编程对相关算法进行验证。 【实验内容】 (一)分别在顺序和链式存储结构上实现栈的以下操作(含初始化,入栈,出栈,取栈顶元素等): 1.构造一个栈S,将构造好的栈输出; 2.在第1步所构造的栈S中将元素e 入栈,并将更新后的栈S输出; 3.在第2步更新后所得到的栈S中将栈顶元素出栈,用变量e返回该元素,并将更新后的栈S输出。(二)分别在链队列和循环队列上实现以下操作(初始化,入队,出队,取队头元素等): 1.构造一个队列Q,将构造好的队列输出; 2.在第1步所构造的队列Q中将元素e入队,并将更新后的队列Q输出; 3.在第2步更新后所得到的队列Q中将队头元素出队,用变量e返回该元素,并将更新后的队列Q输出。

【要求】 1.栈和队列中的元素要从终端输入; 2.具体的输入和输出格式不限; 3.算法要具有较好的健壮性,对运行过程中的错误 操作要做适当处理。 三、实验步骤 1.本实验用到的数据结构 (1)逻辑结构:线性结构 (2)存储结构:程序一、四(顺序存储结构); 程序二、三(链式存储结构); 2.各程序的功能和算法设计思想 程序一:顺序栈 # include # include # include #define STACKINITISIZE 100 # define STACKINCREMENT 10 # define OK 1 # define ERROR 0 # define OVERFLOW -2 typedef int SElemtype; typedef int status; typedef struct { SElemtype *base; SElemtype *top; int stacksize; }sqstack; void Initstack (sqstack *s) { (*s).base = (SElemtype *)malloc(STACKINITISIZE * sizeof (SElemtype)); if(!(*s).base) exit(OVERFLOW);

堆与栈,静态变量和全局变量的区别

堆与栈,静态变量和全局变量的区别 堆与栈,静态变量和全局变量的区别 对和栈的主要的区别由以下几点: 1、管理方式不同; 2、空间大小不同; 3、能否产生碎片不同; 4、生长方向不同; 5、分配方式不同; 6、分配效率不同; 管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。 空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改: 打开工程,依次操作菜单如下:Project->Setting->Link,在Category 中选中Output,然后在Reserve中设定堆栈的最大值和commit。 注意:reserve最小值为4Byte;commit是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。 碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。 生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。 分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。 分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。

栈和队列(必备)

栈和队列是操作受限的线性表,好像每本讲数据结构的数都是这么说的。有些书按照这个思路给出了定义和实现;但是很遗憾,这本书没有这样做,所以,原书中的做法是重复建设,这或许可以用不是一个人写的这样的理由来开脱。 顺序表示的栈和队列,必须预先分配空间,并且空间大小受限,使用起来限制比较多。而且,由于限定存取位置,顺序表示的随机存取的优点就没有了,所以,链式结构应该是首选。 栈的定义和实现 #ifndef Stack_H #define Stack_H #include "List.h" template class Stack : List//栈类定义 { public: void Push(Type value) { Insert(value); } Type Pop() { Type p = *GetNext(); RemoveAfter(); return p; }

Type GetTop() { return *GetNext(); } List ::MakeEmpty; List ::IsEmpty; }; #endif 队列的定义和实现 #ifndef Queue_H #define Queue_H #include "List.h" template class Queue : List//队列定义{ public: void EnQueue(const Type &value) { LastInsert(value); } Type DeQueue() {

Type p = *GetNext(); RemoveAfter(); IsEmpty(); return p; } Type GetFront() { return *GetNext(); } List ::MakeEmpty; List ::IsEmpty; }; #endif 测试程序 #ifndef StackTest_H #define StackTest_H #include "Stack.h" void StackTest_int() { cout << endl << "整型栈测试" << endl;

数据结构堆栈与队列实验报告

实验二堆栈和队列 实验目的: 1.熟悉栈这种特殊线性结构的特性; 2.熟练并掌握栈在顺序存储结构和链表存储结构下的基本运算; 3.熟悉队列这种特殊线性结构的特性; 3.熟练掌握队列在链表存储结构下的基本运算。 实验原理: 堆栈顺序存储结构下的基本算法; 堆栈链式存储结构下的基本算法; 队列顺序存储结构下的基本算法; 队列链式存储结构下的基本算法; 实验内容: 第一题链式堆栈设计。要求 (1)用链式堆栈设计实现堆栈,堆栈的操作集合要求包括:初始化StackInitiate(S),非空否StackNotEmpty(S),入栈StackiPush(S,x),出栈StackPop(S,d),取栈顶数据元素StackTop(S,d); (2)设计一个主函数对链式堆栈进行测试。测试方法为:依次把数据元素1,2,3,4,5入栈,然后出栈并在屏幕上显示出栈的数据元素; (3)定义数据元素的数据类型为如下形式的结构体, Typedef struct { char taskName[10]; int taskNo; }DataType; 首先设计一个包含5个数据元素的测试数据,然后设计一个主函数对链式堆栈进行测试,测试方法为:依次吧5个数据元素入栈,然后出栈并在屏幕上显示出栈的数据元素。 第二题对顺序循环队列,常规的设计方法是使用対尾指针和对头指针,对尾指针用于指示当前的対尾位置下标,对头指针用于指示当前的対头位置下标。现要求: (1)设计一个使用对头指针和计数器的顺序循环队列抽象数据类型,其中操作包括:初始化,入队列,出队列,取对头元素和判断队列是否为空; (2)编写主函数进行测试。 程序代码: 第一题: (1)源程序"LinStack.h"如下: #define NULL 0 typedef struct snode { DataType data; struct snode *next; } LSNode; /*(1)初始化StackInitiate(LSNode ** head) */ void StackInitiate(LSNode ** head) /*初始化带头结点链式堆栈*/

两种常见的内存管理方法:堆和内存池

两种常见的内存管理方法:堆和内存池 本文导读 在程序运行过程中,可能产生一些数据,例如,串口接收的数据,ADC采集的数据。若需将数据存储在内存中,以便进一步运算、处理,则应为其分配合适的内存空间,数据处理完毕后,再释放相应的内存空间。为了便于内存的分配和释放,AWorks提供了两种内存管理工具:堆和内存池。 本文为《面向AWorks框架和接口的编程(上)》第三部分软件篇——第9章内存管理——第1~2小节:堆管理器和内存池。 本章导读 在计算机系统中,数据一般存放在内存中,只有当数据需要参与运算时,才从内存中取出,交由CPU运算,运算结束再将结果存回内存中。这就需要系统为各类数据分配合适的内存空间。 一些数据需要的内存大小在编译前可以确定。主要有两类:一类是全局变量或静态变量,这部分数据在程序的整个生命周期均有效,在编译时就为这些数据分配了固定的内存空间,后续直接使用即可,无需额外的管理;一类是局部变量,这部分数据仅在当前作用域中有效(如函数中),它们需要的内存自动从栈中分配,也无需额外的管理,但需要注意的是,由于这一部分数据的内存从栈中分配,因此,需要确保应用程序有足够的栈空间,尽量避免定义内存占用较大的局部变量(比如:一个占用数K内存的数组),以避免栈溢出,栈溢出可能破坏系统关键数据,极有可能造成系统崩溃。 一些数据需要的内存大小需要在程序运行过程中根据实际情况确定,并不能在编译前确定。例如,可能临时需要1K内存空间用于存储远端通过串口发过来的数据。这就要求系统具有对内存空间进行动态管理的能力,在用户需要一段内存空间时,向系统申请,系统选择一段合适的内存空间分配给用户,用户使用完毕后,再释放回系统,以便系统将该段内存空间回收再利用。在AWorks中,提供了两种常见的内存管理方法:堆和内存池。9.1 堆管理器

Java中equals和==的区别

Java中equals和==的区别 1、java中equals和==的区别值类型是存储在内存中的堆栈(简称栈),而引用类型的变量在栈中仅仅是存储引用类型变量的地址,而其本身则存储在堆中。 2、==操作比较的是两个变量的值是否相等,对于引用型变量表示的是两个变量在堆中存储的地址是否相同,即栈中的内容是否相同。 3、equals操作表示的两个变量是否是对同一个对象的引用,即堆中的内容是否相同。 4、==比较的是2个对象的地址,而equals比较的是2个对象的内容,显然,当equals为true时,==不一定为true。 ==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同 除了String和封装器,equals()和“==”没什么区别 但String和封装器重写了equals(),所以在这里面,equals()指比较字符串或封装对象对应的原始值是否相等,"=="是比较两个对象是否为同一个对象

==是判断两个对象是否是同一个对象 equals是进行值的判断 String a = new String("aaa"); String b = new String("a"); b += "aa"; 则 a==b //错误 a.equals(b)//正确 equals 方法(是String类从它的超类Object中继承的)被用来检测两个对象是否相等,即两个对象的内容是否相等。 ==用于比较引用和比较基本数据类型时具有不同的功能:比较基本数据类型,如果两个值相同,则结果为true 而在比较引用时,如果引用指向内存中的同一对象,结果为true Eg:s1 = new String("sony"); //创建的是字符串对象 s1.equals("sony"); //返回 trues1 == "sony" //返回false //如果 s1 = "sony"; s1 == "sony" //返回true

实验二 堆栈和队列基本操作的编程实现

实验二堆栈和队列基本操作的编程实现 【实验目的】 堆栈和队列基本操作的编程实现 要求: 堆栈和队列基本操作的编程实现(2学时,验证型),掌握堆栈和队列的建立、进栈、出栈、进队、出队等基本操作的编程实现,存储结构可以在顺序结构或链接结构中任选,也可以全部实现。也鼓励学生利用基本操作进行一些应用的程序设计。 【实验性质】 验证性实验(学时数:2H) 【实验内容】 内容: 把堆栈和队列的顺序存储(环队)和链表存储的数据进队、出队等运算其中一部分进行程序实现。可以实验一的结果自己实现数据输入、数据显示的函数。 利用基本功能实现各类应用,如括号匹配、回文判断、事物排队模拟、数据逆序生成、多进制转换等。 【思考问题】 1.栈的顺序存储和链表存储的差异? 2.还会有数据移动吗?为什么? 3.栈的主要特点是什么?队列呢? 4.栈的主要功能是什么?队列呢? 5.为什么会有环状队列? 【参考代码】 (一)利用顺序栈实现十进制整数转换转换成r进制 1、算法思想 将十进制数N转换为r进制的数,其转换方法利用辗转相除法,以N=3456,r=8为例转换方法如下: N N / 8 (整除)N % 8(求余) 3456 432 0 低 432 54 0 54 6 6 6 0 6 高 所以:(3456)10 =(6600)8 我们看到所转换的8进制数按底位到高位的顺序产生的,而通常的输出是从高位到低位的,恰好与计算过程相反,因此转换过程中每得到一位8进制数则进栈保存,转换完毕后依次出栈则正好是转换结果。 算法思想如下:当N>0时重复1,2 ①若N≠0,则将N % r 压入栈s中,执行2;若N=0,将栈s的内容依次出栈,算法结束。 ②用N / r 代替N 2、转换子程序

C++中堆和栈的区别

C++中堆和栈的区别,自由存储区、全局/静态存储区和常量存储区 文章来自一个论坛里的回帖,哪个论坛记不得了! 在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。 栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区。里面的变量通常是局部变量、函数参数等。 堆,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。 自由存储区,就是那些由malloc等分配的内存块,他和堆是十分相似的,不过它是用free来结束自己的生命的。 全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的(初始化的全局变量和静态变量在一块区域,未初始化的全局变量与静态变量在相邻的另一块区域,同时未被初始化的对象存储区可以通过void*来访问和操纵,程序结束后由系统自行释放),在C++里面没有这个区分了,他们共同占用同一块内存区。 常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改,而且方法很多) 明确区分堆与栈 在bbs上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。 首先,我们举一个例子: void f() { int* p=new int[5]; } 这条短短的一句话就包含了堆与栈,看到new,我们首先就应该想到,我们分配了一块堆内存,那么指针p呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针p。在程序会先确定在堆中分配内存的大小,然后调用operator new分配内存,然后返回这块内存的首地址,放入栈中,他在VC6下的汇编代码如下: 00401028 push 14h 0040102A call operator new (00401060) 0040102F add esp,4 00401032 mov dword ptr [ebp-8],eax 00401035 mov eax,dword ptr [ebp-8] 00401038 mov dword ptr [ebp-4],eax 这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是delete p 么?澳,错了,应该是delete []p,这是为了告诉编译器:我删除的是一个数组,VC6就会根据相应的Cookie信息去进行释放内存的工作。 好了,我们回到我们的主题:堆和栈究竟有什么区别? 主要的区别由以下几点: 1、管理方式不同; 2、空间大小不同; 3、能否产生碎片不同; 4、生长方向不同;

JVM内存分配(栈堆)与JVM回收机制

Java 中的堆和栈 简单的说: Java把内存划分成两种:一种是栈内存,一种是堆内存。 在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。 当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。 堆内存用来存放由new创建的对象和数组。 在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。 在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。 引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。 具体的说: 栈与堆都是Java用来在Ram中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。 Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。 栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈中主要存放一些基本类型的变量(,int, short, long, byte, float, double, boolean, char)和对象句柄。 栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义: int a = 3; int b = 3; 编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b 的值。要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。 String是一个特殊的包装类数据。可以用: String str = new String("abc"); String str = "abc"; 两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。每调用一次就会创建一个新的对象。 而第二种是先在栈中创建一个对String类的对象引用变量str,然后查找栈中有没有存放"abc",如果没有,则将"abc"存放进栈,并令str指向”abc”,如果已经有”abc”则直接令 str指向“abc”。 比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。 String str1 = "abc"; String str2 = "abc"; System.out.println(str1==str2); //true

数据结构练习 第三章 栈和队列

数据结构练习第三章栈和队列 一、选择题 1.栈和队列的共同特点是( )。 A.只允许在端点处插入和删除元素 B.都是先进后出 C.都是先进先出 D.没有共同点 2.向顺序栈中压入新元素时,应当()。 A.先移动栈顶指针,再存入元素 B.先存入元素,再移动栈顶指针C.先后次序无关紧要 D.同时进行 3.允许对队列进行的操作有( )。 A. 对队列中的元素排序 B. 取出最近进队的元素 C. 在队头元素之前插入元素 D. 删除队头元素 4.用链接方式存储的队列,在进行插入运算时( ). A. 仅修改头指针 B. 头、尾指针都要修改 C. 仅修改尾指针 D.头、尾指针可能都要修改 5.设用链表作为栈的存储结构则退栈操作()。 A. 必须判别栈是否为满 B. 必须判别栈是否为空 C. 判别栈元素的类型 D.对栈不作任何判别 6.设指针变量front表示链式队列的队头指针,指针变量rear表示链式队列的队尾指针,指针变量s指向将要入队列的结点X,则入队列的操作序列为()。 A.front->next=s;front=s; B. s->next=rear;rear=s; C. rear->next=s;rear=s; D. s->next=front;front=s; 7.设指针变量top指向当前链式栈的栈顶,则删除栈顶元素的操作序列为()。 A.top=top+1; B. top=top-1; C. top->next=top; D. top=top->next; 8.队列是一种()的线性表。 A. 先进先出 B. 先进后出 C. 只能插入 D. 只能删除 9.设输入序列1、2、3、…、n经过栈作用后,输出序列中的第一个元素是n,则输出序列中的第i个输出元素是()。 A. n-i B. n-1-i C. n+l -i D.不能确定 10.设输入序列为1、2、3、4、5、6,则通过栈的作用后可以得到的输出序列为()。 A. 5,3,4,6,1,2 B. 3,2,5,6,4,1 C. 3,1,2,5,4,6 D. 1,5,4,6,2,3 11.队列的删除操作是在()进行。 A.队首 B.队尾 C.队前 D.队后 12.当利用大小为N 的数组顺序存储一个栈时,假定用top = = N表示栈空,则退栈时,用()语句修改top指针。 A.top++; B.top=0; C.top--; D.top=N; 13.队列的插入操作是在()进行。

第3章 栈和队列

《数据结构》 第3章栈和队列 共85题 一、单选 1. (1)分题目ID号:10705 题目难度:容易 设对一组数据的处理具有“后进先出”的特点,则应采用的数据结构是【1】 A. 队列 B. 栈 C. 顺序表 D. 二叉树题目答案:B 2. (1)分题目ID号:10706 题目难度:容易 若进栈序列为3、5、7、9,进栈和出栈可穿插进行,则不可能的出栈序列是【1】 A. 7,5,3,9 B. 9,5,7,3 C. 9,7,5,3 D. 7,5,9,3 题目答案:B 3. (1)分题目ID号:10707 题目难度:较难 设用一维数组A[m]存储栈,令A[m-1]为栈底,t指示当前栈顶的位置。如果栈不空,则出栈时应使【1】 A. t=t+l B. t=t-1 C. t=m-1 D. 不改变t 题目答案:A 4. (1)分题目ID号:10708 题目难度:容易 设用一维数组A[m]存储栈,令A[0]为栈底,top指示当前钱顶的位置,当把栈清空时所要执行的操作是【1】 A. top-- B. top=0 C. top=-1 D. top=m-1 题目答案:C 5. (1)分题目ID号:10709 题目难度:容易 设栈s的初始状态为空,如果进栈序列为1、2、3、4、5、6,出栈序列为3、2、5、6、4、1,则s的容量至少是【1】 A. 6 B. 4 C. 2 D. 3 题目答案:D 6. (1)分题目ID号:10710 题目难度:容易 设栈s最多能容纳4个元素,现有A、B、C、D、E、F六个元素按顺序进栈,以下可能的出栈序列是【1】 A. E、D、C、B、A、F B. B、C、E、F、A、D C. C、B、E、D、A、F D. A、D、F、E、B、C 题目答案:C

Eclipse 堆栈和内存大小设置

1, 设置Eclipse内存使用情况 修改eclipse根目录下的eclipse.ini文件 -vmargs //虚拟机设置,说明后面是VM的参数 -Xms40m //Xms是默认的虚拟机内存大小 -Xmx256m //Xmx是最大内存 -XX:PermSize=128M //非堆内存设置,最小堆大小。一般报内存不足时,都是说这个太小,堆空间剩余小于5%就会警告,建议把这个稍微设 //大一点,不过要视自己机器内存大小来设置 -XX:MaxPermSize=256M 注意:为何将上面的参数写入到eclipse.ini文件Eclipse没有执行对应的设置? 这是因为我们没有遵守eclipse.ini文件的设置规则: 参数形如“项值”这种形式,中间有空格的需要换行书写;如果值中有空格的需要用双引号包括起来。比如我们使用-vm C:/Java/jre1.6.0/bin/javaw.exe参数设置虚拟机,在eclipse.ini文件中要写成这样: 1.-vm 2.C:/Java/jre1.6.0/bin/javaw.exe 按照上面所说的,最后参数在eclipse.ini中可以写成这个样子:

1.-vmargs 2.-Xms128M 3.-Xmx512M 4.-XX:PermSize=64M 5.-XX:MaxPermSize=128M 实际运行的结果可以通过Eclipse中“Help”-“About Eclipse SDK”窗口里面的“Configuration Details”按钮进行查看。 另外需要说明的是,Eclipse压缩包中自带的eclipse.ini文件内容是这样的: 1.-showsplash https://www.360docs.net/doc/e817228752.html,.eclipse.platform 3.--launcher.XXMaxPermSize 4.256m 5.-vmargs 6.-Xms40m 7.-Xmx256m 其中–launcher.XXMaxPermSize(注意最前面是两个连接线)跟-XX:MaxPermSize参数的含义基本是一样的,我觉得唯一的区别就是前者是eclipse.exe启动的时候设置的参数,而后者是eclipse所使用的JVM中的参数。其实二者设置一个就可以了,所以这里可以把–launcher.XXMaxPermSize和下一行使用#

相关文档
最新文档