列管换热器设计计算书

列管换热器设计计算书
列管换热器设计计算书

列管式换热器设计

第一节推荐的设计程序

一、工艺设计

1、作出流程简图。

2、按生产任务计算换热器的换热量Q。

3、选定载热体,求出载热体的流量。

4、确定冷、热流体的流动途径。

5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。

6、初算平均传热温度差。

7、按经验或现场数据选取或估算K值,初算出所需传热面积。

8、根据初算的换热面积进行换热器的尺寸初步设计。包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。

9、核算K。

10、校核平均温度差D。

11、校核传热量,要求有15-25%的裕度。

12、管程和壳程压力降的计算。

二、机械设计

1、壳体直径的决定和壳体壁厚的计算。

2、换热器封头选择。

3、换热器法兰选择。

4、管板尺寸确定。

5、管子拉脱力计算。

6、折流板的选择与计算。

7、温差应力的计算。

8、接管、接管法兰选择及开孔补强等。

9、绘制主要零部件图。

三、编制计算结果汇总表

四、绘制换热器装配图

五、提出技术要求

六、编写设计说明书

第二节列管式换热器的工艺设计

一、换热终温的确定

换热终温对换热器的传热效率和传热强度有很大的影响。在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。

为合理确定介质温度和换热终温,可参考以下数据:

1、热端温差(大温差)不小于20℃。

2、冷端温差(小温差)不小于5℃。

3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。

二、平均温差的计算

设计时初算平均温差Dtm,均将换热过程先看做逆流过程计算。

1、对于逆流或并流换热过程,其平均温差可按式(2-1)进行计算:

(2—1)

式中,、分别为大端温差与小端温差。当时,可用算术平均值。

2、对于错流或折流的换热过程,若无相变化,则要进行温差校正,即用公式(2-2)进行计算。

(2-2)

式中是按逆流计算的平均温差,校正系数可根据换热器不同情况由

化工原理教材有关插图查出。一般要求>0.8,否则应改用多壳程或者将多台换热器串联使用。

三、传热总系数K的确定

计算K值的基准面积,习惯上常用管子的外表面积。当设计对象的基准条件(设备型式、雷诺准数Re、流体物性等)与某已知K值的生产设备相同或相近时,则可采用已知设备K值的经验数据作为自己设计的K值。表2-1为常见列管式换热器K值的大致范围。由表2-1选取大致K值,

表2-1列管式换热器中的总传热系数K的经验值

冷流体热流体

总传热系数W/m2.℃

水水850-1700 水气体17-280

水有机溶剂280-850

水轻油340-910

水重油60-280

有机溶剂有机溶剂115-340

水水蒸汽冷凝1420-4250

气体水蒸汽冷凝30-300

水低沸点烃类冷凝455-1140

水沸腾水蒸蒸汽冷凝2000-4250

轻油沸腾水蒸汽455-1020

用式(2-3)进行K值核算。

(2-3)

式中:a-给热系数,W/m2.℃;

R-污垢热阻,m2.℃/W;

δ-管壁厚度,mm;

λ-管壁导热系数,W/m.℃;

下标i、o、m分别表示管内、管外和平均。

当时近似按平壁计算,即:

在用式(2-3)计算K值时,污垢热阻、通常采用经验值,常用的污垢热阻大致范围可查《化工原理》相关内容。

式中的给热系数a,在列管式换热器设计中常采用有关的经验值公式计算给热系数a,工程上常用的一些计算a的经验关联式在《化工原理》已作了介绍,设计时从中选用。

四、传热面积A的确定

工程上常将列管式换热器中管束所有管子的外表面积之和视为传热面积,由式(2-4)和式(2-5)进行计算。

(2-4)

(2-5)

式中:-基于外表面的传热系数,W/m2.℃

-管子外径,m;

L-每根管子的有效长度,m;

n-管子的总数

管子的有效长度是指管子的实际长度减去管板、挡板所占据的部分。管子总数是指圆整后的管子数减去拉杆数。

五、主要工艺尺寸的确定

当确定了传热面积后,设计工作进入换热器尺寸初步设计阶段,包括以下内容:

1、管子的选用。

选用较小直径的管子,可以提高流体的对流给热系数,并使单位体积设备中的传热面积增大,设备较紧凑,单位传热面积的金属耗量少,但制造麻烦,小管子易结垢,不易清洗,可用于较清洁流体。大管径的管子用于粘性较大或易结垢的流体。

我国列管式换热器常采用无缝钢管,规格为外径×壁厚,常用的换热管的规格:φ19×2,φ25×2.5,φ38×3。

管子的选择要考虑清洗工作的方便及合理使用管材,同时还应考虑管长与管径的配合。国内管材生产规格,长度一般为:1.5,2,2.5,3,4.5,5,6,7.5,9,12m等。换热器的换热管长度与壳径之比一般在6-10,对于立式换热器,其比值以4-6为宜。

壳程和壳程压力降,流体在换热器内的压降大小主要决定于系统的运行压力,而系统的运行压力是靠输送设备提供的。换热器内流体阻力损失(压力降)越大,要求输送设备的功率就越大,能耗就越高。对于无相变的换热,流体流速越高,换热强度越大,可使换热面积减小,设备紧凑,制作费低,而且有利于抑制污垢的生成,但流速过高,也有不利的一面,压力降增大,泵功率增加,对传热管的冲蚀加剧。因此,在换热器的设计中有个适宜流速的选取和合理压力降的控制问题。

一般经验,对于液体,在压力降控制在0.01~0.1MPa之间,对于气体,控制在0.001~0.01MPa之间。

表2-2列出了换热器不同操作条件压力下合理压降的经验数据,供设计参考。

表2-2列管换热器合理压降的选取

2、管子总数n的确定。

对于已定的传热面积,当选定管径和管长后便可求所需管子数n,由式

(2-6)进行计算。

(2-6)

式中-传热面积,;

-管子外径,m;

L-每根管子的有效长度,m;

计算所得的管子n进行圆整

3、管程数m的确定。

根据管子数n可算出流体在管内的流速,由式(2-7)计算。

(2-7)

式中vs-管程流体体积流量,

-管子内径,m;

n-管子数。

若流速与要求的适宜流速相比甚小时,便需采用多管程,管程数m可按式(2-8)进行计算。

m=u/(2-8)

式中—用管子数n求出的管内流速,m/s;

u-要求的适宜流速,m/s;

式(2-8)中的适宜流速u要根据列管换热器中常用的流速范围进行选定,参见《化工原理》相关内容,一般要求在湍流下工作(高粘度流体除外),与此相对应的Re值,对液体为5×103,气体则为-。

分程时,应使每程的管子数大致相等,生产中常用的管程数为1、2、4、6、四种。

4、管子的排列方式及管间距的确定。

管子在管板上排列的原则是:管子在整个换热器的截面上均匀分布,排列紧凑,结构设计合理,方便制造并适合流体的特性。其排列方式通常为等边三角形与正方形两种,也有采用同心圆排列法和组合排列法。

在一些多程的列管换热器中,一般在程内为正三角形排列,但程与程之间常用正方形排列,这对于隔板的安装是很有利的,此时,整个管板上的排列称为组合排列。

对于多管程的换热器,分程的纵向隔板占据了管板上的一部分面积,实际排管数比理论要少,设计时实际的管数应通过管板布置图而得。

在排列管子时,应先决定好管间距。决定管间距时应先考虑管板的强度和清理管子外表时所需的方法,其大小还与管子在管板上的固定方式有关。大量的实践证明,最小管间距的经验值为:

焊接法

胀接法,一般取(1.3~1.5)

管束最外层管子中心距壳体内表面距离不小于。

5、壳体的计算。

列管换热器壳体的内径应等于或稍大于(对于浮头式换热器)管板的直径,可由式(2-9)进行计算。

Di=a(b-1)+2L(2-9)

式中Di-壳体内径,mm;

a-管间距,mm;

b-最外层六边形对角线上的管子数;

L-最外层管子中心到壳体内壁的距离,一般取L=(1~1.5),mm;若对管子分程则Di=f+2L

f值的确定方法:可查表求取,也可用作图法。当已知管子数n和管间距a 后开始按正三角形排列,直至排好n根为止,再统计对角线上的管数。

计算出的壳径Di要圆整到容器的标准尺寸系列内。

第三节列管式换热器机械设计

在化工企业中列管式换热器的类型很多,如板式,套管式,蜗壳式,列管式。其中列管式换热器虽在热效率、紧凑性、金属消耗量等方面均不如板式换热器,但它却具有结构坚固、可靠程度高、适应性强、材料范围广等特点,因此成为石油、化工生产中,尤其是高温、高压和大型换热器的主要结构形式。

列管式换热器主要有固定管板式换热器、浮头式换热器、填函式换热器和U 型管式换热器,而其中固定管板式换热器由于结构简单,造价低,因此应用最普遍。

列管式换热器机械设计包括:

1、壳体直径的决定和壳体壁厚的计算。

2、换热器封头选择。

3、压力容器法兰选择。

4、管板尺寸确定。

5、管子拉脱力的计算。

6、折流板的选择与计算。

7、温差应力的计算。

8、接管、接管法兰选择及开孔补强等。

9绘制主要零部件图和装配图。

下面分述如下:

一、壳体直径的决定和壳体壁厚的计算。

1、已知条件:由工艺设计知管程和壳程介质种类、温度、压力、壳与壁温差、以及换热面积。

2、计算

(1)管子数n:

列管换热器常用无缝钢管,规格如下:

管子材质的选择依据是介质种类,如果介质无腐蚀,可选碳钢,而介质有腐蚀则选择不绣钢。管长规格有1500,2000,2500,3000,4500,5000,6000,7500,9000,12000mm。

n=A/(pdmL),其中A—换热面积(m2);

L—换热管长度mm;

dm—管子的平均直径mm。

由于在列管式换热器中要安装4根或6根拉杆。所以实际换热管子数为

{n-4(6)}根。

(2)管子排列方式,管间距确定。

管子排列方式一般在程内采用正三角形排列,而在程与程之间采用正方形排列。管间距根据最小管间距选择。

最小管间距

(3)换热器壳体直径的确定

壳体直径计算公式:当采用正三角形排列时为Di=a(b-1)+2L

式中Di—换热器内径;

a—管间距;

b—正三角形对角线上的管子数;

L—最外层管子的中心到壳壁边缘的距离。

若对管子进行分程则Di=f+2L

式中f—壳体同一内直径两端管子中心距mm;

Di、L同上。

计算出Di后还要圆整到公称直径系列中。

(4)换热器壳体壁厚的计算

计算壁厚为S=PDi/(2[σ]tΦ-P)

式中P—设计压力,MPa;当P﹤0.6MPa时,取P=0.6MPa;

Di—壳体内径,mm;

Φ—焊缝系数,根据焊缝情况选取Φ=0.85-1.0;

[σ]t—壳体材质在设计温度时的许用应力,MPa。

材质选取原则同管子的选取原则一样。

计算出S后还要根据钢板厚度负偏差表选取钢板厚度负偏差C1;根据腐蚀情况选取腐蚀裕量C2,C2=KaB其中Ka为腐蚀速度(mm/a),B为容器的设计寿命。

当材料的腐蚀速度为0.05~0.1mm/a时,单面腐蚀取C2=1~2mm,双面腐蚀取C2=2~4mm。

当材料的腐蚀速度小于或等于0.05mm/a时,单面腐蚀取C2=1mm,双面腐蚀取C2=2mm。

对于不锈钢,当介质的腐蚀性极微时可取C2=0。

最后将S+C1+C2圆整到钢板厚度系列中去,所以总厚度Sn=S+C1+C1+C',

C'—圆整值。

二、换热器封头选择

各种封头型式均可选用,但应用最多的是标准椭圆形封头,目前已有标准系列。使用时可查JB-1154-73标准。见附录1。

三、容器法兰的选择

1、材质:根据容器接触介质和温度、压力条件确定。

2、法兰类型:可供选择的容器法兰有三种,即甲型平焊法兰、乙型平焊法兰和长颈对焊法兰。其标准号为JB4700~4707—92,见附录2。

四、管板尺寸确定

选用固定式换热器管板,并兼作法兰。推荐采用《钢制列管式固定管板换热器结构设计手册》中有关内容。见附录3。

五、拉脱力计算

拉脱力的定义是管子每平方米胀接周边上所受到的力。对于管子与管板是焊接联接的接头,实验表明,接头的强度高于管子本身与金属的强度,拉脱力不足以引起接头的破坏;但对于管子与管板是胀接的接头,拉脱力则可能引起接头处和密封性的破坏,或使管子拉脱,为保证管端与管板牢固地连接和良好的密封性能,必须进行拉脱力的校核。

1、在操作情况下管子或壳体中的温差轴向力为

F=[at(tt-to)-as(ts-to)]/[1/EtAt+1/EsAs]

式中At、As--换热器管、壳体壁截面积;

at—管材线膨胀系数1/℃;

as—壳材线膨胀系数1/℃;

to—安装时温度℃;

tt—操作状态下温度℃。

在管子及壳体中的温差应力为:st=F/At;

ss=F/As

2、在操作压力下,每平方米胀接周边上所受到的力Qq=Pf/(pdoL) 式中P={管程压力Pt或壳程压力Ps}中大者

f=0.866a2-p/4,三角形排列

=a2-p/4,正方形排列,a--管间距

3、在温差应力作用下管子每平方米胀接周边上所受到的力Qq:

Qq=st.at/pdoL=st(-)/4doL

式中st—管子中的温差应力;

at—每根管子管壁横截面积,mm2;

、—管子外、内径mm。

Qq与Qt可能同向亦可能反向

同向时:q=Qq+Qt

反向时:q=|Qq-Qt|

方向确定原则:①当Pt>Ps,且tt>ts,则同向

②当Pt

③当Pt>Ps,且tt

④当Ptts,则反向

4、许用拉脱力:MPa

换热管与管板换热型式许用拉脱力[q]

管端不卷边管板孔不开槽胀接2.0MPa

管端卷边管板孔开槽胀接4.0MPa

5、是否设置膨胀节判据:当q3[q]时需设置膨胀节,否则不必设置。

六、膨胀节的选择

1、膨胀节的补偿量

为了保证膨胀节在完全弹性的条件下安全工作,它的补偿量是有限度的。在附录中给出了用不同材料制的单层、单波具有标准尺寸的膨胀节的允许补偿量[DL]。根据换热器工作时的壳壁温度ts,管壁温度tt,安装温度to,以及壳体和管子的线膨胀系数,可以算出换热器所需要的热变形补偿量[DLtc]:

[DLtc]=〔αt(tt-to)-αs(tt-to)〕L

若[DLtc]<[DL],用一个单波膨胀节。

若[DLtc]>[DL],用两个或两个以上的膨胀节。

2、膨胀节的结构尺寸

波形膨胀节的结构及尺寸见附录3,公称压力在2.5MPa以下,公称直径不超过2000mm的膨胀节,已有标准,附录3给出了标准膨胀节的几何尺寸。

七、折流挡板设计

折流板具有提高壳程内流体的流速,加强湍流程度,提高传热效率和支承换热管的作用。折流板具有横向和纵向之分,折流板形式、折流板最小壁厚、折流板最大间距、最小间距、折流板外径,拉杆直径和数量见《化工设备机械基础》有关内容。

八、开孔补强

当换热器壳体和封头上的接管处需要补强时,常用的结构是在开孔外面焊上一块与容器器壁材料和厚度相同的标准补强圈。

九、接管法兰选取参见标准HGJ44~76--91。

十、支座

换热器支座可选裙座或双鞍式支座。其中鞍式支座设计参见标准

JB/T4712-92。

十一、画出装配图,按化工制图要求绘制。

(完整版)气气热管换热器计算书

热管换热器设计计算 1 确定换热器工作参数 1.1 确定烟气进出口温度t 1,t 2,烟气流量V ,空气出口温度t 2c ,饱和蒸汽压力 p c .对于热管式换热器,t 1范围一般在250C ~600C 之间,对于普通水-碳钢热管的工作温度应控制在300C 以下.t 2的选定要避免烟气结露形成 灰堵及低温腐蚀,一般不低于180C .空气入口温度t 1c .所选取的各参数值 如下: 2 确定换热器结构参数 2.1 确定所选用的热管类型 烟气定性温度: t f = t 1+t 22 = 420°C+200°C 2 =310°C 在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的平均值所得出: 烟气入口处: t i =t 1+t 2 c ×45 =420°C+152°C×4 5 =180°C 烟气出口处:t o = t 2+t 1 c ×45 = 200°C+20°C×4 5 =56°C 选取钢-水重力热管,其工作介质为水,工作温度为30C ~250C o o ,满足要求,其相容壳体材料:铜、碳钢(内壁经化学处理)。

2.2 确定热管尺寸 对于管径的选择,由音速极限确定所需的管径 d v =1.64√ Q c r(ρv p v )12 根据参考文献《热管技能技术》,音速限功率参考范围,取C Q 4kW ,在t o =56°C 启动时 ρv =0.1113kg/m 3 p v =0.165×105pa r =2367.4kJ/kg 因此 d v =1.64√ Q c r(ρv p v )1 2 =10.3mm 由携带极限确定所要求的管径 d v =√ 1.78×Q ent π? r(ρL ?14 ?+ρv ?1 4?)?2[gδ(ρL ? ρv ]14 ? 根据参考文献《热管技能技术》,携带限功率参考范围,取4Q ent kw 管内工作温度 t i =180℃时 ρL =886.9kg/m 3 ρv =5.160kg/m 3 r =2013kJ/kg 4431.010/N m 因此 d v =√ 1.78×4 π×2013×(886.9?14?+5.16?14?)?2[g×431.0×10?4(886.9?5.160)]1 4 ? =13.6mm 考虑到安全因素,最后选定热管的内径为 m m 22d i 管壳厚度计算由式 ] [200d P S i V 式中,V P 按水钢热管的许用压力228.5/kg mm 选取,由对应的许用230C 来选取管壳最大应力2MAX 14kg/mm ,而 2MAX 1 [] 3.5/4 kg mm

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

波节换热管

不锈钢波节换热管 不锈钢波节换热管 不锈钢波节换热管是取代列管的一种新型高效换热管。用它制作的波节管换热器具有以下优点。 传热系数高 传热系数是换热设备的一个重要技术指标,强化换热表面的对流传热是提高传热系数的有效措施。波节管换热器的强化传热是通过其独特的超薄壁波节管来实现的,波节管是一种由大小圆弧连续相切,内外形如波纹状的薄壁管子,其波峰与波谷间的高差使流体受到了强烈的扰动,这种扰动来自管内外流体的三维运动,因此其扰动的程度更为强烈和彻底,即使流体流速很低,也能使其成为湍流状态,同时管壁薄温度梯度小,大大降低管壁热阻,提高了管内外换热系数,从而使总的传热系数提高。一般对水—水传热而言可达 1500-3500Kcal /㎡.h.℃,汽—水可达2500-5000 Kcal /㎡.h.℃,其换热效率是一般列管换热器的三倍。 耐高温、能承受较大温差、压差 波节管虽壁很薄 (0.5-0.8mm),由于它采用了特殊的自由成型工艺及独特的圆弧外形,使其承压能力大大提高,实验室测得波节管单向破坏压力一般为20Mpa左右,实际使用时压力控制在6.4Mpa以下还是很安全的。同时波节管换热器采用不锈钢材料能适应较高工作温度,最高可达450℃,且波纹管是一种柔性元件,具有一定的热补偿能力,对较大工作温差工况,适应性好,设备热应力小,较普通列管有着明显优势。 防垢、除垢功能强 换热器结垢、腐蚀、堵塞一直是个较难解决的问题,特别是在水质条件差、水处理效果不佳,气体介质中含杂质或化学反应易生成结垢物的情况下,这一问题尤为突出。轻者换热器功能下降、工况恶化、阻力增大、能耗增加,重者换热器堵死无法运行,因此换热器维护、清洗或更新的工作量增大。 波节管换热器的不锈钢波节管,由于采用的是不锈钢优质材料,本身抗腐蚀,更主要的是波节管特殊的内外波形,湍流介质不断冲刷换热管的内外表面,污垢很难在表面存积,即使结垢,由于波节管是一种柔性元件,在工作过程中受到温差的作用后,波节管各部分的曲率不断地变化,尽管这种曲率变化带来的变形不是很大,但污垢和金属波节管的线膨胀系数相差很大,因此污垢与波节管表面之间将产生一个较大的拉脱力,足以使垢脱落实现自动清理、自动除垢,特别这一点是列管及其它换热器所无法相比的。 应力分布均匀、防腐蚀能力强

换热器课程设计

课程实训任务书 课程石油装备设计综合实训 题目炼油厂柴油换热器的选用和设计 主要内容: 1.液化气工艺概述; 2.换热器的工艺计算; 3.换热器的结构设计; 4.换热器的强度校核; 5.换热器的结果汇总。 设计条件: 炼油厂用原油将柴油从1750C冷却至1300C,柴油流量为12500kg/h;原油初温为700C,经换热后升温到1100C。换热器的热损失可忽略。操作压力为60KPa 管、壳程阻力压降均不大于30KPa。污垢热阻均取0.0003Pa s。 主要参考资料: [1] GB150-2011,压力容器[S] . [2]郑津洋,董其伍,桑芝富.过程设备设计[M] .北京:化学工业出版社,2010. [3]JB 4731-2005,钢制卧式容器[S] . [4]JB4712-2007,容器支座[S]. [5] JB 4715-1992,固定管板式换热器型式与基本参数[S]. 完成期限2013年3月24日 指导教师 专业负责人 2013年2月25日

目录 第1章液化气工艺及流程图概述 (1) 1.1液化石油气工艺概述 (1) 1.1.1液化石油气的特点 (1) 1.1.2液化石油气的来源 (1) 1.1.3液化石油气的提取 (2) 第2章列管式换热器的选用与工艺设计 (4) 2.1列管式换热器的概述 (4) 2.2 初算换热器的传热面积 (4) 2.3主要工艺及结构基本参数的计算 (6) 2.4管、壳程压强降的校验 (9) 2.5总传热系数的校验 (12) 2.6列出所涉及换热器的结构基本参数 (14) 第3章换热器的结构设计 (15) 3.1 筒体部分计算 (15) 3.2 椭圆封头厚度 (16) 3.3 管板选取 (17) 3.4 法兰选取 (17) 3.5 鞍式支座 (19) 3.6 接管 (19) 第4章换热器的强度校核 (21) 4.1 计算容器重量载荷的支座反力 (21) 4.2 筒体轴向应力验算 (21) 4.3 鞍座处的切向剪应力校核 (23) 4.4 鞍座处筒体周向应力验算 (24) 第5章设计结果汇总 (26) 参考文献 (27)

换热器设计计算范例

列管式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。根据 传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换 热器必须通过试差计算,按以下步骤进行。 ◎初选换热器的规格尺寸 ◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式, 重新计算。 ◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 估。 ◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排 列。◎计算管、壳程阻力 在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计 算,直到合理为止。 ◎核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 ◎计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的 计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18 设计条件数据 物料流量 kg/h 组成(含乙醇量) mol% 温度℃操作压力 MPa 进口出口 釜液 3.31450.9

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

换热器计算

换热器计算的设计型和操作型问题--传热过程计算 与换热器 日期:2005-12-28 18:04:55 来源:来自网络查看:[大中小] 作者:椴木杉热度: 944 在工程应用上,对换热器的计算可分为两种类型:一类是设计型计算(或称为设计计算),即根据生产要求的传热速率和工艺条件,确定其所需换热器的传热面积及其他有关尺寸,进而设计或选用换热器;另一类是操作型计算(或称为校核计算),即根据给定换热器的结构参数及冷、热流体进入换热器的初始条件,通过计算判断一个换热器是否能满足生产要求或预测生产过程中某些参数(如流体的流量、初温等)的变化对换热器传热能力的影响。两类计算所依据的基本方程都是热量衡算方程和传热速率方程,计算方法有对数平均温差(LMTD)法和传热效率-传热单元数(e-NTU)法两种。 一、设计型计算 设计型计算一般是指根据给定的换热任务,通常已知冷、热流体的流量以及冷、热流体进出口端四个温度中的任意三个。当选定换热表面几何情况及流体的流动排布型式后计算传热面积,并进一步作结构设计,或者合理地选择换热器的型号。 对于设计型计算,既可以采用对数平均温差法,也可以采用传热效率-传热单元数法,其计算一般步骤如表5-2所示。 表5-2 设计型计算的计算步骤

体进出口温度计算参数P 、R ; 4. 由计算的P 、R 值以及流动排布型式,由j-P 、R 曲线确定温度修正系数j ;5.由热量衡算方程计算传热速率Q ,由端部温度计算逆流时的对数平均温差Δtm ; 6.由传热速率方程计算传热面积 。 体进出口温度计算参数e 、CR ; 4.由计算的e 、 CR 值确定NTU 。由选定的流动排布型式查取 e-NTU 算图。可能需由e-NTU 关系反复计算 NTU ;5.计算所需的传热面积 。 例5-4 一列管式换热器中,苯在换热器的管内流动,流量为 kg/s ,由80℃冷却至30℃;冷却水在管间与苯呈逆流流动,冷却水进口温度为20℃,出口温度不超过50℃。若已知换热器的传热系数为470 W/(m2·℃),苯的平均比热为1900 J/(kg·℃)。若忽略换热器的散热损失,试分别采用对数平均温差法和传热效率-传热单元数法计算所需要的传热面积。 解 (1)对数平均温差法 由热量衡算方程,换热器的传热速率为 苯与冷却水之间的平均传热温差为 由传热速率方程,换热器的传热面积为 A = Q/KΔt m = = m 3 (2)传热效率-传热单元数法 苯侧 (m C ph ) = *1900 = 2375 W/℃ 冷却水侧 (m c C pc ) =(m h C ph )(t h1-t h2)/(t c1-t c2) =2375*(80-30)/(50-20)= W/℃ 因此, (m C p )min=(m h C ph )=2375 W/℃ 由式(5-29),可得

换热器计算程序+++

换热器计算程序 2.1设计原始数据 表2—1 名称设计压力设计温度介质流量容器类别设计规范单位Mpa ℃/ Kg/h / / 壳侧7.22 420/295 蒸汽、水III GB150 管侧28 310/330 水60000 GB150 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 N (10)计算管数 T (11)校核管内流速,确定管程数 D和壳程挡板形式及数量等 (12)画出排管图,确定壳径 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。 对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 密度ρ i- =709.7 ㎏/m3 定压比热容c pi =5.495 kJ/㎏.K 热导率λ i =0.5507 W/m.℃ 粘度μ i =85.49μPa.s 普朗特数Pr=0.853 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:1320103090 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度32.5℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 1.1热量传递的概念与意义 1.1.1热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

列管式换热器课程设计(含有CAD格式流程图和换热器图)

X X X X 大学 《材料工程原理B》课程设计 设计题目: 5.5×104t/y热水冷却换热器设计 专业: ----------------------------- 班级: ------------- 学号: ----------- 姓名: ---- 日期: --------------- 指导教师: ---------- 设计成绩:日期:

换热器设计任务书

目录 1.设计方案简介 2.工艺流程简介 3.工艺计算和主体设备设计 4.设计结果概要 5.附图 6.参考文献

1.设计方案简介 1.1列管式换热器的类型 根据列管式换热器的结构特点,主要分为以下四种。以下根据本次的设计要求,介绍几种常见的列管式换热器。 (1)固定管板式换热器 这类换热器如图1-1所示。固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。 (2)U型管换热器 U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。 (3)浮头式换热器 浮头式换热器的结构如下图1-3所示。其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。其缺点是结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

气气热管换热器计算书

热管换热器设计计算 1确定换热器工作参数 1.1确定烟气进出口温度ti,t3,烟气流量V,空气出口温度頁,饱和蒸汽压力 Pc?对于热管式换热器,ti范圉一般在250°C?600°C之间,对于普通水- 碳钢热管的工作温度应控制在300°C以下.t2的选定要避免烟气结露形成 灰堵及低温腐蚀,一般不低于180°C.空气入口温度的.所选取的各参数值如下: 2确定换热器结构参数 2.1确定所选用的热管类型 烟气定性温度:f 宇_4沁;2沁=310比 在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的 半均值所得出: 烟气入口处:q =如+営=420?c+严z = 18O°C 烟气出口处:. t2+tiX4 200°C+20°Cx4 l° 5 5 C 选取钢-水重力热管.其工作介质为水.工作温度为30OC~250°C?满足要求.其相容壳体材料:铜.碳钢(内壁经化学处理)。

2.2确定热管尺寸 对于管径的选择,由音速极限确定所需的管径 d v = 1.64 Qc t J厂9必)2 根据参考文献《热管技能技术》,音速限功率参考范闱,取Qc=4kW,在 10 = 56吃启动时 p v = O.1113k^/7H3 p v = 0.165 X 105pa r = 2367.4幼/kg 因此d v = 1.64 I ! = 10.3 mm yr(p v p v)l 由携带极限确定所要求的管径 d _ I 1.78 X Qent P Ji (P L"1/4+P V~1/4)_2^(P L -Pv]1/4 根据参考文献《热管技能技术》,携带限功率参考范围,取Q ent=4kw 管内工作温度t t = 180°C时 P L = 886.9kg/m3 pv = 5.160/c^/m3 r = 20\3kJ/kg J = 431.0xl0^N/m 178x4 因此 nx20L3x(8Q6.^i/4+SA6^i/4)-2 [gX431.0xl0-4(886.9-5.160)]1/4 =13.6nun 考虑到安全因素,最后选定热管的内径为 4 = 22111111 管売厚度计算由式 Pv4 20qcr] 式中,Pv按水钢热管的许用压力28.5kg /nmr选取,由对应的许用230°C來选 取管壳最大应力乐朋=14kg/nim2,而 [

管壳式换热器设计讲解

目录 任务书 (2) 摘要 (4) 说明书正文 (5) 一、设计题目及原始数据 (5) 1.原始数据 (5) 2.设计题目 (5) 二、结构计算 (5) 三、传热计算 (7) 四、阻力计算 (8) 五、强度计算 (9) 1.冷却水水管 (9) 2.制冷剂进出口管径 (9) 3.管板 (10) 4支座 (10) 5.密封垫片 (10) 6.螺钉 (10) 6.1螺钉载荷 (10) 6.2螺钉面积 (10) 6.3螺钉的设计载荷 (10) 7.端盖 (11) 六、实习心得 (11) 七、参考文献 (12) 八、附图

广东工业大学课程设计任务书 题目名称 35KW 壳管冷凝器 学生学院 材料与能源学院 专业班级 热能与动力工程制冷xx 班 姓 名 xx 学 号 xxxx 一、课程设计的内容 设计一台如题目名称所示的换热器。给定原始参数: 1. 换热器的换热量Q= 35 kw; 2. 给定制冷剂 R22 ; 3. 制冷剂温度 t k =40℃ 4. 冷却水的进出口温度 '0132t C =" 0136t C = 二、课程设计的要求与数据 1)学生独立完成设计。 2)换热器设计要结构合理,设计计算正确。(换热器的传热计算, 换热面积计 算, 换热器的结构布置, 流体流动阻力的计算)。 3)图纸要求:图面整洁、布局合理,线条粗细分明,符号国家标准,尺寸标注规范,使用计算机绘图。 4)说明书要求: 文字要求:文字通顺,语言流畅,书写工整,层次分明,用计算机打印。 格式要求: (1)课程设计封面;(2)任务书;(3)摘要;(4)目录;(5)正文,包括设计的主要参数、热力计算、传热计算、换热器结构尺寸计算布置及阻力计算等设计过程;对所设计的换热器总体结构的讨论分析;正文数据和公式要有文献来源编号、心得体会等;(6)参考文献。 三、课程设计应完成的工作 1)按照设计计算结果,编写详细设计说明书1份; 2)绘制换热器的装配图1张,拆画关键部件零件图1~2张。

波节管换热器计算例题(国家容标委提供)

锅炉压力容器标准案例 案例编号CC-003-1 材料牌号奥氏体不锈钢 案例名称奥氏体不锈钢波纹管换热器设计 适用标准GB151-1999《管壳式换热器》 批准日期2004年3月10日失效日期2009年3月10日 咨询: 当采用奥氏体不锈钢波纹管(简称波纹管)作为换热管时,换热器应如何设计? 回复: 本案例提供了波纹管换热器的设计方法。给出了有关波纹换热管设计参数的确定方法,供设计参考,其余部分仍按GB 151—1999《管壳式换热器》的有关规定执行。 一、案例 1 适用范围 1.1 本案例适用于换热管为奥氏体不锈钢波纹管的管壳式换热器(以下简称为波纹管换热器)的设计。 1.2 对本案例未作规定者,还应符合GB 151—1999各有关章节的要求。 1.3 本案例适用换热器的公称压力PN≤4.0MPa;波纹换热管的公称直径(波峰/波谷的外径)Φ32/25mm、Φ42/33mm;折流板最大间距为波纹管管坯(波谷)外径的25倍。 1.4 计算换热面积,以波纹换热管外表面积为基础,扣除伸入管板内的换热管长度,计算得到的管束外表面积(m2)。表1给出了一个波距波纹管的外表面积。(第三章附件4给出了波纹管外表面积计算方法)。 1.5 未经固溶化处理的管坯制成的波纹管,不得用于有应力腐蚀的场合。 2 换热管材料 换热管材料应符合下列标准中较高级(或高级)冷轧管或普通级冷轧管的技术要求。 GB 13296—1991 锅炉、热交换器用不锈钢无缝钢管 GB/T 14976—1994 流体输送用不锈钢无缝钢管 3 波纹换热管设计 本设计规定了波纹换热管的结构形式、许用内压力、许用外压力、轴向刚度及稳定许用压应力的设计计算。波纹换热管是由波纹管和接头两部分组成,其结构尺寸如图1所示。 3.1 符号 A——单根管管壁金属横截面积,mm 2 ; A =πδt (d1-δt) B——系数,按GB 150中第6章方法确定; C——许用内压系数,C=0.25 C r——系数;

管壳式换热器设计-课程设计

一、课程设计题目 管壳式换热器的设计 二、课程设计内容 1.管壳式换热器的结构设计 包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表 接管选择、工艺接管管径计算等等。 2. 壳体及封头壁厚计算及其强度、稳定性校核 (1)根据设计压力初定壁厚; (2)确定管板结构、尺寸及拉脱力、温差应力; (3)计算是否安装膨胀节; (4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。 3. 筒体和支座水压试验应力校核 4. 支座结构设计及强度校核 包括:裙座体(采用裙座)、基础环、地脚螺栓 5. 换热器各主要组成部分选材,参数确定。 6. 编写设计说明书一份 7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。 三、设计条件 气体工作压力 管程:半水煤气0.75MPa 壳程:变换气 0.68 MPa 壳、管壁温差55℃,t t >t s 壳程介质温度为220-400℃,管程介质温度为180-370℃。 由工艺计算求得换热面积为140m2,每组增加10 m2。 四、基本要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制; 3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔; 4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。 5.根据设计说明书、图纸、平时表现及答辩综合评分。 五、设计安排

内容化工设备设 计的基本知 识管壳式换热 器的设计计 算 管壳式换热 器结构设计 管壳式换热器 设计制图 设计说明书的 撰写 设计人李海鹏 吴彦晨 王宜高 六、说明书的内容 1.符号说明 2.前言 (1)设计条件; (2)设计依据; (3)设备结构形式概述。 3.材料选择 (1)选择材料的原则; (2)确定各零、部件的材质; (3)确定焊接材料。 4.绘制结构草图 (1)换热器装配图 (2)确定支座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及环向位置,以单线图表示; (3)标注形位尺寸。 (4)写出图纸上的技术要求、技术特性表、接管表、标题明细表等 5.壳体、封头壁厚设计 (1)筒体、封头及支座壁厚设计; (2)焊接接头设计; (3)压力试验验算; 6.标准化零、部件选择及补强计算: (1)接管及法兰选择:根据结构草图统一编制表格。内容包括:代号,PN,DN,法兰密封面形式,法兰标记,用途)。补强计算。 (2)人孔选择:PN,DN,标记或代号。补强计算。 (3)其它标准件选择。 7.结束语:对自己所做的设计进行小结与评价,经验与收获。 8.主要参考资料。 【格式要求】: 1.计算单位一律采用国际单位; 2.计算过程及说明应清楚; 3.所有标准件均要写明标记或代号; 4.设计说明书目录要有序号、内容、页码;

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

板式换热器计算书

终版 曲树明2013-5-22 巨元瀚洋板式换热器工艺计算书 01 用户名称陵县供热公司编号JYR1304018G3 02 项目名称御府花都一期设备号 03 设计人曲树明审核人享成 04 设备型号TH15BW-1.6/150-91 日期2013-4-23 05 设备参数 06 单位回路A 回路B 07 流体名称水水 08 总流量m3/h 104.5 359.1 09 -液体m3/h 104.5 359.1 10 -汽体m3/h 0.0 0.0 11 -不凝气m3/h 0.0 0.0 12 单台流量m3/h 52.3 179.6 13 液相密度/汽相密度kg/m3966.9 / - 990.2 / - 14 比热容kJ/(kg.K) 4.2 4.1765 15 导热系数W/(m.K) 0.677 0.64 16 平均粘度cP 0.32 0.607 17 潜热kJ/kg - - 18 进口温度/出口温度°C 105.0 / 70.0 40.0 / 50.0 19 板间流速m/s 0.18 0.62 20 计算压降/允许压降kPa 1.69 / 50.0 19.39 / 50.0 21 总热负荷kW 4125. 22 富裕量% 108.1 23 换热面积(单台)m240.1 24 并联台数 2 25 总传热系数W /(m2.K) 2598. 26 平均温差°C 41.2 27 结构参数 28 工作压力MPa / / 29 设计压力/试验压力MPa 1.6 /2.08 1.6 /2.08 30 设计温度°C 150.0 150.0 31 流程数 1 1 32 板片数91 (X91) 33 板片厚度mm 0.6 34 净重/工作重量kg 1065 / 1237 35 长/宽/高mm / 36 板片材料316L 37 垫片材料EPDM 38 框架材料Q235-A 39 设计标准/ 接口标准NB/T47004-2009 / JB/T81-1994 40 接口口径DN150 DN150 41 接口材料EPDM Lining EPDM Lining .

换热器课程设计

东南大学成贤学院 课程设计报告 题目冷却异丙苯换热器的设计 课程名称化工原理课程设计 专业制药工程 班级 xx制药xx班 学生姓名 xxx 学号 xxxx 设计地点 xxx

指导教师 xxx 设计起止时间:2018 年8月27日至2018 年9 月14日 目录 课程设计任务书 (1) 一、设计条件 (1) 二、设计说明书的内容 (2) 1.前言 (3) 2.设计方案简介 (5) 2.1换热器的选择 (5) 2.2流程的选择 (5) 2.3物性数据 (5) 3.工艺计算 (6) 3.1试算及换热器选型 (6) 3.1.1计算传热量 (6) 3.1.3计算两流体的平均传热温度 (7) 3.1.4计算P、R值 (7) 3.1.5假设K值 (7) 3.1.6估算面积 (9) 3.1.7管径、管内流速 (9) 3.1.8单程管数 (9) 3.1.9总管数 (9) 3.1.10管子的排列 (10) 3.1.11折流板 (10) 3.2核算传热系数 (10) 3.2.1管程传热系数 (10) 3.2.2壳程传热系数 (11) 3.2.3污垢热阻 (11) 3.2.4总传热系数 (12) 3.2.5计算传热面积 (12) 3 .2.6实际传热面积 (12) 3.3压降计算 (12) 1.管程压降 (12) 2.壳程压降 (13) 3.4核算壁温 (13)

3.5附件 (14) 3.5.1接管 (14) 3.5.2拉杆 (14) 4.换热器结果一览总表 (15) 5.附图 (17) 5.1符号表含义及单位 (17) 5.2管子排列方式 (19) 5.3换热器装置图 (20) 6.参考文献: (20) 7.设计结果概要及致谢 (21) 7.1结果 (21) 7.2致谢 (22)

板式换热器课程设计

船舶柴油机高温淡水冷却器设计 摘要:本文简要介绍了板式换热器的结构、优缺点、设计原理与设计依据,运用对数平均温差法(LMTD)设计了一款船舶柴油机高温淡水板式换热器,并对其进行热力和阻力校核。 关键词:板式换热器对数平均温差板片流程污垢系数 目录 第1章板式换热器基本构造 (3) 1.1 整体结构 (3) 1.2 流程组合方式 (4) 1.3 半片形式及其性能 (5) 1.3.1 常用形式 (5) 1.3.2 特种形式 (5) 1.4 密封垫片 (5) 第2章板式换热器的优缺点及应用 (6) 2.1 优点 (6)

2.2 缺点 (7) 2.3 应用 (7) 第3章板式换热器热力及相关计算 (8) 3.1 确定总传热系数的途径 (8) 3.2 总传热系数的计算 (8) 3.3 传热系数的计算 (11) 3.4垢阻的确定. (11) 第4章计算类型及工程设计一般原则 (12) 4.1 计算的类型 (12) 4.2工程设计、计算的一般原则 (13) 第5章板式换热器热力计算实际应用 (15)

第1章板式换热器基本构造 1.1整体结构 板式换热器的结构相对于板翅式换热器、壳管式换热器和列管式换热器比较简单,它是由板片、密封垫片、固定压紧板、活动压紧板、压紧螺柱和螺母、上下导杆、前支柱等零部件所组成,如图1-1所示: 板片为传热元件,垫片为密封元件,垫片粘贴在板片的垫片槽内。粘贴好垫片的板片,按一定的顺序(如图1-1所示,冷暖板片交叉放置)置于固定压紧板和活动压紧板之间,用压紧螺柱将固定压紧板、板片、活动压紧板夹紧。压紧板、导杆、压紧装置、前支柱统称为板式换热器的框架。按一定规律排列的所有板片,称为板束。在压紧后,相邻板片的触点互相接触,使板片间保持一定的间隙,形成流体的通道。换热介质从固定压紧板、活动压紧板上的接管中出入,并相间地进入板片之间的流体通道,进行热交换。 图1-1所示板式换热器为可拆式板式换热器,其原理就是在上导杆处安装了活动滑轮、顶压装置,在增减板片的时候,可以通过该滑轮调节换热器内可安装板片数量,顶压装置加固整体结构牢固性;而对于一些小型的板式换热器,则没有该装置,而是直接地将固定压紧板和活动压紧板通过导杆固定连接起来,这种结构没有清洗空间,清洗、检查时,板

相关文档
最新文档