数字信号处理作业

数字信号处理作业
数字信号处理作业

数字信号处理滤波器的设计

1 利用MATLAB设计数字滤波器

随着计算机和信息科学的极大发展,信号处理己经逐步发展为一门独立的学科,是信息科学的重要组成部分,在语音处理、图像处理、雷达、航空航天、地质勘探、通信、生物医学等众多领域得到了广泛的应用。信号是数字信号处理领域最基本最重要的概念,信号是信息的载体是信息的物理体现。而数字滤波器作为信号处理一项关键技术是数字信号处理的重要基础,在对信号的过滤、检测、与参数估算等处理过程中,它是使用最为广泛的一种线性系统。数字滤波器按照其冲激响应函数的时域特性,可分为无限长冲激响应(infinite impulse response, IIR)滤波器和有限长冲激响应(finite impulse Response, FIR)滤波器。在满足相同指标下,IIR滤波器的阶数明显小于FIR,硬件实现容易目大大减少了运算量,在不要求严格线性相位的情况下,IIR滤波器的应用相当广泛。

Matlab是一种交互式的以矩阵为基础的软件,它用于科学与工程项日的计算与可视化,它只需要其它编程语言的几分之一的时间即可以解决复杂的数值计算问题。它的强有力也在于那些相对简单的编程功能和提供的非常方便简单的不同学科的工具箱。在设计数字滤波器的也相当方便。

2 IIR 数字滤波器的设计

相对于FIR 数字滤波器,IIR 数字滤波器最突出的有点是:IIR 数字滤波器能够以更低的阶数n 满足相同的技术参数要求。

2.1 IIR 数字滤波器的基本概念

若N 阶递归型数字滤波器的差分方程为

1

()()()M

N

i i i i y n b x n r a y n i ===---∑∑

则IIR 滤波器的系统函数

11

()1M

r

r r N k

k k b z

H Z a z -=-==

+∑∑

从以上的系统函数可知,设IIR 滤波器的任务就是通过计算寻求一个因果、物理上可实现的系统函数H(Z),使其频率响应

()H jw 满足所希望得到的频域指标,即符合给定的通带截止频率、

阻带截止通带衰减和阻带衰减。不难看出,数字滤波器与模拟滤波器的设计思路相仿,其设计实质也是寻找一组系数{,}a b ,去逼近所要求的频率响应,使其在性能上满足预定的技术要求;不同的是模拟滤波器的设计是在S 平面上用数学逼近法去寻找近似的所需特性H(S),而数字滤波器则是在Z 平面寻找合适的H(z)。IIR 数字滤波器的单位响应是无限长的,而模拟滤波器一般都具有无限长的单位脉冲响应,因此与模拟滤波器相匹配。由于模拟滤波器的设计在理论上已十分成熟,因此数字滤波器设计的关键是将

H(S)→H(Z),即利用复值映射将模拟滤波器离散化。

2.2双线性变换法设计数字滤波器

基本设计过程:

(1)将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;

(2)设计过度模拟滤波器;

(3)将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

MATLAB信号处理工具中的各种IIR数字滤波器设计函数都是采用的双线性变换法。

题目1设计一个Butterworth高通数字滤波器,通带边界频率为400Hz,阻带边界频率为300Hz,通带的波纹小于1dB,阻带衰减大于40dB,采样的频率为2000Hz。假设一个信号为x(t)=sin2*pi*f1*t+0.5cos2*pi*f2*t,其中f1=100Hz,f2=500Hz。试将原信号与通过该滤波器的输出信号进行比较。

解:其源程序的代码如下

Fs=2000; %采样频率

wp=400*2/Fs;ws=300*2/Fs; %根据采样频率将滤波器边界频率进行转换

Rp=1;Rs=40; %通带波纹与阻带衰减

Nn=128; %显示滤波器的频率特性的数据长度 [N,Wn]=buttord(wp,ws,Rp,Rs); %求得最小阶数和截止频率

[b,a]=butter(N,Wn,'high'); %设计Butterworth高通滤波器

figure(1)

[H,f]=freqz(b,a,Nn,Fs); %用Nn点绘出频率特性 subplot(2,1,1),plot(f,20*log10(abs(H)));

xlabel('频率/Hz');ylabel('振幅/db');grid on;

subplot(2,1,2),plot(f,180/pi*unwrap(angle(H)))

xlabel('频率/Hz');ylabel('相位/^o');grid on;

n=0:127;

dt=1/Fs;t=n*dt; %时间序列

f1=100;f2=500; %输入信号频率

x=sin(2*pi*f1*t)+0.5*cos(2*pi*f2*t); %输入信号 figure(2)

subplot(2,1,1);

plot(t,x);

title('输入信号')

y=filter(b,a,x);

subplot(2,1,2);

plot(t,y);

title('输入信号')

xlabel('时间/s')

其设计效果如下所示:

0100200300400

5006007008009001000

频率/Hz

振幅/d b

0100200300400

5006007008009001000

频率/Hz

相位/o

图1 高通滤波器效果图

0.01

0.02

0.03

0.04

0.05

0.06

0.07

输入信号

00.010.02

0.030.04

0.05

0.060.07

-0.5

0.5

输入信号

时间/s

图2 信号分离效果图

2.3 冲激相应不变法的IIR 数字滤波器

冲激响应不变法的设计原理是利用数字滤波器的单位抽样响应序列H(Z)来逼近模拟滤波器的冲激响应g(t),按照冲激响应不变法原理,通过模拟滤波器的系统传递函数G(s),可以直接求的数字滤波器的系统函数H(z),其转换步骤如下:

(1)

利用ω=T Ω,将p ω,s ω转换成p Ω,Ω,而p α,s α不变;

(2) 求解低通模拟滤波器的传递函数G(s);

(3)

将模拟滤波器的传递函数G(s)转换为数字滤波器的传递函数H(z)。

题目二 设计模拟低通巴特沃斯滤波器,通带的波纹为Rp=1dB ,通带上限角频率p ω=0.2π,阻带下限角频率 s ω =0.3π,阻带最小衰减s α=15dB ,根据该低通模拟滤波器,利用冲激响应不变法设计响应的数字低通滤波器,并且绘出设计后的数字滤波器的特性曲线。

解:其源程序的代码如下 wp=0.2*pi; ws=0.3*pi; Rp=1; As=15; T=1;

Rip=10^(-Rp/20); Atn=10^(-As/20); OmgP=wp*T; OmgS=ws*T;

[N,OmgC]=buttord(OmgP,OmgS,Rp,As,'s');%选取模拟滤波器的

阶数

[cs,ds]=butter(N,OmgC,'s');%设计所需要的模拟低通滤波器[b,a]=impinvar(cs,ds,T);%应用脉冲响应不变法进行转换[db,mag,pha,grd,w]=freqz_m(b,a);%求得相对、绝对频响及相位、群延迟

subplot(2,2,1);

plot(w/pi,mag);

title('幅频特性');

xlabel('w(pi)');

ylabel('|H(jw)|');

axis([0,1,0,1.1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]); set(gca,'YTickMode','manual','YTick',[0 Atn Rip 1]);

grid

subplot(2,2,2);

plot(w/pi,db);

title('幅频特性(db)');

xlabel('w(/pi)');

ylabel('dB');

axis([0,1,-40,5]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]); set(gca,'YTickMode','manual','YTick',[-40 -As -Rp 0]); grid

subplot(2,2,3);

plot(w/pi,pha/pi);

title('相频特性');

xlabel('w(/pi)');

ylabel('pha(/pi)');

axis([0,1,-1,1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]); grid

subplot(2,2,4);

plot(w/pi,grd);

title('群延迟');

xlabel('w(/pi)');

ylabel('Sample'); axis([0,1,1,12]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]); grid

%所使用的M 文件函数:

function [db,mag,pha,grd,w]=freqz_m(b,a) [H,w]=freqz(b,a,500);%500点的复频响应 mag=abs(H);%绝对幅值响应

db=20*log(mag/max(mag));%相对幅值响应 pha=angle(H);相位响应

grd=grpdelay(b,a,w);%群延迟响应 其滤波图形如下所示:

0.20.3

0.5

1

幅频特性

w(pi)|H (j w )|

0.20.3

0.51

幅频特性(db)

w(/pi)d B 0

0.20.3

0.51

相频特性

w(/pi)

p h a (/p i )

0.20.3

0.51

群延迟

w(/pi)

S a m p l e

图3 模拟低通巴特沃斯滤波器效果图

通过观察图,发现很好的满足了题目所给的要求。

3 FIR数字滤波器的设计

由于IIR数字滤波器能够保留一些模拟滤波器的优良特性,因此应用很广。但是这些特性是以牺牲线性相位为代价的,即用Butterworth、chelbchev和椭圆法设计的数字滤波器逼近理想的滤波器的幅度频率特性,得到的滤波器往往是非线性的。在许多的电子系统中,对幅度频率和线性相位特性都有较高的要求,所以IIR滤波器在这些系统中往往难以胜任。有限长的单位冲激响应(FIR)数字滤波器具有以下的优良特点:

(1)可以在设计任意幅度频率特性滤波器的同时,保证精度、严格的线性相位特性。

(2)FIR数字滤波器的单位冲激响应h(n)是有限长的,可以用一个固定的系统来实现,因而FIR数字滤波器可

以做成因果稳定的系统。

(3)允许设计多通带系统。

3.1窗函数法设计FIR数字滤波器

窗函数法就是设计FIR数字滤波器的一种的方法。它在设计FIR数字滤波器中很有重要的作用,正确地选择窗函数可以提高设计数字滤波器的性能,或者在满足设计要求的情况下,减小FIR 数字滤波器的阶次。常用的窗函数有以下几种:矩形窗(Rectangular),三角窗(Triangular window),汉宁窗(Hanning window),海明窗(Hamming window),切比雪夫窗(Chebyshev window),巴特利特窗(Bartlett window)。

3.2窗函数法设计步骤

根据给定的滤波器技术指标,选择滤波器长度N 和窗函数n ω,使其具有最窄宽度的主瓣和最小的旁瓣。

窗函数法的设计步骤:

1) 给定理想频响函数 ()jw d H e

2) 根据指标选择窗函数。确定窗函数类型的主要依据

过度带宽和阻带最小衰耗的指标;

3) 由()jw d H e 求()a h n ,加窗得 ()h n =()d h n ()n ω 4)检验,由()h n 求()jw H e ,求()jw H e 是否在误差容限之内。

题目3 根据下列技术指标,设计一个FIR 数字低通滤波器: p ω=0.25*pi s ω =0.35*pi

Ap =0.25dB As = 50dB

选择一个适当的窗函数,确定单位冲激响应,绘出所涉

及滤波器的幅度响应。

首先根据窗函数的最小特性表,如下

其源程序代码如下:

clear all;

Wp=0.25*pi;

Ws=0.35*pi;

tr_width=Ws-Wp; %过渡带宽度

N=ceil(6.6*pi/tr_width)+1; %滤波器长度

n=0:1:N-1; %理想低通滤波器的截止频率Wc=(Ws+Wp)/2; %理想低通滤波器的单位冲激响应hd=ideal_lp1(Wc,N); %海明窗

w_ham=(hamming(N))'; %截取得到实际的单位脉冲响应h=hd.*w_ham; %计算实际滤波器的幅度响应[db,mag,pha,w]=freqz_m2(h,[1]);

delta_w=2*pi/1000;

Ap=-(min(db(1:1:Wp/delta_w+1))) %实际通带波纹

As=-round(max(db(Ws/delta_w+1:1:501))) %实际阻带波纹subplot(221)

stem(n,hd)

title('理想单位脉冲hd(n)')

subplot(222)

stem(n,w_ham)

title('海明窗')

subplot(223)

stem(n,h)

title('实际单位脉冲响应hd(n)')

subplot(224)

plot(w/pi,db)

title('幅度响应(dB)')

axis([0,1,-100,10])

grid

%所使用的M文件如下

function[db,mag,pha,w]=freqz_m2(b,a)

[H,w]=freqz(b,a,1000,'whole');

H=(H(1:1:501))';

w=(w(1:1:501))';

mag=abs(H);

db=20*log10((mag+eps)/max(mag));%相对幅值响应

pha=angle(H);%相位响应

运行结果:

34

Ap=

0.0316

As=

52

由此结果知,所设计的低通滤波器为II型滤波器,它的通带波纹和阻带波纹均满足设计要求。

其相应的图形如下所示:

20

40

60

80

20

40

6080

20

40

60

80

实际单位脉冲响应hd(n)00.51

幅度响应(dB)

图4 窗函数滤波器效果图

3.3利用频率采样法设计FIR 滤波器

窗函数设计FIR 数字滤波器是从时域出发,把理想的滤波器的单位取样响应用合适的窗函数截短成为有限长度的()h n ,并使逼近理想的()d h n ,以实现所设计的滤波器的频率响应()jw d H e 逼近理想滤波器的频率响应()jw d H e 。

一个有限长的序列,如果满足频率采样定理,可以通过频率的有限个采样点的值被准确的得以恢复。

题目4 根据下列的技术指标,利用频率抽样方法1,设计一个1型的FIR 数字高通滤波器:

Wp=0.8*pi Ws=0.7*pi Ap=1bB As=40bB

并绘出频率抽样响应以及所设计滤波器的单位冲激响应和幅度响

应图。

选择N=61, 则Wp位于k=24,Ws位于k=21,并令T1=0.1095,T2=0.598

解:程序设计如下

clear all;

N=61;

T1=0.1095;

T2=0.598;

alpha=(N-1)/2;

l=0:N-1;

w1=(2*pi/N)*l;

Hrs=[zeros(1,22),T1,T2,ones(1,14),T2,T1,zeros(1,21)]; Hdr=[0,0,1,1];

wd1=[0,0.75,0.75,1];

k1=0:floor((N-1)/2);

k2=floor((N-1)/2)+1:N-1;

angH=[-alpha*(2*pi)/N*k1,alpha*(2*pi)/N*(N-k2)];

Hdk=Hrs.*exp(j*angH);

h=real(ifft(Hdk,N));

[db,mag,pha,w]=freqz_m2(h,l)

[Hr,ww,a,L]=hr_type1(h);

subplot(221)

plot(w1/pi,Hrs,'.',wd1,Hdr)

title('频率样本Hd(k):N=61')

axis([0 1 -0.1 1.2])

subplot(222)

stem(l,h)

title('实际单位脉冲响应h(n)')

subplot(223)

plot(ww/pi,Hr,w1/pi,Hrs,'.')

title('实际振幅响应H(w)')

axis([0 1 -0.1 1.2])

subplot(224)

plot(w/pi,db)

title('幅度响应(db)')

axis([0 1 -80 10]

其运行的图形结果如下:

0.5

1

频率样本Hd(k):N=61

204060

实际单位脉冲响应h(n)

0.5

1

实际振幅响应H(w)

0.51

幅度响应(db)

图5 频率抽样法设计FIR 滤波器

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

数字信号处理实验报告

实验一MATLAB语言的基本使用方法 实验类别:基础性实验 实验目的: (1)了解MATLAB程序设计语言的基本方法,熟悉MATLAB软件运行环境。 (2)掌握创建、保存、打开m文件的方法,掌握设置文件路径的方法。 (3)掌握变量、函数等有关概念,具备初步的将一般数学问题转化为对应计算机模型并进行处理的能力。 (4)掌握二维平面图形的绘制方法,能够使用这些方法进行常用的数据可视化处理。 实验内容和步骤: 1、打开MATLAB,熟悉MATLAB环境。 2、在命令窗口中分别产生3*3全零矩阵,单位矩阵,全1矩阵。 3、学习m文件的建立、保存、打开、运行方法。 4、设有一模拟信号f(t)=1.5sin60πt,取?t=0.001,n=0,1,2,…,N-1进行抽样,得到 序列f(n),编写一个m文件sy1_1.m,分别用stem,plot,subplot等命令绘制32 点序列f(n)(N=32)的图形,给图形加入标注,图注,图例。 5、学习如何利用MATLAB帮助信息。 实验结果及分析: 1)全零矩阵 >> A=zeros(3,3) A = 0 0 0 0 0 0 0 0 0 2)单位矩阵 >> B=eye(3) B = 1 0 0 0 1 0 0 0 1 3)全1矩阵 >> C=ones(3) C = 1 1 1 1 1 1 1 1 1 4)sy1_1.m N=32; n=0:N-1; dt=0.001; t=n*dt; y=1.5*sin(60*pi*t); subplot(2,1,1), plot(t,y); xlabel('t'); ylabel('y=1.5*sin(60*pi*t)'); legend('正弦函数'); title('二维图形'); subplot(2,1,2), stem(t,y) xlabel('t'); ylabel('y=1.5*sin(60*pi*t)'); legend('序列函数'); title('条状图形'); 00.0050.010.0150.020.0250.030.035 t y = 1 . 5 * s i n ( 6 * p i * t ) 二维图形 00.0050.010.0150.020.0250.030.035 t y = 1 . 5 * s i n ( 6 * p i * t ) 条状图形

现代数字信号处理仿真作业

现代数字信号处理仿真作业 1.仿真题3.17 仿真结果及图形: 图 1 基于FFT的自相关函数计算

图 3 周期图法和BT 法估计信号的功率谱 图 2 基于式3.1.2的自相关函数的计算

图 4 利用LD迭代对16阶AR模型的功率谱估计16阶AR模型的系数为: a1=-0.402637623107952-0.919787323662670i; a2=-0.013530139693503+0.024214641171318i; a3=-0.074241889634714-0.088834852915013i; a4=0.027881022353997-0.040734794506749i; a5=0.042128517350786+0.068932699075038i; a6=-0.0042799971761507 + 0.028686095385146i; a7=-0.048427890183189 - 0.019713457742372i; a8=0.0028768633718672 - 0.047990801912420i a9=0.023971346213842+ 0.046436389191530i; a10=0.026025963987732 + 0.046882756497113i; a11= -0.033929397784767 - 0.0053437929619510i; a12=0.0082735406293574 - 0.016133618316269i; a13=0.031893903622978 - 0.013709547028453i ; a14=0.0099274520678052 + 0.022233240051564i; a15=-0.0064643069578642 + 0.014130696335881i; a16=-0.061704614407581- 0.077423818476583i. 仿真程序(3_17): clear all clc %% 产生噪声序列 N=32; %基于FFT的样本长度

数字信号处理作业答案

数字信号处理作业

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~1k X 是周期性的,周期为N ,而)(~2k X 也是周期性的,周期为N 2。试利用)(~1k X 确定)(~2k X 。(76-4)

2. 研究两个周期序列)(~n x 和)(~n y 。)(~n x 具有周期N ,而)(~ n y 具有周期M 。序列)(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~n w 的离散傅里叶级数之系数)(~k W 的周期为MN 。试利用)(~k X 和)(~k Y 求)(~k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000) ()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

现代数字信号处理复习题

现代数字信号处理复习题 一、填空题 1、平稳随机信号是指:概率分布不随时间推移而变化的随机信号,也就是说,平稳随机信号的统计特性与起始 时间无关,只与时间间隔有关。 判断随机信号是否广义平稳的三个条件是: (1)x(t)的均值为与时间无关的常数:C t m x =)( (C 为常数) ; (2)x(t)的自相关函数与起始时间无关,即:)(),(),(ττx i i x j i x R t t R t t R =+=; (3)信号的瞬时功率有限,即:∞<=)0(x x R D 。 高斯白噪声信号是指:噪声的概率密度函数满足正态分布统计特性,同时其功率谱密度函数是常数的一类噪 声信号。 信号的遍历性是指:从随机过程中得到的任一样本函数,好象经历了随机过程的所有可能状态,因此,用一个 样本函数的时间平均就可以代替它的集合平均 。 广义遍历信号x(n)的时间均值的定义为: ,其时间自相关函数的定义为: 。 2、连续随机信号f(t)在区间上的能量E 定义为: 其功率P 定义为: 离散随机信号f(n)在区间 上的能量E 定义为: 其功率P 定义为: 注意:(1)如果信号的能量0

数字信号处理实验报告一

武汉工程大学 数字信号处理实验报告 姓名:周权 学号:1204140228 班级:通信工程02

一、实验设备 计算机,MATLAB语言环境。 二、实验基础理论 1.序列的相关概念 2.常见序列 3.序列的基本运算 4.离散傅里叶变换的相关概念 5.Z变换的相关概念 三、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 四实验目的 认识常用的各种信号,理解其数字表达式和波形表示,掌握在计算机中生成及绘制数字信号波形的方法,掌握序列的简单运算及计算机实现与作用,理解离散时间傅里叶变换,Z变换及它们的性质和信号的频域分

实验一离散时间信号(序列)的产生 代码一 单位样值 x=2; y=1; stem(x,y); title('单位样值 ') 单位阶跃序列 n0=0; n1=-10; n2=10; n=[n1:n2]; x=[(n-n0)>=0]; stem(n,x); xlabel('n'); ylabel('x{n}'); title('单位阶跃序列');

实指数序列 n=[0:10]; x=(0.5).^n; stem(n,x); xlabel('n'); ylabel('x{n}'); title('实指数序列');

正弦序列 n=[-100:100]; x=2*sin(0.05*pi*n); stem(n,x); xlabel('n'); ylabel('x{n}'); title('正弦序列');

随机序列 n=[1:10]; x=rand(1,10); subplot(221); stem(n,x); xlabel('n'); ylabel('x{n}'); title('随机序列');

数字信号处理上机作业

数字信号处理上机作业 学院:电子工程学院 班级:021215 组员:

实验一:信号、系统及系统响应 1、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。 (2) 熟悉时域离散系统的时域特性。 (3) 利用卷积方法观察分析系统的时域特性。 (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。 2、实验原理与方法 (1) 时域采样。 (2) LTI系统的输入输出关系。 3、实验内容及步骤 (1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。 (2) 编制实验用主程序及相应子程序。 ①信号产生子程序,用于产生实验中要用到的下列信号序列: a. xa(t)=A*e^-at *sin(Ω0t)u(t) b. 单位脉冲序列:xb(n)=δ(n) c. 矩形序列: xc(n)=RN(n), N=10 ②系统单位脉冲响应序列产生子程序。本实验要用到两种FIR系统。 a. ha(n)=R10(n); b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) ③有限长序列线性卷积子程序 用于完成两个给定长度的序列的卷积。可以直接调用MATLAB语言中的卷积函数conv。 conv 用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。调用格式如下: y=conv (x, h) 4、实验结果分析 ①分析采样序列的特性。 a. 取采样频率fs=1 kHz,,即T=1 ms。 b. 改变采样频率,fs=300 Hz,观察|X(e^jω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(e^j ω)|曲线。 程序代码如下: close all;clear all;clc; A=50; a=50*sqrt(2)*pi; m=50*sqrt(2)*pi; fs1=1000; fs2=300; fs3=200; T1=1/fs1; T2=1/fs2; T3=1/fs3; N=100;

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

数字信号处理作业+答案讲解

数字信号处理作业 哈尔滨工业大学 2006.10

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~ 1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~ 2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~ 1k X 是周期性的,周期为N ,而)(~ 2k X 也是周期性的,周期为N 2。试利用)(~ 1k X 确定)(~ 2k X 。(76-4)

2. 研究两个周期序列)(~ n x 和)(~ n y 。)(~ n x 具有周期N ,而)(~ n y 具有周期M 。序列 )(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~ n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~ k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~ n w 的离散傅里叶级数之系数)(~ k W 的周期为MN 。试利用)(~ k X 和)(~ k Y 求)(~ k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000)()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

数字信号处理实验作业

实验5 抽样定理 一、实验目的: 1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。 2、进一步加深对时域、频域抽样定理的基本原理的理解。 3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和插公式的编程方法。 二、实验原理: 1、时域抽样与信号的重建 (1)对连续信号进行采样 例5-1 已知一个连续时间信号sin sin(),1Hz 3 ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。 程序清单如下: %分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2; f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 程序运行结果如图5-1所示:

原连续信号和抽样信号 图5-1 (2)连续信号和抽样信号的频谱 由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。 例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。 程序清单如下: dt=0.1;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm; t=-2:dt:2;N=length(t); f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2;N=length(n); f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); wm=2*pi*fs;k=0:N-1; w=k*wm/N;F=f*exp(-j*n'*w)*Ts; subplot(4,1,i+1);plot(w/(2*pi),abs(F)); axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end 程序运行结果如图5-2所示。 由图可见,当满足F s≥2f m条件时,抽样信号的频谱没有混叠现象;当不满足F s≥2f m 条件时,抽样信号的频谱发生了混叠,即图5-2的第二行F s<2f m的频谱图,,在f m=5f0的围,频谱出现了镜像对称的部分。

数字信号处理作业-答案

数字信号处理作业-答案

数字信号处理作业

DFT 习题 1. 如果)(~ n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~ 1 k X 表示)(~ n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~2 k X 表示)(~ n x 的离散傅里叶级数之系数。当然,)(~ 1 k X 是周期性的,周期为N ,而)(~ 2 k X 也是周期性的,周期为N 2。试利用)(~ 1k X 确定)(~ 2 k X 。(76-4)

2. 研究两个周期序列)(~ n x 和)(~ n y 。)(~ n x 具有周期N ,而)(~ n y 具有周期M 。序列)(~ n w 定义为)()()(~~ ~ n y n x n w +=。 a. 证明)(~ n w 是周期性的,周期为MN 。 b. 由于)(~ n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。类似地,由于)(~ n y 的周期为M ,其离散傅里叶级数之系数)(~ k Y 的周期也是M 。)(~n w 的离散傅里叶级数之系数)(~ k W 的周期为MN 。试利用)(~k X 和)(~k Y 求)(~ k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=0 0)()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

数字信号处理第二章上机作业

第二章上机作业 1、ljdt(A,B)函数定义 function ljdt(A,B) p=roots(A); q=roots(B); p=p'; q=q'; x=max(abs([p q 1])); x=x+0.1; y=x; clf hold on axis([-x x -y y]) w=0:pi/300:2*pi; t=exp(i*w); plot(t) axis('square') plot([-x x],[0 0]) plot([0 0],[-y y]) text(0.1,x,'jIm[z]') text(y,1/10,'Re[z]') plot(real(p),imag(p),'x') plot(ral(q),imag(q),'o') title('pole-zero diagram for discrete system') hold off 例2.26 a=[3 -1 0 0 0 1]; b=[1 1]; ljdt(a,b) p=roots(a) q=roots(b) pa=abs(p) 程序运行结果如下: P= 0.7255+0.4633i 0.7255+0.4633i -0.1861+0.7541i -0.1861-0.7541i -0.7455 q=

-1 pa= 0.8608 0.8608 0.7768 0.7768 0.7455 例2.27 b=[0 1 2 1];a=[1 -0.5 -0.005 0.3]; subplot 311 zplane(b,a);xlabel('实部');ylabel('虚部'); num=[0 1 2 1];den=[1 -0.5 -0.005 0.3]; h=impz(num,den); subplot 312

现代数字信号处理习题

1.设()u n 是离散时间平稳随机过程,证明其功率谱()w 0S ≥。 证明:将()u n 通过冲激响应为()h n 的LTI 离散时间系统,设其频率响应()w H 为 ()001,w -w w 0, w -w w H w ???? 输出随机过程()y n 的功率谱为()()()2y S w H w S w = 输出随机过程()y n 的平均功率为()()()00201 1r 022w w y y w w S w dw S w dw π π π+?-?= =?? 当频率宽度w 0???→时,上式可表示为()()()01 r 00y S w w π =?≥ 由于频率0w 是任意的,所以有()w 0 S ≥ 3、已知:状态方程 )()1,()1()1,()(1n n n n x n n F n x ν-Γ+--=观测方程 )()()()(2n n x n C n z ν+= )()]()([111n Q n n E H =νν )()]()([222n Q n n E H =νν 滤波初值 )]0([)|0(0x E x =ξ } )]]0([)0()]][0([)0({[)0(H x E x x E x E P --= 请简述在此已知条件下卡尔曼滤波算法的递推步骤。 解:步骤1 状态一步预测,即 1 *11)|1(?)1,()|(N n n C n x n n F n x ∈--=--∧ ξξ 步骤2 由观测信号z(n)计算新息过程,即 1*11)|(?)()()|(?)()(M n n C n x n C n z n z n z n ∈-=-=--ξξα 步骤3 一步预测误差自相关矩阵 N N H H C n n n Q n n n n F n P n n F n n P *1)1,()1()1,() 1,()1()1,()1,(∈-Γ--Γ+---=- 步骤4 新息过程自相关矩阵M M H C n Q n C n n P n C n A *2)()()1,()()(∈+-= 步骤5 卡尔曼增益M N H C n A n C n n P n K *1)()()1,()(∈-=- 或 )()()()(1 2n Q n C n P n K H -= 步骤6 状态估计 1*1)()()|(?)|(?N n n C n n K n x n x ∈+=-αξξ 步骤7 状态估计自相关矩阵 N N C n n P n C n K I n P *)1,()]()([)(∈--= 或 )()()()]()()[1,()]()([)(2n K n Q n K n C n K I n n P n C n K I n P H H +---= 步骤8 重复步骤1-7,进行递推滤波计算 4、经典谱估计方法:

数字信号处理作业-2012

《数字信号处理Ⅰ》作业 姓名: 学号: 学院: 2012 年春季学期

第一章 时域离散信号和时域离散系统 月 日 一 、判断: 1、数字信号处理和模拟信号处理在方法上是一样的。( ) 2、如果信号的取值和自变量都离散,则称其为模拟信号。( ) 3、如果信号的取值和自变量都离散,则称其为数字信号。( ) 4、时域离散信号就是数字信号。( ) 5、正弦序列都是周期的。( ) 6、序列)n (h )n (x 和的长度分别为N 和M 时,则)n (h )n (x *的长度为N+M 。( ) 7、如果离散系统的单位取样响应绝对可和,则该系统稳定。( ) 8、若满足采样定理,则理想采样信号的频谱是原模拟信号频谱以s Ω(采样频率)为周期进行周期延拓的结果。( ) 9、序列)n (h )n (x 和的元素个数分别为21n n 和,则)n (h )n (x *有(1n n 21-+)个元素。( ) 二、选择 1、R N (n)和u(n)的关系为( ): A. R N (n)=u(n)-u(n-N) B. R N (n)=u(n)+u(n-N) C. R N (n)=u(n)-u(n-N-1) D. R N (n)=u(n)-u(n-N+1) 2、若f(n)和h(n)的长度为别为N 、M ,则f(n)*h(n)的长度为 ( ): A.N+M B.N+M-1 C.N-M D.N-M+1 3、若模拟信号的频率范围为[0,1kHz],对其采样,则奈奎斯特速率为( ): A.4kHz B. 3kHz C.2kHz D.1kHz 4、LTIS 的零状态响应等于激励信号和单位序列响应的( ): A.相乘 B. 相加 C.相减 D.卷积 5、线性系统需满足的条件是( ): A.因果性 B.稳定性 C.齐次性和叠加性 D.时不变性 6、系统y(n)=f(n)+2f(n-1)(初始状态为0)是( ): A. 线性时不变系统 B. 非线性时不变系统 C. 线性时变系统 D. 非线性时变系统

2012《现代数字信号处理》课程复习...

“现代数字信号处理”复习思考题 变换 1.给出DFT的定义和主要性质。 2.DTFT与DFT之间有什么关系? 3.写出FT、DTFT、DFT的数学表达式。 离散时间系统分析 1.说明IIR滤波器的直接型、级联型和并联型结构的主要特点。 2.全通数字滤波器、最小相位滤波器有何特点? 3.线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如何? 4.简述FIR离散时间系统的Lattice结构的特点。 5.简述IIR离散时间系统的Lattice结构的特点。 采样 1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标? 维纳滤波 1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。 2.写出最优滤波器的均方误差表示式。 3.试说明最优滤波器满足正交性原理,即输出误差与输入信号正交。 4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。 5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。 6.维纳滤波理论对信号和系统作了哪些假设和限制? 自适应信号处理 1.如何确定LMS算法的μ值,μ值与算法收敛的关系如何? 2.什么是失调量?它与哪些因素有关? 3.RLS算法如何实现?它与LMS算法有何区别? 4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少? 5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。 功率谱估计 1.为什么偏差为零的估计不一定是正确的估计? 2.什么叫一致估计?它要满足哪些条件? 3.什么叫维拉-辛钦(Wiener-Khinteche)定理? 4.功率谱的两种定义。 5.功率谱有哪些重要性质? 6.平稳随机信号通过线性系统时输入和输出之间的关系。 7.AR模型的正则方程(Yule-Walker方程)的导出。 8.用有限长数据估计自相关函数的估计质量如何? 9.周期图法谱估计的缺点是什么?为什么会产生这些缺点? 10.改进的周期图法谱估计有哪些方法?它们的根据是什么? 11.既然隐含加窗有不利作用,为什么改进周期图法谱估计是还要引用各种窗? 12.经典谱估计和现代谱估计的主要差别在哪里? 13.为什么AR模型谱估计应用比较普遍? 14.对于高斯随机过程最大熵谱估计可归结为什么样的模型? 15.为什么Levison-Durbin快速算法的反射系数的模小于1? 16.什么是前向预测?什么是后向预测? 17.AR模型谱估计自相关法的主要缺点是什么? 18.Burg算法与Levison-Durbin算法的区别有哪些?

数字信号处理第三章作业.pdf

数字信号处理第三章作业 1.(第三章习题3)在图P3-2中表示了两个周期都为6的周期性序列,确定这个两个序列的周期卷积的结果3()x n ,并画出草图。 2.(第三章习题5)如果()x n 是一个具有周期为N 的周期性序列,它也是具有周期为2N 的周期性序列。令~1()X k 表示当()x n 看做是具有周期为N 的周期性序列的DFS 系数。而~2()X k 表示当()x n 看作是具有周期为2N 的周期性序列的DFS 系数。当然~1()X k 是具有周期为N 的周期性序列,而~2()X k 是具有周期为2N 的周期性序列,试根据~1()X k 确定~2()X k 。 3.(第三章习题6) (a )试证明下面列出的周期性序列离散傅里叶级数的对称特性。在证明中,可以利用离散傅里叶级数的定义及任何前面的性质,例如在证明性质③时可以利用性质①和②。 序列 离散傅里叶级数 ① *()x n ~*()X k - ②*()x n - ~*()X k ③Re ()x n ???? ~ e ()X k ④Im ()j x n ???? ~()o X k

(b )根据已在(a )部分证明的性质,证明对于实数周期序列()x n ,离散傅里叶级数的下列对称性质成立。 ①~~Re ()Re ()X k X k ????=-???????? ②~~Im ()Im ()X k X k ????=--???????? ③~~()()X k X k =- ④~~arg ()arg ()X k X k ????=--???????? 4.(第三章习题7)求下列序列的DFT (a) {}11 1-,,,-1 (b) {}1 j 1j -,,,- (c) ()cn 0n 1x n N =≤≤-, (d) 2n ()sin 0n 1x n N N π??=≤≤- ??? , 5.(第三章习题8)计算下列各有限长序列的离散傅立叶变换(假设长度为N ) 1 0)()(0) ()()() ()()(00-≤≤=<<-==N n a n x c N n n n n x b n n x a n δδ 6.(第三章习题9)在图P3-4中表示了一有限长序列)(n x ,画出序列)(1n x 和)(2n x 的草图。(注意:)(1n x 是)(n x 圆周移位两个点) )())(()() ())2(()(442441n R n x n x n R n x n x -=-=

现代信号处理大作业题目+答案

研究生“现代信号处理”课程大型作业 (以下四个题目任选三题做) 1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。 2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。 3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1) Levinson 算法 2) Burg 算法 3) ARMA 模型法 4) MUSIC 算法 4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应: 1 2(2)[1cos( )]1,2,3()20 n n h n W π-?+=?=???其它 式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均 值为零、方差001.02 =v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。试比较基 于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线): 1) 横向/格-梯型结构LMS 算法 2) 横向/格-梯型结构RLS 算法 并分析其结果。

DSP与数字信号处理作业

1、什么是DSP?简述DSPs的特点?简述DSPs与MCU、FPGA、ARM的区别?学习DSP开发需要哪些知识?学习DSP开发需要构建什么开发环境?(15分) 答:(1)DSP是Digital Signal Processing(数字信号处理的理论和方法)的缩写,同时也是Digital Signal Processor(数字信号处理的可编程微处理器)的缩写。通常流过器件的电压、电流信号都是时间上连续的模拟信号,可以通过A/D器件对连续的模拟信号进行采样,转换成时间上离散的脉冲信号,然后对这些脉冲信号量化、编码,转化成由0和1构成的二进制编码,也就是常说的数字信号。DSP能够对这些数字信号进行变换、滤波等处理,还可以进行各种各样复杂的运算,来实现预期的目标。 (2)DSP既然是特别适合于数学信号处理运算的微处理器,那么根据数字信号处理的要求,DSP芯片一般具有下面所述的主要特点:1)程序空间和数据空间分开,CPU可以同时访问指令和数据; 2)在一个指令周期内可以完成一次乘法和一次加法运算; 3)片内具有快速RAM,通常可以通过独立的数据总线在程序空间和数据空间同时访问; 4)具有低开销和无开销循环及跳转的硬件支持; 5)具有快速的中断处理和硬件I/O支持; 6)可以并行执行多个操作; 7)支持流水线操作,使得取址、译码和执行等操作可以重复执行。(3)DSP采用的是哈佛结构,数据空间和存储空间是分开的,通过

独立的数据总线在数据空间和程序空间同时访问。而MCU采用的是冯·诺依曼结构,数据空间和存储空间共用一个存储器空间,通过一组总线(地址总线和数据总线)连接到CPU)。很显然,在运算处理能力上,MCU不如DSP;但是MCU价格便宜,在对性能要求不是很高的情况下,还是很具有优势的。 ARM是Advanced RISC(精简指令集)Machines的缩写是面向低运算市场的RISC微处理器。ARM具有比较强的事务管理功能,适合用来跑跑界面、操作系统等,其优势主要体现在控制方面,像手持设备90%左右的市场份额均被其占有。而DSP的优势是其强大的数据处理能力和较高的运算速度,例如加密/解密、调制/解调等。 FPGA是Field Programmable Gate Array(现场可编程门阵列)的缩写,它是在PAL、GAL、PLD等可编程器件的基础上进一步发展的产物,是专用集成电路中集成度最高的一种。FPGA采用了逻辑单元阵列LCA(Logical Cell Array)的概念,内部包括了可配置逻辑模块CLB、输入/输出模块IOB、内部连线三个部分。用户可以对FPGA内部的逻辑模块和I/O模块进行重置配置,已实现用户自己的逻辑。它还具有静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改。使用FPGA来开发数字电路,可以大大缩短设计时间,减少PCB面积,提高系统的可靠性;同时FPGA可以用VHDL或Verilog HDL来编程,灵活性强。由于FPGA能够进行编程、除错、再编程和重复操作,因此可以充分地进行设计开发和验证。当电路有少量改动时,更能显示出FPGA的优势,其现场编程能力可

现代数字信号处理实验报告

现代数字信号处理实验报告 1、估计随机信号的样本自相关序列。先以白噪声()x n 为例。 (a) 产生零均值单位方差高斯白噪声的1000个样点。 (b)用公式: 999 1?()()()1000x n r k x n x n k ==-∑ 估计()x n 的前100个自相关序列值。与真实的自相关序列()()x r k k δ=相比较,讨论你的估计的精确性。 (c) 将样本数据分成10段,每段100个样点,将所有子段的样本自相关的平均值作为()x n 自相关的估值,即: 999 00 1?()(100)(100) , 0,1,...,991000x m n r k x n m x n k m k ===+-+=∑∑ 与(b)的结果相比,该估计值有什么变化?它更接近真实自相关序列()()x r k k δ=吗? (d)再将1000点的白噪声()x n 通过滤波器1 1 ()10.9H z z -= -产生1000点的y (n ),试重复(b)的工作,估计y (n )的前100个自相关序列值,并与真实的自相关序列()y r k 相比较,讨论你的估计的精确性。 仿真结果: (a)

图1.1零均值单位方差高斯白噪声的1000个样本点 分析图1.1:这1000个样本点是均值近似为0,方差为1的高斯白噪声。(b) 图1.2() x n的前100个自相关序列值 分析上图可知:当k=0时取得峰值,且峰值大小比较接近于1,而当k≠0时估计的自相关值在0附近有小幅度的波动,这与真实自相关序列r (k)=δ(k) x 比较接近,k≠0时估计值非常接近0,说明了估计的结果是比较精确的。

现代数字信号处理仿真作业

现代数字信号处理仿真作业

第三章仿真作业3.17 (1)代码 clear; N=32; m=[-N+1:N-1]; noise=(randn(1,N)+j*randn(1,N))/sqrt(2); f1=0.15; f2=0.17; f3=0.26; SNR1=30; SNR2=30; SNR3=27; A1=10^(SNR1/20); A2=10^(SNR2/20); A3=10^(SNR3/20); signal1=A1*exp(j*2*pi*f1*(0:N-1)); signal2=A2*exp(j*2*pi*f2*(0:N-1)); signal3=A3*exp(j*2*pi*f3*(0:N-1)); un=signal1+signal2+signal3+noise; uk=fft(un,2*N); sk=(1/N) *abs(uk).^2; r0=ifft(sk); r1=[r0(N+2:2*N),r0(1:N)]; r=xcorr(un,N-1,'biased'); figure subplot(2,2,1) stem(m,real(r1)); xlabel('m'); ylabel('FFT估计r1实部'); subplot(2,2,2) stem(m,imag(r1)); xlabel('m'); ylabel('FFT估计r1虚部'); subplot(2,2,3) stem(m,real(r)); xlabel('m'); ylabel('平均估计r实部'); subplot(2,2,4) stem(m,imag(r)); xlabel('m'); ylabel('平均估计r虚部'); 仿真结果

相关文档
最新文档