如何培养学生数学的创造性思维
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学创造性思维的培养
作者何永洁单位桂平市麻垌中学
摘要数学思维是对数学对象(空间形式、数量关系、结构关系等)的本质属性和内部规律的间接反映,并按照一般思维规律认识数学内容的理性活动。数学思维能力主要包括四个方面的内容:1.会观察、实验、比较、猜想、分析、综合、抽象和概括;2.会用归纳、演绎和类比进行推理;3.会合乎逻辑地、准确地阐述自己的思想和观点;4.能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质。
新课标关注的是数学课程目标,它包括:数学素养、数学知识与技能、数学思考、解决问题、情感与态度,注重学生经验、学科知识和社会发展三方面内容的整合,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
那么,在数学课堂教学中应当如何贯彻教学大纲的思想,更加有效地培养学生的数学思维能力呢?以下我们谈谈看法。
一、数学概括能力的培养
数学教学中,应当强调数学的“过程”与“结果”的平衡,要让学生经历数学结论的获得过程,而不是只注意数学活动的结果。这里,“经历数学结论的获得过程”的含义是什么呢?我们认为,其实质是要让学生有机会通过自己的概括活动,去探究和发现数学的规律。
概括是思维的基础。学习和研究数学,能否获得正确的抽象结论,完全取决于概括的过程和概括的水平。数学的概括是一个从具体向抽象、初级向高级发展的过程,概括是有层次的、逐步深入的。随着概括水平的提高,学生的思维从具体形象思维向抽象逻辑思维发展。数学教学中,教师应根据学生思维发展水平和概念的发展过程,及时向学生提出高一级的概括任务,以逐步发展学生的概括能力。
在数学概念、原理的教学中,教师应创设教学情境,为学生提供具有典型性的、数量适当的具体材料,并要给学生的概括活动提供适当的台阶,做好恰当的铺垫,以引导学生猜想、发现并归纳出抽象结论。这里,教师铺设的台阶是否适当,主要看它是否能让学生处于一种“似懂非懂”、“似会非会”、“半生不熟”的状态。猜想实际上是在新旧知识相互作用的过程中,学生对新知识的尝试性掌握。教师设计教学情境时,首先,应当在分析新旧知识间的本质联系与区别的基础上,紧密围绕揭示知识间本质联系这个目的,安排猜想过程,促使学生发现内在规律;其次,应当分析学生已有数学认知结构与新知识之间的关系,并确定同化(顺应)模式,从而确定猜想的主要内容;再次,要尽量设计多种启发路线,在关键步骤上放手让学生猜想,使学生的思维真正经历概括过程。
概括的过程具有螺旋上升、逐步抽象的特点。在学生通过概括获得初步结论后,教师应当引导学生把概括的结论具体化。这是一个应用新获得的知识去解决问题的过程,是对新知识进行正面强化的过程。在这个过程中,学生的认知结构与新结论之间的适应与不适应之间的矛盾最容易暴露,也最容易引起学生形成适应的刺激。
在概括过程中,要重视变式训练的作用,通过变式,使学生达到对新知识认识的全面性;还要重视反思、系统化的作用,通过反思,引导学生回顾数学结论概括的整个思维过程,检查得失,从而加深对数学原理、通性通法的认识;通过系统化,使新知识与
已有认知结构中的相关知识建立横向联系,并概括出带有普遍性的规律,从而推动同化、顺应的深入。
数学的表现方式是形式化的逻辑体系,数学理论的最后确立依赖于根据假定进行抽象概括的能力。因此,教师应当引导学生学会形式抽象,实际上这是一个高层次的概括过程,在这个过程中,学生的逻辑推理能力可以得到很好的培养。
二、学生数学思维受阻的原因
根据个人经验,参考有关资料,我认为学生思维受阻的主要原因有以下几点:
1.数学思想方法缺乏。
由于学习方法的缺乏而严重制约学生的有效思维的状况普遍存在。华东师大二附中的四位学生对高一学生的调查表明,在常用的数学思想方法中,初中学生掌握得最好的是方程思想,知道并会应用的占84.02%,观察与试验的方法、类比与联想的方法知道并会运用的分别占25.68%和24.52%,不知道的分别占42.02%和34.44%。重点中学的学生如此,一般学校可想而知。我部本学期在初三、初四年级开设的“学法讲座”深受学生欢迎。
2.学习目标确定不当。
比如,一份调查显示,学生对于自己“在初中阶段数学学习的要求”选择“名列前茅”的占79.18%,选择“中等水平”的占17.45%。而对自己在高中阶段选择“名列前茅”的占45.46%,选择“中等水平”的占47.05%。许多学生考上高中后,便想喘口气,放松一下学习节奏。在高一学生中,回答“你对学习的感觉”时,感到困难的占52%,一部分学生选择了降低要求的方法,认为自己目前的数学学习状态“良好”的仅占24.06%,认为“一般”的占57.44%,认为“较差”的占18.5%。学习要求的降低,影响了学习效果,使得数学思维发展的速度无法加快。
3.思维惰性造成思维模糊。
一份在“遇到难题的处理方式”的调查中,选择“等老师讲解”的占12%,选择“问同学或问老师”的占52%,选择“继续思考”的只有16%,选择“等以后再解决”的占20%。思维指向模糊主要表现在对关键信息感知把握不准,思维指向性模糊,出思维的惰性。观察只停滞在感知表象中,即使撞上关键信息,也不能加工形成有价值的反馈信息,致使思路受阻,从而懒于动脑,久而久之,养成了思维的惰性。这是学生思维障碍的最普遍原因。
4.思维惯性造成思维机械。
思维的惯性常伴随着思维的惰性而存在。一份问卷调查资料中,有30%的同学在回答“解题时出现错误的原因”选择了“审题不清”这一项。学生在解数学题时,常尚未看清题意,见术语,便罗列公式,生搬硬套;见数据,便代入演算,拼凑解答等。
5.思维线性造成思维中断。
在一份问卷调查中,回答“经常出现思维的方向性错误”的学生占了50%,他们由于思维的单一性,呈线性状态,导致思维过程常常中断而受阻。
6.各学段的衔接不当。
主要表现在三个方面:(1)节奏变化。就一节课的知识容量而言,初中远比不上高中,因而在讲解中就有快慢和粗细之分。这一快一慢,一粗一细两对矛盾就很容易将初中与高中阻隔,产生两极分化,使初高中难以得到系统的响应,从而影响学生数学思维的发展。华东师大二附中的调查:认为高中数学学习节奏比初中快的占82.17%,而觉得慢的同学仅占5.5%。(2)教学方法的差异。有48.07%的学生认为初中数学课大部