各种视频信号格式及端子介绍

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种视频信号格式及端子介绍
RF/A V/SVIDEO/YUV/VGA/RGB/RGBS
/DVI/HDMI/
视频信号是我们接触最多的显示信
号,但您并不一定对各种视频信号有所
了解。

因为国内用到的视频信号格式和
端子非常有限,一般就是复合视频和S
端子,稍高级一些的就是色差及VGA。

对于那些经常接触国外电器和二手设备
的朋友,就会遇到各种希奇古怪的信号
端子,我们也经常接到读者这方面的提问。

请读者注意:我们这里所说的视频信号并不是严格意义上的带宽只有5MHz的视频信号,而是泛指能作为输入输出的显示信号。

本文试图把常用视频信号做一简单叙述,有不全和不对的地方请读者朋友指出。

一、各种视频信号
复合视频信号(Video)
复合视频信号是我们日常生活中最为常见的视频信号,
它在一个传输信号中包含了亮度、色度和同步信号。

由于彩
色编码的不同,复合视频又有PA L、NTSV、SECAM制式
之分。

复合视频信号本身的带宽只有5MHz(NTSC制式带
宽仅4.5MHz),中间又加了彩色副载波信号(NTSC制为
3.58MHz,PA L和SECAM制为
4.43MHz),正好落在亮度
信号带宽之内,占去了一部分亮度信号,又造成亮度和色度
的相互干扰,使得复合视频成为最差的视频信号。

复合视频
信号一般用RCA插头连接,就是通常说的莲花插头,见图
1。

欧洲也用SCA RT接口,老式的视频设备也有用BNC插
头连接。

S视频信号(S-Video)
S视频信号俗称S端子信号,它同时传送两路信号:亮
度信号Y和色度信号C。

由于将亮度和色度分离,所以图象
质量优于复合视频信号,色度对亮度的串扰现象也消失。


于S视频信号亮度带宽没有改变,色度信号仍须解调,所以
其图象质量的提高是有限的,但肯定解决了亮色串扰,消除
图象的爬行现象。

S端子用四芯插头,见图2。

欧洲也用
SCA RT插头,老式的视频设备也有用两个BNC插头连接,
计算机显卡也有用七芯插头,其外形与S端子一样,只是又
包含了复合视频信号。

隔行色差信号(Y、Cr、Cb)
色差信号也叫分量信号(Component Video),同时传
送三路信号:Y是亮度信号,只包含黑白图象信息;Cr是
R-Y信号,即红色信号与亮度信号的差;Cb是B-Y信号,
即蓝色信号与亮度信号的差。

色差信号实际也是亮色分离信
号,与S端子不同的是色度信号不用解调,之所以用R-Y
和B-Y是要避免传输G绿信号,因为G信号占据色度信号
的59%,不利于数据压缩,用R-Y和B-Y通过矩阵运算同
样可以得到G信号。

由于VCD和DVD用的MPEG1和
MPEG2数字压缩信号就是用色差信号编码的,所以色差信
号图象质量大大提高,完全优于S视频信号。

色差信号用
RCA插头,用绿、红、蓝标识,绿代表Y信号,见图3。

逐行色差信号(Y、Pr、Pb)
逐行色差信号含义与逐行色差信号相同,只是对应的是
逐行扫描信号,包含在Y里的行同步信号频率为31KHz,而前述的几种视频信号行频只有15KHz。

逐行色差信号须配具有逐行显示功能的设备,图象质量高于隔行色差信号,主要表现在图象更稳定。

逐行色差所用端子与隔行色差相同,只是C换成P。

RGB信号
我们知道图象中的各种色彩都是由R、G、B三基色组成,显象管电子枪是R、G、B三枪组成,投影机三片液晶板也是R、G、B三色。

R、G、B三路信号中,行、场的同步信号加在G信号中,RGB信号的带宽可以到几十兆,只要显示设备能兼容。

所以RGB信号又优于色差信号,是最好最直接的显示信号。

RGB信号同样也分为逐行和隔行,逐行信号要优于隔行信号。

RGB信号所用端子为RCA插头,欧洲用SCART插头,老式设备用BNC插头。

RGB+S信号
此信号就是在前述的RGB信号基础上,把加在G信号中的同步信号拿出来,再加一个复合同步信号,共四路信号传输。

复合同步信号中包含了水平同步和垂直同步信号。

此信号在老式设备中用的较多,一般用BNC插头。

RGB+Hs、Vs信号
这个信号是在上述信号基础上把复合同步信号分成水平同步信号和垂直同步信号,在老式三枪投影机用的较多,一般用BNC插头。

现在17寸以上的高端显示器也此输入端子。


脑显示用的15针D型VGA插座,就是这5根线起作用。

老式的EGA和CGA显示器行频只有15KHz,用的是9针D型接口。

现代视听设备逐行扫描的RGB+Hs、Vs信号是以VGA 端子输出的,是视频信号的最高级,与电脑640×480分辨率是兼容的。

二、各种视频信号接口及定义
SCA RT端子定义
SCA RT接口见图4。

不同信号有不同的定义,有的设备虽然只有一个SCART口,但通过菜单设置可以定义不同的功能。

表1、2、3分别表示SCA RT口做复合视频、S视频、RGB 信号的定义。

四针和七针S端子
定义四针接口比较常见,七针接口常用在显卡上,见图5和表4。

VGA接口
定义15针VGA接口及定义见图6及表5,9针EGA、CGA接口及定义见图7及表6。

8针多功能接口
这种接口多用在SONY老式投影设备上。

其接口及定义见图8和表7。

10针多功能接口
这种接口一般用在老式JVC摄象机上。

其接口及定义见图9和表8。

常见视频信号传输特性及转换说明
1. 分量视频(Component Signal)
摄像机的光学系统将景像的光束分解为三种基本的彩色:红色、绿色和蓝色。

感光器材再把三种单色图像转换成分离的电信号。

为了识别图像的左边沿和顶部,电信号中附加有同步信息。

显示终端与摄像机的同步信息可以附加在绿色通道上,有时也附加在所有的三个通道,甚至另作为一个或两个独立的通道进行传输,下面是几种常见的同步信号附加模式和表示方法:
- RGsB:同步信号附加在绿色通道,三根75Ω同轴电缆传输。

- RsGsBs:同步信号附加在红、绿、蓝三个通道,三根75Ω同轴电缆传输。

- RGBS:同步信号作为一个独立通道,四根75Ω同轴电缆传输。

- RGBHV:同步信号作为行、场二个独立通道,五根75Ω同轴电缆传输。

RGB分量视频可以产生从摄像机到显示终端的高质量图像,但传输这样的信号至少需要三个独立通道分别处理,使信号具有相同的增益、直流偏置、时间延迟和频率响应,分量视频的传输特性如下:
- 传输介质:3-5根带屏蔽的同轴电缆
- 传输阻抗:75?- 常用接头:3-5×BNC接头
- 接线标准:红色=红基色(R)信号线,绿色=绿基色(G)信号线,蓝色=蓝基色(B)信号线,黑色=行同步(H)信号线,黄色=场同步(V)信号线,公共地=屏蔽网线(见附图VP-03)
2. 复合视频(Composite-Video)
由于分量视频信号各个通道间的增益不等或直流偏置的误差,会使终端显示的彩色产生细微的变化。

同时,可能由于多条传输电缆的长度误差或者采用了不同的传输路径,这将会使彩色信号产生定时偏离,导致图像边缘模糊不清,严重时甚至出现多个分离的图像。

插入NTSC或PAL编解码器使视频信号易于处理而且是沿单线传输,这就是复合视频。

复合视频格式是折中解决长距离传输的方式,色度和亮度共享 4.2MHz(NTSC)或5.0-5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,所以还是要考虑频率响应和定时问题,应当避免使用多级编解码器,复合视频的传输特性如下:
- 传输介质:单根带屏蔽的同轴电缆
- 传输阻抗:75?- 常用接头:BNC接头、莲花(RCA)接头
- 接线标准:插针=同轴信号线,外壳公共地=屏蔽网线(见附图VP-01)
3. 色差信号(Y,R-Y,B-Y)
对视频信号进行处理而传输图像时,RGB分量视频的方式并不是带宽利用率最高的方法,原因是三个分量信号均需要相同的带宽。

人类视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此我们可以将整个带宽用于亮度信息,把剩余可用带宽用于色差信息,以提高信号的带宽利用率。

将视频信号分量处理为亮度和色差信号,可以减少应当传输的信息量。

用一个全带宽亮度通道(Y)表示视频信号的亮度细节,两个色差通道(R-Y和B-Y)的带宽限制在亮度带宽的大约一半,仍可提供足够的彩色信息。

采用这种方法,可以通过简单的线性矩阵实现RGB 与Y,R-Y,B-Y的转换。

色差通道的带宽限制在线性矩阵之后实现,将色差信号恢复为RGB 分量视频显示时,亮度细节按全带宽得以恢复,而彩色细节会限制在可以接受的范围内。

色差信号也有多种不同的格式,有着不同的应用范围,在普遍使用的复合PAL、SECAM 和NTSC制式中,编码系数是各不相同的,见下表:
4. 数字视频(SDI)
数字视频也有多种不同的格式,而且应用在不同的范围,这里指的是“串行数字视频”(Signal-Digital Interface),一般简写为SDI接口。

伽马校正后RGB信号在线性矩阵中变换为一个亮度分量Y和两个色度Pb、Pr。

由于人眼视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此亮度信号Y以较高的带宽(SDTV为5.5MHz)通过传输系统。

亮度信号经过低通滤波后抽样频率为13.5MHz,在A/D 转换器中产生了10 bit的13.5MB/s码流;两路色度信号经过同样的过程后,在A/D转换器中产生了两路10 bit的6.75MB/s码流,三个视频通道经复用形成27MB/s的10 bit并行数据码流(Y,Cb,Cr)。

27MB/s的10 bit并行数据码流送到移位寄存器(串化器),加入时钟和加扰,按照电视规范形成了270Mb/s的串行数据码流(SDI)。

5. 视频格式的转换
视频的不同格式决定了信号在亮度、色度、对比度、锐度、清晰度、最高分辨率等各个方面的表现。

从上述对各种视频格式的分析可以知道,视频高清晰度质量的级别大致可以进行如右的排序(由高往低):
其中,目前最高级别的当选DVI数字视频信号,但存在只能短距离传输的缺点(有效距离约5米),SDI数字视频具备可以编辑和更长距离传输的优点,RGBHV与VGA其实属于统一档次的信号,只是由于信号的组成分量不同而有两种称呼,S-Video比起Video(复合视频的简称)在亮度利用率上有明显的提升,并有效消除了色彩蠕动现象,射频格式是最低级的信号,仅在监控和公共电视的范围应用。

工程应用中经常会面临很多信号格式的转换过程,这些不同格式的信号转换需要遵循那些规则?最终会产生什么效果的影响?一般认为:
低级别格式向高级别格式转换有比较明显的质量提升,比如早期的倍频扫描器或四倍频扫描器,还有目前流行的智能视频调节器,都是Video-RGBHV(复合视频-分量视频)的转换处理,对于提高信号的质量有很明显的改善。

因为这些产品均使用了多比特数字技术,确保信号质量(清晰度、亮度、信噪比)可以进行高度还原。

DVI数字视频通常会转换成SDI或RGBHV,转换后原始信号的清晰度有所损失,但使DVI信号实现了长距离传输;VGA信号转换成RGBHV实际效果并没有得到提升,因为二者同等级别,但解决了VGA信号的同步通用匹配问题,而且能够进行更长距离的传输。

高级别格式向低级别格式(比如VGA转Video)转换的过程,无论对原始信号的任何方面,包括亮度、色度、色彩、对比度、锐度、清晰度、最高分辨率都会造成严重的损失,这种转换没有任何的意义,但早期具备一定的使用价值,比如:把电脑的VGA信号转换成Video进行磁带录像、电视机电视墙显示,或者在视像会议中用于“抓图”传输。

6. 高级别向低级别视频格式的转换缺点
6.1. 固有的扫描抖动
标准视频信号由一组扫描线组成,并不是所有这些线都可见。

在NTSC制式中,可见的线有483条,而在PAL和SECAM制式中有576条。

线数少的电视视频图像,在显示非常小的文字或其它复杂的细节方面受到限制。

相比之下,计算机显示设备的扫描线数可从低分辨率(≤480条) 到高分辩率(≥1280条)。

现在,许多新的计算机显示卡可让用户在几种不同显示分辨率中选择。

显然分辨率越高,文字与图像的细节就显象得越完美。

电视信号是隔行扫描的,意味着每一屏“画面”实际上是由两个半帧构成的,即两个分别由奇数线与偶数线组成的场。

首先奇数线被扫描,然后消隐,接着偶数线被扫描在原奇数线之间。

依次显示又隐去的奇数场和偶数场使具有一定形状的图像易产生明显的抖动,特别是那些细的水平线。

如图:
左图:第一场(奇数线帧)奇数线按从上到下、从左至右扫描
右图:第二场(偶数线帧)偶数线在奇数线之间的位置上,从上到下、从左到右扫描
相反,计算机信号的产生使用的是非隔行扫描的信号,也称为“逐行扫描”方式。

所有扫描线以从上到下,从左到右的顺序一次扫完,不分奇偶帧。

这样就消除了电视系统中由于隔行扫描而带来的图像抖动问题。

6.2. 信号格式兼容性
NTSC、PAL和SECAM是几种常见的标准电视视频信号格式,它们规定了显示图像的线数、色彩信息的定义和扫描线的速度(即刷新频率)。

另外还有许多与这些格式不同的格式,如:复合视频、S-Video和D1(数字)视频,但是所有这些格式都有很多共同点。

例如:它们都是隔行扫描的,扫描线数为483 (NTSC)或576 (PAL和SECAM),都有固定不变的刷新频率。

NTSC制的两个隔行的场组成一帧,每秒钟出现30次(30Hz),对PAL和SECAM 制式来说,每秒钟出现25次(25Hz)。

与电视视频不同,计算机视频信号并没有一个必须遵守的单一标准,可选择的分辨率与刷新频率范围很广,刷新频率一般在60Hz到85Hz之间。

尽管计算机不采用隔行扫描的方式显示图像,但一些显卡提供了隔行扫描显示的功能。

任意情况下,计算机视频信号向监视器传递色度与亮度信息的方式是相同的,所有VGA、SVGA和Mac计算机的视频格式都将红、绿、蓝信息作为单独的信号(分量)进行传递。

因此,这使计算机可以显示很宽的颜色范围而不失真,而最一般的电视视频格式是将红、绿、蓝信息组合为一个单独信号(色度)向监视器传递。

高级别格式向低级别格式转换的过程一般通过扫描转换器实现。

这种技术观念听起来很简单,就算使人认同了设计的理念,在技术上还是有很多需要考虑的因素:- 扫描转换器的计算机输入兼容性
- 兼容计算机的最高分辨率是多少
- 是否需要“同步锁相”
- 扫描转换器的彩色抽样率
- 扫描转换器的编码器的质量如何
- 输出何种格式的视频信号
- 有无内置的测试图案
熟悉计算机分辨率的人都知道视频线数不符合标准的分辨率。

因此将上述信号输入到投影机或显示设备时会带来不兼容的问题,表现为:
- 画面像素点缺损,大部分细节无法重现
- 图像被拉伸或扭曲,仅仅能重现信息的轮郭
- 投影机或显示设备对输入图像进行强制兼容处理,这种附加的处理经常会使图像质量下降(人为因素,类似梯型校正功能)。

另一个局限是由扫描转换器产生的垂直刷新频率,由扫描转换器输出信号的垂直刷新频率最高为60Hz或50Hz,具体取决于输出信号是NTSC还是PAL/SECAM制式,而许多投影机都可以输入和显示更高的刷新频率,提供一个较好的图像质量。

而当使用扫描转换器时,
会使投影机在较低的刷新频率下所显示的图像受到限制。

6.3. 损失投影机的固有分辨率
LCD和DLP投影机或PDP显示设备是经常与扫描转换器或者视频调节器连用的设备,这些设备都用像素来显示图像,所有象素点的数目被称作固有分辨率。

尽管许多投影机可以显示那些分辨率低于固有分辨率的图像,但在固有分辨率下所显示的图像的质量最高。

比如:固有分辨率为1024×768的投影机可以显示分辨率为800×600的画面,但其效果没有显示分辨率为1024×768的图像好,因为分辨率为1024×768图像中的每一个点都对应于固有分辨率为1024×768的投影机的每一个像素点,使颜色的显示非常清晰,没有象显示分辨率为800×600的图像那样需要进行颜色补偿而造成图像清晰度下降。

相关文档
最新文档