高中的平面的几何常用的定理的总结

高中的平面的几何常用的定理的总结
高中的平面的几何常用的定理的总结

(高中)平面几何基础知识(基本定理、基本性质)

1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等

于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.

2.

射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有

)(22222BP AP AC AB +=+; 中线长:222222a c b m

a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C

b B

c A a bc c p b p a p p a h a

sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个

角的两边对应成比例.

如△ABC 中,AD 平分∠BAC ,则AC

AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=

(其中p 为周长一半). 6. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7.

余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一

点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .

10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如

何转化?)

11.弦切角定理:弦切角等于夹弧所对的圆周角.

12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)

13.布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC ⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边.

14.点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d2-r2就是点P对于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA·PB= |d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.

15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.

16.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE交AB于P、Q,求证:MP=QM.

17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角

形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.

18.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2、⊙A2、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.

19.九点圆(Nine point round或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:

(1)三角形的九点圆的半径是三角形的外接圆半径之半;

(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;

(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.

20.欧拉(Euler)线:三角形的外心、重心、九点圆圆心、垂心依次位于

同一直线(欧拉线)上.

21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外

心与内心的距离为d ,则d 2=R 2-2Rr .

22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的

和.

23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3

,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;

(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ????===3

1; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,

过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC

于K ,交BC 于H ,则2;32=++===AB

KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则

①222222333GC AB GB CA GA BC +=+=+; ②)(3

1222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);

④到三角形三顶点距离的平方和最小的点是重心,即2

22GC GB GA ++最小;

⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上

述条件之一,则G 为△ABC 的重心).

24. 垂心:三角形的三条高线的交点;

)cos cos cos cos cos cos ,cos cos cos cos cos cos (C

c B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;

(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;

(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;

(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.

25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各

边距离相等;

),(c

b a cy by ay

c b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;

(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+?=∠∠+?=∠∠+?=∠2

190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心

的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK

上的点且满足KI=KB ,则I 为△ABC 的内心;

(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△

ABC 外接圆于点K ,则a c b KD IK

KI AK ID AI +=

==; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为

F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =?;②

c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ???=.

26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形

各顶点距离相等;

)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C

B A Cy By Ay

C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;

(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-?=∠2360;

(3)?=S abc

R 4;(4)锐角三角形的外心到三边的距离之和等于其

内切圆与外接圆半径之和.

27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC

的三边,,,c AB b AC a BC ===令)(2

1c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.

旁心性质:(1),2

1,2190A C BI C BI A C BI C B A ∠=∠=∠∠-?=∠(对于顶角B ,C 也有类似的式子);

(2))(2

1C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);

(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

初三数学几何知识点归纳总结

初三数学几何知识点归纳总结 除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初三数学几何知识点归纳总结,希望对大家的学习有一定帮助。 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 初中几何公式:角 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 初中几何公式:三角形

15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

初中几何知识归纳

初中数学课本几何部分知识点归纳 第一部分图形认识初步 图形认识初步 一、图形认识初步 1.几何图形:把从实物中抽象出来的各种图形的统称。 2.平面图形:有些几何图形的各部分都在同一平面,这样的图形是平面图形。 3.立体图形:有些几何图形的各部分不都在同一平面,这样的图形是立体图形。 4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 5.点,线,面,体 ①图形是由点,线,面构成的。 ②线与线相交得点,面与面相交得线。 ③点动成线,线动成面,面动成体。 二、直线、线段、射线 1.线段:线段有两个端点。

2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。 3.直线:将线段的两端无限延长就形成了直线。直线没有端点。4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。5.相交:两条直线有一个公共点时,称这两条直线相交。 6.两条直线相交有一个公共点,这个公共点叫交点。 7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。 8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短) 9.距离:连接两点间的线段的长度,叫做这两点的距离。 三、角 1.角:有公共端点的两条射线组成的图形叫做角。 2.角的度量单位:度、分、秒。 3.角的度量与表示: ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。 ②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。

4.角的比较: ①角也可以看成是由一条射线绕着他的端点旋转而成的。 ②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。③工具:量角器、三角尺、经纬仪。 5.平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 ①性质:角平分线上的点到角的两边距离相等。 ②逆定理:在角的部,到角的两边距离相等的点在角平分线上。 (③三角形的心:利用角的平分线的性质定理可以导出:三角形的三个角的角平分线交于一点,此点叫做三角形的心,它到三边的距离相等。) 6.余角和补角 ①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。 ②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。 ③补角的性质:等角的补角相等 ④余角的性质:等角的余角相等

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

中考数学知识点总结

中考数学知识点总结 一、常用数学公式 公式分类公式表达式 乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径 余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角 二、基本方法 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理

平面几何基本定理

. 一.平面几何 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边 的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则 有)(22222BP AP AC AB +=+; 中线长:2 222 22a c b m a -+= 4. 垂线定理:2 2 2 2 BD BC AD AC CD AB -=-?⊥ 高 线 长 : C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---= 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线 段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定 理) 角平分线长:2 cos 2)(2A c b bc a p bcp c b t a +=-+= (其中 p 为周长一半) 6. 正弦定理: R C c B b A a 2sin sin sin ===, (其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c cos 2222 -+= 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2 ·DC +AC 2 ·BD -AD 2 ·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一 半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定 理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙ O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作 一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两 组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过 点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近 两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距 离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点 18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、 △BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF = CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向 外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙ A 1 、⊙ B 1的圆心构成的△——外拿破仑的三角形,⊙ C 1 、 ⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心 19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形 中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点 (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心 依次位于同一直线(欧拉线)上. 21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半 径为r ,外心与内心的距离为d ,则d 2 =R 2 -2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各 边距离的和. 23. 重心:三角形的三条中线交于一点,并且各中线被这个点分 成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC

全新 中考数学几何知识点全总结

初中几何公式:线 1、同角或等角的余角相等 2、过一点有且只有一条直线和已知直线垂直 3、过两点有且只有一条直线 4、两点之间线段最短 5、同角或等角的补角相等 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 初中几何公式:角 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 初中几何公式:三角形 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理有两角和它们的夹边对应相等的两个三角形全等 24、推论有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理有三边对应相等的两个三角形全等 26、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 初中几何公式:等腰三角形 30、等腰三角形的性质定理等腰三角形的两个底角相等 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 初中几何公式:四边形 48、定理四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理n边形的内角的和等于(n-2)×180° 51、推论任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等

高中数学常用平面几何名定理

高中数学常用平面几何名定理 定理1 Ptolemy定理托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 定理2 Ceva定理 定理3 Menelaus定理 定理4 蝴蝶定理定理 内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 定理5 张角定理 在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 定理6 Simon line西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 定理7 Eular line: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 定理8 到三角形三定点值和最小的点——费马点 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC 的费尔马点。 定理9 三角形内到三边距离之积最大的点是三角形的重心 定理10到三角形三顶点距离的平方和最小的点是三角形的重心 在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面 0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。 1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 2、九点圆: 任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

初中平面几何四个重要定理

初中数学知识重点整理 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、 R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的 充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证: 。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的中 点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、BF、 CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比 为AM:AC=CN:CE=k,且B、M、N共线。 求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、R b、R c表示O到A、B、C的距离。

平面几何知识点总结.

平面几何知识点总结 4.托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组 对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即: 1 PC BP R Q P AB CA BC ABC ABC l .1=????RB AR QA CQ ,则、、长线分别交于或它们的延 、、的三边并且与的顶点,不经过梅涅劳斯定理:若直线三点共线; 、、,则,这时若 或数为边上的点的个三点中,位于、、并且三点,上或它们的延长线上的、、三边的分别是、、梅涅劳斯逆定理:设R Q P 1PC BP 20ABC R Q P AB CA BC ABC R Q P .2=????RB AR QA CQ 1 :.3=???RB AR QA CQ PC BP CR BQ AP AB CA BC ABC R Q P 条件是三线共点的充要、、边上的点,则、 、的分别是、、塞瓦定理:设M Q R A C P B ; 内接于圆,则有: 设四边形BD AC BC AD CD AB ABCD ?=?+?; 内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD AC BC AD CD AB ABCD ?≥?+?三点共线; 、、则,、、的垂线,垂足分别为、、作外接圆上一点西姆松定理:若从F E D F E D AC AB BC P ABC ?.5的外接圆上; 在则在同一直线上,、、若其垂足作垂线,的延长线或它们的三边向点西姆松的逆定理:从一ABC P N M L ABC P ??)(.6

; ,则、 于分别交和,连接和弦任意引 的中点蝴蝶定理:一个圆的弦NP MP N M AB CF DE EF CD P AB =.7 ; 2.8GH OG H G O H G O ABC =?且三点共线, 、、,则、、分别为的外心、重心、垂心欧拉定理:设 三线共点。 、、则,、、外面,做三个正三角形的的小于费马点:在每个内角都''''''120.9CC BB AA ABC CAB BCA ABC ?? 三角形。 ,此三角形称为拿破仑中心组成一个正三角形,则此三角形的边为边作三个正三角形三角形的外面,各以三拿破仑三角形:在任意.10 的莫莱恩线。 为三点共线。这条直线称、、,则、、长线交于的延、、别和作其外接圆的切线,分、、三个顶点莫莱恩线:过ABC F E D F E D AB CA BC C B A ABC ??.11 三点共线。 、、,则、、的中点分别是以及线段、,对角线延长线交于的、,另一组对边的延长线交于、的一组对边牛顿定理:设四边形Z Y X Z Y X EF BD AC F BC AD E CD BA ABCD .12 共线。 、、的交点和、和、和三边对边求是凸的不要边形巴斯卡定理:圆内接六N M L BC EF FA CD DE AB ABCDEF )(.13 共点。、、的三条对角线六边形卜利安香定理:圆外切CF BE AD ABCDEF .14 15.到三角形三顶点距离之和最小的点――费马点 到三角形顶点距离的平方和最小的点――重心 三角形内到三边距离之和最大的点――重心

平面几何四大定理

. 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。求证: FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行 线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于

DEG 截△ABM →1DB MD GM AG EA BE =? ?(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB ( GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 【评注】塞瓦定理 5. 已知△ABC 中,∠B=2∠C 。求证:AC 2=AB 2 +AB ·BC 。

初中几何知识点总结非常全

证明(一) 1、本套教材选用如下命题作为公理: (1)、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 (2)、两条平行线被第三条直线所截,同位角相等。 (3)、两边及其夹角对应相等的两个三角形全等。 (4)、两角及其夹边对应相等的两个三角形全等。 (5)、三边对应相等的两个三角形全等。 (6)、全等三角形的对应边相等、对应角相等。 此外,等式的有关性质和不等式的有关性质都可以看做公理。 2、平行线的判定定理 公理两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 简单说成:同位角相等,两直线平行。 定理两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。 简单说成:同旁内角互补,两直线平行。 定理两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。 简单说成:内错角相等,两直线平行。 3、平行线的性质定理 公理两条平行线被第三条直线所截,同位角相等。 简单说成:两直线平行,同位角相等。 定理两条平行线被第三条直线所截,内错角相等。 简单说成:两直线平行,内错角相等。 定理两条平行线被第三条直线所截,同旁内角互补。 简单说成:两直线平行,同旁内角互补。 如果两条直线都和第三条直线平行,那么这两条直线也互相平行。 4、三角形内角和定理三角形三个内角的和等于 180。 5、三角形内角和定理的推论 三角形的一个外角等于和它不相邻的两个内角的和。 三角形的一个外角大于任何一个和它不相邻的内角。 证明(二) 一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 (2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。 (3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。 (4)全等三角形的对应边相等、对应角相等。 推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。 二、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。 等腰三角形的其他性质: ①等腰直角三角形的两个底角相等且等于45° ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。 ③等腰三角形的三边关系:设腰长为a,底边长为b,则 2 b

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

相关文档
最新文档