案例:用向量证明平面几何中的定理doc

案例:用向量证明平面几何中的定理doc
案例:用向量证明平面几何中的定理doc

高中数学教学案例

沈阳市二十四中学

高一数学组孙咏霞

2006年5月10日

用向量证明平面几何中的定理

在向量整章知识学习完以后,学生对于向量能解决平面几何与立体几何中的计算问题已有了一定的了解,而且学生对于用向量来证明几何中的垂直和平行问题很感兴趣,有一部分同学对于几何中的证明在独立地或互相讨论地进行探索。为了帮助学生改变原有的单纯接受式的学习方式,在开展有效的接受学习的同时,形成一种对知识进行主动探求的积极的学习方式,所以在向量的复习课上让学生通过自主探索和小组合作的研究性学习方式,来用向量的知识解决平面几何中的定理证明。同时为了教学的方便,对原有的课堂模式进行重新安排,全班分为八组,自由结合,每组学生围坐在一起,而且借助实物投影仪进行全班展示。以提高效率。

案例

一上课就让学生看高二数学第一学期教材第63页例题4:“在三角形ABC 中,已知D , E 分别是边AB 与AC 上的中点,求证:DE ∥BC ,且BC 2

1DE ”和习题册第29页第4题:“用向量的方法证明菱形的对角线互相垂直”,向学生说明不但能运用向量的知识解决立体几何中的证明和计算等问题,而且还能运用向量的知识解决平面几何中一些定理的证明。然后让每位学生独立地选择一个自己比较熟悉或感兴趣的平面几何中的定理,然后运用向量的知识进行证明。只见学

生都在思考,心急的已经在动笔了,过了一会儿,周同学问:“是用向量的运算还是用向量的坐标运算来证明?”周围一片笑声。孙同学说:“只要能证明,管它用什么?”朱同学说:“那应该还有哪种方法更简单吧。”周同学恍然大悟:“我明白了,只要选择运算简单的就可以了。”这时一女同学举手,悄悄地问:“我想证明平行四边形的性质,但不知如何建立平面直角坐标系?”我也悄悄地对她说:“先想想是否该用向量的坐标来解题。”

几分钟以后,有同学举手说已经完成,更多的同学还在埋头写着,于是我让已经做好的同学思考是否可以用另一种做法来证明,于是又是一片寂静。等到大部分学生已经完成自己的证明后,我说:“现在以自己的小组为单位,展示一下自己的成果,展示结束以后每组评选出本组的最佳成果,要求视野独特,证明过程正确而简洁,完成后对我说一声。”于是每个小组都自己开始展示起来,我来到了其中的一个小组,由于我的到来,结果学生都要抢着第一个展示,我决定按学号进行,于是第一个学生开始展示起来……,到了最后一个展示结束,学生让我讲哪一个最好,我说:“这是你们小组的内部事务,你们自己决定,我到其他组看看。”这是正好有其他小组举手,他们已经选出了一个证明:“平行四边形的对边相等”,因为初中学的时候没有证明,而是通过图形翻折观察所得,所以现在用向量的坐标的运算证明来认识其的正确性,我肯定了他们的想法,然后让他们再讨论证明是否合理完整。其他各组也陆续产生了自己认为比较好的成果。我发现“平行四边形的对边相等”有两个不同的证明方法,于是让他们把证

C

C 明过程放在实物投影仪上,然后一个一个展示,展示以后其他各组同学可以提问或发表自己的想法。

第一个同学也许因为是第一个展示,所以显得比较得意,他说:以前初中此定理没有证明过,老师是通过把一个平行四边形翻折让我们观察所得,所以我选择了用向量的坐标运算来证明。请大家看屏幕上的图形,以点A 为坐标原点,AB 所在的直线为x 轴建立直角坐标系,设B( a , 0 ) , D( b , c ),则AD = { b , c } ,AB = { a , 0 },∵∥,∴= m ={ mb , mc },∴C( a+mb , mc ) ∵∥,∴DC = n AB ={ na , 0 },∴C( b+na , c ),∴??

?=+=+c mc na b mb a ∴m = 1 , n = 1, ∴BC =AD ,DC =AB ,

即BC = AD , DC = AB , ∴平行四边形的对边相等。 其他组的一位同学迫不及待地问到:“为什么不是直接得出点C 的坐标为( b+a , c )?”。那位展示的同学不慌不忙地回答:“如果直接得出点C 的坐标,其实已经知道对边相等了。我们的这种证法关键就在于利用平行来得到点C 的坐标。”其他同学有的在思考,有的表示肯定地点点头。

这时第二位同学走上台去,把自己的成果放在了实物投影仪上,落落大方地说:我们是用向量的运算来证明的,因为我们已经知道平行四边形的对角线互相垂直,所以如图,由平行四边形的对角线互相

平分和相等向量的定义可得:OD =B O OC =AO ,而

OC +B O =B C OD +AO =AD ,∴=,同理=,即BC = AD , DC = AB ,∴平行四边形的对边相等。比起上一种证法要简单多了。

这时一位女同学大胆地站起来说:“其实不用向量来做也可以,而且比较简单,只要用三角形全等就可以了。”而另一位同学也说:“平行四边形的对角线互相平分本来就是用对边相等来证明的,这是循环论证。我认为还是第一种证法比较好。”大家在下面纷纷讨论了起来。这时我决定放弃原来的展示其它成果的设想,而把这一学生发现的问题放手让学生讨论,以他们的能力来解决这一问题。于是我说:“各小组讨论一下这两种证法,比较两者的优劣。”于是大家更热烈地讨论起来,一会儿朱同学说:“用向量来证明平面几何中的定理应在平面几何的体系中进行,所以我们认为第一种证法有说服力,而第二种证法需借助平行四边形的对角线互相平分,不太合理。”黄同学有点激动地说:“既然是用向量来证明平面几何中的定理,当然可以借助平行四边形的对角线互相平分这一定理,更何况第一种证明也借助于平行四边形的定义。”而孙同学认为:“第一种证法也可以不用向量,而用三角形的全等。”数学课代表陆晔说:“我认为这不是主要的问题。其实我们是在探索一种方法,即用一种知识去解决另一种知识,所以我认为两种证法都不错,因为分别采用了向量中的两种不同的方法。”其他同学纷纷附和,一场纠纷在同学们立意比较高的状态下结束了。

于是我让每组同学根据上述的展示归纳出用向量的方法来证明

平面几何中的定理的方法,然后让其中一组的同学来表述,一位同学说:“首先要建立平面直角坐标系,设各点的坐标,建立各线段对应的向量的坐标,然后运用向量坐标的运算来证明。”话音未落,卫同学说:“如果不用向量坐标的运算证明,还建什么系?我认为先确定选用什么方法证明,然后把线段转化为向量,再用向量的知识证明。”大家频频点头,认可卫同学的说法。我顺势说:“那么能否用这种方法来解决其它问题呢?”这时教室内一片争执的声音,同意和不同意的同学分成了两派,互相想说服对方。我先请说同意的同学之一谈谈自己的想法,王同学说道:“既然我们在平面几何和立体几何中都用到的这样的方法,当然可以通过类比的思想,利用向量解决其它问题。”黄同学马上反驳道:“不是所有的问题都能用向量解决的。”王同学说:“那当然,我认为只要涉及到线段的问题都可以。”李同学补充到:“复数中的一些问题也可以用向量来解决。”当其他同学还想发言时,下课铃响了,我趁此说:“哪位同学对用向量能解决除平面几何和立体几何以外的问题有兴趣的同学,课后向数学课代表报名,我们成立一个课题小组,共同研究探索《向量的运用》这一课题。今天的作业是把各位的成果整理在作业本上,同时写今天这节课的感想。”

1.关于研究性学习。

研究性学习是指学生在教师指导下,从自然、社会和生活中选择和确定专题进行研究,并在研究过程中主动地获取知识、应用知识、解决问题的学习活动。研究性学习强调"体验"这一心理过程,所以我

让学生自己选择定理去证明,让学生在实践中去体验和感受发现问题、解决问题的愉悦。虽然本节课的背景是由我给出的,但是基于部分学生感兴趣的内容而且在自己独立探究的,所以学生还是能发挥自己的学习的主动性,去进行研究性学习。不足之处是由于课堂教学的局限性,不能充分展示每一位学生的研究成果,我认为可以通过班级的学习园地、黑板报等进行展示,从而让更多的学生体验成功的喜悦,提高学习数学的兴趣。

2.关于小组合作学习。

小组合作学习(简称小组合作)是研究性学习的基本组织形式和主要活动方式。研究性学习能否达成预期目标,在很大程度上取决于小组合作的成效如何。小组合作在研究性学习中的意义与传统的以知识为本位的学科教学不同,研究性学习追求多元化的教育价值,小组合作恰好为研究性学习多元化教育价值的实现提供了适当的方式和途径。由于小组是自由组合的,所以小组同学之间互教互学、彼此之间交流都比较顺利,而且使学生能体验到一种被他人接受、信任和认同的情感,有利于提高学生的自信心。当然由于是课堂教学,这种小组合作学习还不是广泛意义上的小组合作,还需要由教师统一规定时间,在课堂内进行。

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

初一数学几何证明题答案

初一典型几何证明题 1、已知: AB=4,AC=2,D是 BC中点, AD是整数,求 AD 解:延长 AD到 E, 使 AD=DE ∵D是 BC中 点∴ BD=DC 在△ ACD和△ BDE中 A AD=DE ∠BDE=∠ ADC BD=DC ∴△ ACD≌△ BDE ∴AC=BE=2 ∵在△ ABE中 AB-BE<AE< AB+BE ∵AB=4 即4-2 <2AD< 4+2 1<AD<3 ∴AD=2B C D 2、已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2 A 1 2 B E C F D 证明:连接 BF 和 EF ∵BC=ED,CF=DF,∠ BCF=∠EDF ∴△ BCF≌△ EDF (S.A.S)

∴BF=EF,∠ CBF=∠ DEF 连接 BE 在△ BEF中 ,BF=EF ∴ ∠ EBF=∠ BEF。 ∵ ∠ ABC=∠ AED。 ∴ ∠ ABE=∠ AEB。 ∴AB=AE。 在△ ABF和△ AEF中 AB=AE,BF=EF, ∠ABF=∠ ABE+∠ EBF=∠AEB+∠BEF=∠AEF ∴△ ABF≌△ AEF。 ∴ ∠ BAF=∠ EAF ( ∠1=∠ 2) 。 3、已知:∠ 1=∠2,CD=DE, EF//AB,求证: EF=AC A 12 F C D E B 过C 作 CG∥EF 交 AD的延长线于点 G CG∥EF,可得,∠ EFD= CGD DE=DC ∠FDE=∠ GDC(对顶角) ∴△ EFD≌△ CGD EF=CG ∠CGD=∠ EFD 又, EF∥AB ∴,∠ EFD=∠1 ∠1=∠2 ∴∠ CGD=∠2 ∴△ AGC为等腰三角形, AC=CG 又EF=CG ∴EF=AC 4、已知: AD平分∠ BAC,AC=AB+BD,求证:∠ B=2∠C

立体几何中的向量方法(一)——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为???? ? n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 1.下列各组向量中不平行的是( )

初中数学几何证明试题有答案

初中数学几何证明试题 有答案 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

十二周培优精选 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形. 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交 MN 于E 、F . 求证:∠DEN =∠F . 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 求证:CE =CF .(初二) A P C D B A F G C E B O D

2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE = 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二) 经典题4 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠求证:∠PAB =∠PCB . 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .( D

经典题(一) 1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得 EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得 △DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150 所以∠DCP=300 ,从而得出△PBC是正三角形 4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。 经典题(二) 1.(1)延长AD到F连BF,做OG⊥AF, 又∠F=∠ACB=∠BHD, 可得BH=BF,从而可得HD=DF,

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

初一几何证明典型例题

初一几何证明典型例题 1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2ADBC 2、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF21证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△EDF (S、 A、S)∴ BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴ ∠EBF=∠BEF。∵ ∠ABC=∠AED。∴ ∠ABE=∠AEB。∴ AB=AE。在△ABF和△AEF中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E 过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD= ∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又 EF=CG∴EF=ACA 4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD =∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=

(完整版)平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB u u u r =3a, CD u u u r =-5a ,且||||AD BC =u u u r u u u r ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =13CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB u u u r =a +2b ,BC u u u r = -5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、 D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD u u u r =x AB u u u r ,AE u u u r =y AC u u u r ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB u u u r =2AC u u u r ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB u u u r =(sin α,cos β), α,β∈(-2π,2 π),则α+β= *11.已知 a =(1,2) , b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

初一几何证明题练习

初一下学期几何证明题练习1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6 解:∵∠B=∠C ∴ AB∥CD( ) 又∵ AB∥EF() ∴ ∥() ∴∠BGF=∠C() 2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明 ∠1=∠2,以下是证明过程,请填空:(8分) 解:∵CD⊥AB,FG⊥AB ∴∠CDB=∠=90°( 垂直定义) ∴_____//_____ ( ∴∠2=∠3 ( 又∵DE//BC ∴∠=∠3 ( ∴∠1=∠2 ( ) 3、已知:如图,∠1+∠2=180°, 试判断AB、CD有何位置关系?并说明理由。(8分) 4、如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠ DAC、∠C的度数吗?(7分) D C B A E D

5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。 解:∵EF∥AD(已知) ∴∠2= () 又∵∠1=∠2(已知) ∴∠1=∠3(等量替换) ∴AB∥() ∴∠BAC+ =180 o () ∵∠BAC=70 o(已知)∴∠AGD= ° 6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。 解:AB∥CD,理由如下: 过点E作∠BEF=∠B ∴AB∥EF() ∵∠BED=∠B+∠D(已知) 且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF() ∴AB∥CD()7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o, 求∠EAD、∠DAC、∠C的度数。(6分) 8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。(6分)

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

初一数学几何证明题

初一数学几何证明题 初一数学几何证明题一般认为,要提升数学能力就是要多做,培养兴趣。事实上,兴趣不是培养出来的,而是每次考试都要考得好,产生信心,才能生出兴趣来。所以数学不好,问题不在自信,而是要培养学好数学的能力那么,我们应如何提升的数学能力呢?可以从以下四方面入手:1. 提升视知觉功能。由于数学研究客观世界的"数量与空间形式",要想从纷繁复杂的客观世界抽出这些" 数与形",首先必须具备很强的视知觉功能,去辨识,去记忆,去理解。2. 提升对数学语言的理解能力。数学有着自己独特的语言体系,它是一种"文字兼数字与符号的结构"。数学里的符号、公式、方程式、图形、图表以及文字都需要通过阅读才能了解。3. 提升对数学材料的概括能力。对数学材料的抽象概括能力是数学学习能力的灵魂。若一个看到一大堆东西,看了半天也不晓得它们背后的"数量关系与空间形式",这将是数学学习上极为糟糕的事。因为数学的精髓就在于,它舍弃了具体的内容,而仅仅抽出"数与形",并对这些"数与形"进行操作。4. 提示孩子的运算能力。对"数或符号"的运算操作能力是数学学习所必须具备的一项重要技能。我们日常生活中的衣食住行,时时刻刻也离不开运算。在运算中会出现各种各样的问题,需具体问题具体分析。俗语说,冰冻三尺非一日之寒,同样数学能力的培养也是一个漫长的过程,要善于发现自己的弱点,进行强化与补救训练。 1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若

D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z 证明;过E点分别作AB,BC上的高交AB,BC于M,N点. 过F点分别作AC,BC上的高交于P,Q点. 根据角平分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN. 过D点做BC上的高交BC于O点. 过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J 点. 则X=DO,Y=HY,Z=DJ. 因为D 是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD 同理可证FP=2DJ。 又因为FQ=FP,EM=EN. FQ=2DJ,EN=2HD。 又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN 又因为 FQ=2DJ,EN=2HD。所以DO=HD+JD。 因为X=DO,Y=HY,Z=DJ.所以x=y+z。 2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN 相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。 当∠BON=108°时。BM=CN还成立 证明;如图5连结BD、CE.

初一几何典型例题

初一几何典型例题 1、如图,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C,D两点,则PC与PD相等吗?试说明理由。 PC=PD 证明:作PE⊥OA于点E,PF⊥OB于点F ∵OM是角平分线 ∴PE=PF ∠EPF=90° ∵∠CPD=90° ∴∠CPE=∠DPF ∵∠PEC=∠PFD=90° ∴△PCE≌△PDF ∴PC=PD 2、如图,把两个含有45°角的三角尺按图所示的方式放置,D在BC上,连接AD、BE,AD的延长线交BE于点F。试判断AF与BE的位置关系。并说明理由。 AF⊥BE 证明: ∵CD=CE,CA=CB,∠ACD=∠BCE=90° ∴△ACD≌△BCE

∵∠CBE+∠BEC=90° ∴∠EAF+∠AEF=90° ∴∠AFE=90° ∴AF⊥BE 3、如图,已知直线l1‖l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出∠1、∠2、∠3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究∠1、∠2、∠3之间的关系,请画出图形,并说明理由。解:(1)∠1+∠2=∠3; 理由:过点P作l1的平行线PQ, ∵l1∥l2,∴l1∥l2∥PQ, ∴∠1=∠4,∠2=∠5. ∵∠4+∠5=∠3,∴∠1+∠2=∠3; (2)同理:∠1-∠2=∠3或∠2-∠1=∠3. 理由:当点P在下侧时,过点P作l1的平行线PQ, ∵l1∥l2 ∴l1∥l2∥PQ, ∴∠2=∠4,∠1=∠3+∠4,

当点P在上侧时,同理可得∠2-∠1=∠3. 4、D、E是三角形△ABC内的两点,连接BD、DE、EC,求证AB+AC>BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GC>EC 所以 FB+FD+FA+AG+EG+GC>BD+FG+EC 即AB+AC+FD+EG>BD+FD+EG+DE+EC 所以AB+AC>BD+DE+EC 5、D为等边△ABC的边BC上任意一点,延长BC至G。作∠ADE=60°(E.C在AD同侧)与∠ACG的角平分线相交于E,连AE。求证:ADE为等边三角形。 解:如图,作DF‖AC交AB于F. ∵DF‖AC.等边△ABC. ∴等边△BFD.

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

初一几何证明典型例题

初一几何证明典型例题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

戴氏教育达州西外校区名校冲刺 戴氏教育温馨提醒: 暑假两个月是学习的最好时机,可以在两个月里,复习旧知识,学习新知识,承上,还能启下。在这个炎热的假期,祝你学习轻松愉快。 初一典型几何证明题 1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 3、 4、证明:连接BF 和EF A B C D E F 2 1 A D B C

∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF≌△

∴ BF=EF,∠CBF=∠DEF 连接BE 在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。 ∴ ∠BAF=∠EAF (∠1=∠2)。 已知:∠1=∠2,CD=DE , EF P 是∠BAC 平 分线AD 上一点,AC>AB ,求证:PC-PB

平面向量基本定理03913

2.3.1平面向量基本定理 学习目标: 1. 了解基底的含义,理解平面向量基本定理,会用基底表示平面内任一向量. 2. 掌握两个向量夹角的定义以及两向量垂直的定义. 3. 两个向量的夹角与两条直线所成的角. 学习重点:平面向量基本定理 学习难点:两个向量的夹角与两条直线所成的角. 课上导学: [基础初探] 教材整理1平面向量基本定理 阅读教材P93至P94第六行以上内容,完成下列问题. 1. ____________ 定理:如果e i, e是同一平面内的两个向量,那么对于这一平面内的____________ 向量a, ______________ 实数入,入2,使a= _________________________ 2. ____________ 基底:___________________________ 的向量e1, e2叫做表示这一平面内______________________________ 向量的一

组基底. 判断(正确的打“,错误的打“X” ) (1) 一个平面内只有一对不共线的向量可作为表示该平面内所 有向量的基底.() (2) 若e i, e是同一平面内两个不共线向量,则入& + 说 k, 入2为实数)可以表示该平面内所有向量.() (3) 若ae i + be2=ce i + de2(a, b, c, d€ R),则a = c, b = d.( ) 教材整理2两向量的夹角与垂直 阅读教材P94第六行以下至例1内容,完成下列问题. 1. __________________ 夹角:已知两个_________________ a 和b,作OA= a, OB= b,则__ = B叫做向量a与b的夹角.

七年级数学几何证明题

七年级数学几何证明题 1. 如图,在ABC中,D在AB上,且△ CAD^P A CBE都是等边三角形, 求证:(1)DE=AB(2)Z EDB=60 2. 如图,在A ABC中, AD平分/ BAC DE||AC,EF 丄AD交BC延长线于F。求证: / FAC=z B 4、一个零件的形状如图,按规定/ A=90o,/ C=25o,Z B=25o,检验已量得/ BDC=150,就判断这个零3. 已知,如图,在△ ABC中,AD,AE分别是△ ABC的高和角平分线,若/ B=30 / C=50求:(1),求/ DAE的度数(2)试写出/ DAE与 / C - / B有何关系?(不必证明) A

件不合格,运用角形的有关知识说明零件不合格的理由 D A B 5、如图,已知DF// AC,/C=Z D,你能否判断CE// BD?式说明你的理由 6、如图,△ ABC中,D在BC的延长线上,过D作DEL AB于E,交AC于F. 已知/ A=30 , / FCD=80 ,求/ D。 7、如图,BE平分/ ABD CF平分/ ACD BE、CF交于G, 若/ BDC = 140 °,/ BGC = 110。,则 / A ? C 8、如图,AD L BC于D, EGLBC于G,Z E = / 1,求证AD平分/ BAC B G D

9、如图,直线。丘交厶ABC勺边AB AC于D E,交BC延长线于F, 若/B= 67°,/ ACB= 74°,/ AED= 48°,求/ BDF的度数? 10、如图,将一副三角板叠放在一起,使直角勺顶点重合于O,则/ AOC/+ DOB 11、如图,将两块直角三角尺的直角顶点C叠放在一起? (1)若/ DCE=35,求/ ACB的度数; (2)若/ ACB=140,求/ DCE的度数; ( 3)猜想: / ACB与/ DCE有怎样的数量关系,并说明理由 12、已知:直线ABW直线CDf交于点0, / BOC= (1) 如图1,若EOLAB求/ D0E的度数; (2) 如图2,若E0平分/ AOC求/ DOE勺度数. 13、已知,为上一点.

必修四平面向量基本定理

平面向量基本定理 [学习目标] 1.理解平面向量基本定理的内容,了解向量一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题. 知识点一 平面向量基本定理 (1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 思考 如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG → , a . 答案 通过观察,可得: AB →=2e 1+3e 2,CD →=-e 1+4e 2,EF → =4e 1-4e 2, GH → =-2e 1+5e 2,HG → =2e 1-5e 2,a =-2e 1. 知识点二 两向量的夹角与垂直 (1)夹角:已知两个非零向量a 和b ,如图,作OA →=a ,OB → =b ,则∠AOB =θ (0°≤θ≤180°),叫做向量a 与b 的夹角. ①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a⊥b .

思考 在等边三角形ABC 中,试写出下面向量的夹角. ①AB →、AC →;②AB →、CA →;③BA →、CA →;④AB →、BA →. 答案 ①AB →与AC → 的夹角为60°; ②AB →与CA → 的夹角为120°; ③BA →与CA → 的夹角为60°; ④AB →与BA → 的夹角为180°. 题型一 对向量的基底认识 例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________. ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量; ②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2= λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. 答案 ②③ 解析 由平面向量基本定理可知,①④是正确的. 对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的. 对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个. 跟踪训练1 设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)

初一几何证明题

初一几何证明题 一般认为,要提升数学能力就是要多做,培养兴趣。事实上,兴趣不是培养出来的,而是每次考试都要考得好,产生信心,才能生出兴趣来。所以数学不好,问题不在自信,而是要培养学好数学的能力那么,我们应如何提升的数学能力呢?可以从以下四方面入手: 1. 提升视知觉功能。由于数学研究客观世界的"数量与空间形式",要想从纷繁复杂的客观世界抽出这些" 数与形",首先必须具备很强的视知觉功能,去辨识,去记忆,去理解。2. 提升对数学语言的理解能力。数学有着自己独特的语言体系,它是一种"文字兼数字与符号的结构"。数学里的符号、公式、方程式、图形、图表以及文字都需要通过阅读才能了解。3. 提升对数学材料的概括能力。对数学材料的抽象概括能力是数学学习能力的灵魂。若一个看到一大堆东西,看了半天也不晓得它们背后的"数量关系与空间形式",这将是数学学习上极为糟糕的事。因为数学的精髓就在于,它舍弃了具体的内容,而仅仅抽出"数与形",并对这些"数与形"进行操作。 4. 提示孩子的运算能力。对"数或符号"的运算操作能力是数学学习所必须具备的一项重要技能。我们日常生活中的衣食住行,时时刻刻也离不开运算。在运算中会出现各种各样的问题,需具体问题具体分析。俗语说,冰冻三尺非一日之寒,同样数学能力的培养也是一个漫长的过程,要善于发现自己的弱点,进行强化与补救训练。 1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z 证明;过E点分别作AB,BC上的高交AB,BC于M,N点. 过F点分别作AC,BC上的高交于P,Q点. 根据角平分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN. 过D点做BC上的高交BC于O点. 过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点. 则X=DO,Y=HY,Z=DJ. 因为D 是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD 同理可证FP=2DJ。 又因为FQ=FP,EM=EN. FQ=2DJ,EN=2HD。 又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D

初中数学几何证明步骤规范性初步基础题(含答案)

初中数学几何证明步骤规范性初步基础题 一、单选题(共4道,每道25分) 1.如图,已知线段AB=18cm,C是线段AB的中点,则AC的长是多少? 解:如图, ∵() ∴() 又∵() ∴() 即AC的长为9cm. ①;②C是线段AB的中点;③AB=18;④⑤; ⑥;⑦;⑧;⑨以上空缺处填写正确的顺序是() A.②⑤③④ B.②⑤①⑧ C.③②①④ D.②④⑥⑨ 答案:A 试题难度:三颗星知识点:中点(一个中点) 2.如图,已知线段AB=14cm,点O是线段AB上任意一点,C、D分别是线段OA、OB的中点,求CD的长. 解:∵C、D分别是线段OA、OB的中点 ∴() ∴ 又∵AB=14 ∴() 即CD的长为7cm. ①C是线段AB的中点;②AB=14;③;④; ⑤;⑥;⑦以上空缺处填写正确的

顺序是() A.③⑥ B.④⑥ C.⑤⑥ D.③⑦ 答案:A 试题难度:三颗星知识点:中点(两个中点) 3.如图,已知∠AOB=78°,OC平分∠AOB,求∠AOC的度数. 解:∵() ∴() 又∵() ∴() ①OC平分∠AOB;②∠AOB=2∠AOC;③∠COB=∠AOC;④∠AOC=∠AOB; ⑤∠AOB=78°;⑥;⑧以上空缺处填写正确的顺序是() A.①④⑤⑥ B.①②⑤⑧ C.①②⑤⑥ D.①③⑤⑥ 答案:A 试题难度:三颗星知识点:角平分线(一个角平分线) 4.已知OC平分∠AOB,OD平分∠AOC,且∠COD=27°,求∠AOB的度数. 解:∵OD平分∠AOC ∴() ∵∠COD=27° ∴()

又∵OC平分∠AOB ∴() ∵∠AOC=54° ∴() ①;②∠AOC=2∠COD;③∠COD=∠AOD;④∠COD=∠AOC; ⑤∠AOB=2∠AOC;⑥∠AOC=∠BOC;⑦∠AOC=∠AOB;⑧∠AOD=27°; ⑨以上空缺处填写正确的顺序是() A.②①⑤⑨ B.③⑧⑥⑨ C.④①⑦⑨ D.②⑤⑥⑨ 答案:A 试题难度:三颗星知识点:角平分线(两个角平分线)

空间向量与立体几何知识点汇总

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.(3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

相关文档
最新文档