第03章-5快速傅里叶变换(FFT)PPT课件

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大多数情况下复数乘法所花的时间最多,因此下面仅以复数乘 法的计算次数为例来与直接计算进行比较。
直接计算DFT需要的乘法次数为αD=N2,于是有
例如,当N=1024时,则:
205,即直接计算DFT所需复数乘法
次数约为FFT的205倍。显然,N越大,FFT的速度优势越大。
(3.67)
(3.68)
(3.69)
(3.70) 这样,用式(3.67)~(3.70)4个公式就可计算图3.15中的两组N/2点 DFT。图3.16所示的是其中一组G(k)的计算。
将图3.16与图3.15所示的信号流程图合并,便得到图3.17所示的信 号流程图。
因为N=8,所以上图中N/4点的DFT就是2点的DFT,不能再分解了。
①对时间进行偶奇分解; ②对频率进行前后分解。 设N=2M,M为正整数。为了推导方便,取N=23=8,即离散时间 信号为
按照规则(1),将序列x(n)分为奇偶两组,一组序号为偶数,另一 组序号为奇数,即
分别表示为:
根据DFT的定义
因为 WN2=WN/21,所以上式变为 上式中的G(k)和H(k)都是N/2点的DFT。
第03章 离散傅里叶变换及其快 速算法
3. 5 快速傅里叶变换(FFT)
3.5.1 DFT的计算量
离散傅里叶变换在实际应用中是非常重要的,利用它可以计算信 号的频谱、功率谱和线性卷积等。但是,如果使用定义式(3.20)来 直接计算DFT,当N很大时,即使使用高速计算机,所花的时间也 太多。因此,如何提高计算DFT的速度,便成了重要的研究课题。 1965年库利 (Cooley)和图基(Tukey)在前人的研究成果的基础上提出了 快速计算DFT的算法,之后,又出现了各种各样快速计算DFT的方 法,这些方法统称为快速傅里叶变换(Fast Fourier Transform),简称为 FFT。FFT的出现,使计算DFT的计算量减少了两个数量级,从而成 为数字信号处理强有力的工具。
将2点DFT的信号流程图移入图3.17,得到图3.19所示的8点 时间抽选的完整的FFT流程图。
返回
从图3.19中可看出几个特点: (1)流程图的每一级的基本计算单元都是一个蝶形; (2)输入x(n)不按自然顺序排列,称为“混序”排列,而输出 X(k)按 自然顺序排列,称为“正序”排列,因而要对输入进行“变址”; (3)由于流程图的基本运算单元为蝶形,所以可以进行“同址”或 “原位”计算。
快速傅里叶变换(FFT)是离散傅里叶变换(DFT)的快速算法。它是 DSP领域中的一项重大突破,它考虑了计算机和数字硬件实现的约 束条件、研究了有利于机器操作的运算结构,使DFT的计算时间缩 短了1~2个数量级,还有效地减少了计算所需的存储容量,FFT技术 的应用极大地推动了DSP的理论和技术的发展。
3. 5. 3 蝶形、同址和变址计算 1. 蝶形计算
任何一个N为2的整数幂(即N=2M)的DFT,都可以通过M次分解,最 后成为2点的 DFT来计算。M次分解构成了从x(n)到X(k)的M级迭代计 算,每级由N/2个蝶形组成。图3.20表示了蝶形的一般形式表示。 其输入和输出之间满足下列关系:
从上式可以看出完成一个蝶形计 算需一次复数乘法和两次复数加法。 因此,完成N点的时间抽选FFT计 算的总运算量为
前面两种算法特别适用于N等于2的幂的情况。 对于N为合数的情况,本章也将介绍两种处理方法。
3. 5. 2 时间抽选基2FFT算法(库里—图基算法) 这种算法简称为时间抽选FFT算法,其基本出发点是,利用旋 转因子WNk的对称性和周期性,将一个大的DFT分解成一些逐次 变小的DFT来计算。 分解过程遵循两条规则:
(3.64)
按照规则(2),将X(k)分成前后两组,即 由(3.64)表示的是N/2点DFT,前4个k值的DFT可表示为
后4个k值的X(k)表示为:
因为
所以
(3.65)
(3.66)
按照式(3.65)和式(3.66)可画出图3.15所示的信号流程图。
式(3.65)和式(3.66)把原来N点DFT的计算分解成两个N/2点DFT的计 算。照此可进一 步把每个N/2点DFT的计算再各分解成两个N/4点 DFT的计算。具体说来,是把{x(0),x(2),x(4),x(6)}和{x(1),x(3), x(5),x(7)}分为{x(0),x(4) | x(2),x(6)}和{x(1),x(5) | x(3),x(7)}。这样, 原信号序列被分成{x(0),x(4) | x(2),x(6) I x(1),x(5) I x(3),x(7)}4个2项 信号。G(k)和H(k)分别计算如下:
在导出FFT算法之前,首先来估计一下直接计算DFT所需的计算量。 DFT的定义
其中
Fra Baidu bibliotek
将DFT定义式展开成方程组 将方程组写成矩阵形式 用向量表示
用复数表示:
从矩阵形式表示可以看出,由于计算一个X(k)值需要N次复乘法和 (N-1)次复数加法,因而计算N个X(k)值,共需N2次复乘法和N(N-1)次 复加法。每次复乘法包括4次实数乘法和2次实数加法,每次复加 法包括2次实数加法,因此计算N点的DFT共需要4N2次实数乘法和 (2N2+2N·(N-1))次实数加法。当N很大时,这是一个非常大的计算量。
FFT算法主要利用了WNk的两个性质: (1)对称性,即 (2)周期性,即
r为任意整数。
FFT算法是基于可以将一个长度为N的序列的离散傅里叶变换 逐次分解为较短的离散傅里叶变换来计算这一基本原理的。这 一原理产生了许多不同的算法,但它们在计算速度上均取得了 大致相当的改善。
在本章中我们集中讨论两类基本的FFT算法。 第一类 称为按时间抽取(Decimation-in-Time)的基2FFT算法,它 的命名来自如下事实:在把原计算安排成较短变换的过程中, 序列x(n)(通常看作是一个时间序列)可逐次分解为较短的子序列。 第二类称为按频率抽取(Decimation-in-Frequency)的基2FFT算法, 在这类算法中是将离散傅里叶变换系数序列X(k)分解为较短的 子序列。
相关文档
最新文档