纳米材料制备方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 高能冲击法制备纳米晶结构材料的研究
本文对在炸药爆炸产生的高能冲击波条件下纳米晶结构材料的形成进行了研究。对爆炸复合后的Cu/Fe复合板的组织结构变化进行了金相、TEM、HRTEM观察。结果表明:在接合界面的一定厚度范围之内材料发生了纳米晶化,有的地方甚至出现了非晶化现象。在爆炸复合工艺所具有的近乎极端的条件---高冲击力、高塑性变形、高塑变速率、以及绝热状态下温度的瞬时升降之下,材料内部尤其是在接合界面处,位错的密度将极大增殖并且运动和堆积,空位的密度也将急剧增加,从而使材料被分割碎化成纳米尺度的组织形貌,甚至有的地方的原子排列呈无规则的非晶态。这一实验结果说明:可望通过高能冲击的方法制备纳米晶结构薄膜材料以及纳米晶块状材料。
2 等离子体法制取纳米粉末
等离子体是一种高温、高能量密度由电子、离子、原子与分子组成的电中性的带电异体,它可以由惰性、中性、氧化性和还原性等不同气体形成该种气体或两种以上气体的等离子体。等离子体可分为低压冷等离子体(也称非平衡等离子体)和常压热等离子体(也称准平衡等离子体)。
3 高能球磨法在纳米材料研究中的应用
自高能球磨法(HEM)一经出现,就成为制备纳米材料的一种重要途径。随着研究的不断深入,它不仅被广泛用来制备新金属材料,而且被用来制备非晶材料,纳米晶材料以及陶瓷材料等,成为材料研究领域内一种非常重要的方法。
4 纳米粉体制备技术及其产业化
纳米粉体材料制备与应用是纳米科技的一个重要分支,对于改造我国传统的粉末工业,促进产品更新换代,极大地提高粉末产品的附加值,推动相关制造行业的发展起到十分重要的作用。某研究中心着重于纳米粉体制备技术工程研究与技术集成,先后开发成功纳米级超细碳酸钙工业化制备技术、超细磁粉工业化制备技术、纳米磁流体制备技术、自固化磷酸钙骨水泥生物材料制备技术等十几项科研成果,并已部分实现产业化,其中纳米级超细活性碳酸钙技术已实现年产1.5万吨生产规模的建设。
粉体工业是一个重要的基础原料产业,具有十分广阔的市场,它不仅可广泛用于改造橡胶、塑料、造纸、涂料、化妆品等传统化工产业,而且纳米粉体材料还是促进信息记录介质、精细陶瓷、电子基片、生物材料等新兴材料产业发展的基础。
5 纳米微粒的微乳液制备方法
纳米材料的制备是纳米科学发展的基础。微乳液法与传统的制备方法相比具有明显的优势。文章较全面地介绍了微乳液中纳米微粒的形成机理、影响因素及对纳米微粒结构的鉴定方法。
6 脉冲能技术在超细粉碎领域中的应用
介绍了近期国外将脉冲能技术应用在超细粉体及粉碎领域上取得的进展,对在该领域出现的几种新方法和设备及它们的性能做了较详细的阐述。
7 溶胶-凝胶技术与纳米材料的制备
介绍了溶胶-凝胶技术的化学理论、水解活性的控制方法及非醇盐溶胶-凝胶技术。评述溶胶-凝胶技术的研究进展及其在纳米材料制备中的应用。
8 嵌段共聚物自组装及其在纳米材料制备中的应用(上)
嵌段共聚物分子链中,嵌段间的相互热力学不相容性及化学键相连接性,使体系发生自组装。通过适当的分子及体系,嵌段共聚物体系能够自组装形成丰富的周期性有序微结构。本文概要地总结了嵌段共聚物体系主
要的三方面自组装物理行为:本体自组装、在选择性溶剂中的缔合、及薄膜自组装。同时,介绍了这三方面的一些新的研究进展。
9 纳米粉体(CeO2)0.9-x(GdO1.5)x(Sm2O3)0.1的溶胶-凝胶低温燃烧合成
采用溶胶-凝胶法与低温燃烧法相结合,合成了(CeO2)0.9-x(GdO1.5)x(Sm2O3)0.1系列粉体。结果表明:由硝酸盐与柠檬酸混合形成的凝胶,可在较低温度(200-300℃)点火并燃烧。经TEM,XRD测试,燃烧后即直接形成了粒径为20-30nm,具有萤石结构的单相粉体,由该粉体制备的固体电解质在中温下电导率为5.8³1 0-2S/cm,组装的单个H2-O2燃料电池最大功率密度达70mW/cm。
10 单分子膜法制备纳米材料的研究进展
由于纳米粒子具有不同于块体材料的特征,其制备、表征和应用引起人们的广泛关注。LANgmuir-Blodgett (LB)膜法是一种重要的制备纳米粒子的方法,它主要是利用LB单分子膜作为基体,在其上成核生长有机和无机纳米粒子。高度有序的LB膜能够更有效控制纳米粒子的粒径分布、几何结构以及稳定性。近年来,已成功地利用化学和电化学方法在单分子膜制备了Ag、Au等金属纳米颗粒以及CdS、ZnS、PbS、CdSe、PbSe 等半导体纳米材料。
11 溶胶-凝胶技术与纳米材料的制备
溶胶和凝胶是由粒径为nm到100nm的粒子组成。溶胶-凝胶技术指金属有机或无机化合物经溶液、溶胶、凝胶而固化,再经热处理而成为氧化物或其它化合物的方法。这种应用胶体化学原理制备材料的方法与传统烧结、熔融等物理方法不同,对材料的均匀性可以达到亚微米级,纳米级的控制,在制备高分散性多组分材料中有其独特的优点。
12 溶胶-凝胶(Sol-gel)化学及其应用
介绍了溶胶-凝胶理论和技术的历史背景以及研究现状;评述了近年来在电学、光学、热学、化学以及复合材料等领域中的应用和发展前景,指出溶胶-凝胶化学在未来的超结构材料科学中必将起重要作用。
溶胶-凝胶(Sol-gel)技术是指金属有机或无机化合物经过溶胶=凝胶化和热处理形成氧化物或其它固体化合物的方法。基过程是:用液体化学试剂(或粉状试剂溶于溶剂)或溶胶为原料,而不是用传统的粉状物为反应物,在液相中均匀混合并进行反应,生成稳定且无沉淀的溶胶体系,放置一定时间后转变为凝胶,经脱水处理,在溶胶或凝胶状态下成型为制品,再在略低于传统的温度下烧结。
13 纳米材料的性质及其制备方法
回顾了近年来国内纳米材料研究的进展情况,详细介绍了纳米材料的基本性质、制备方法及其特点,并预测了其具有很大潜力的应用领域。
纳米技术是以扫描探针显微镜为技术手段在纳米尺度(0.1~100nm)上研究、利用原子、分子结构的特性及相互作用原理,并按人类需要在纳米尺度上直接操纵物质表面的分子、原子、甚至电子来制造特定产品或创造纳米级加工工艺的一门新兴交叉学科技术。纳米材料是原子物理、凝聚态物理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学校交汇而出现的新的学科。纳米材料包括纳米无机材料、纳米聚合物材料、纳米金属材料、纳米半导体材料及纳米复合材料等。笔者对纳米材料的性质及其制备技术手段的现状作了详细的介绍。
14 微乳化技术在纳米材料制备中的应用研究
本文介绍了微乳液的概念,及微乳反应器的原理、形成与结构,并进一步阐述了微乳反应器在纳米材料制备领域中的应用状况。
一般情况下,我们将两种互不相溶液体在表面活性剂作用下形成的热力学稳定的、各向同性、外观透明或半透明、粒径1~100nm的分散体系称为微乳液。相应地把制备微乳液的技术称之为微乳化技术(MET)。自从