发电机轴电压产生的原因、危害及消除措施(正式)

发电机轴电压产生的原因、危害及消除措施(正式)
发电机轴电压产生的原因、危害及消除措施(正式)

编订:__________________

单位:__________________

时间:__________________

发电机轴电压产生的原因、危害及消除措施(正

式)

Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.

Word格式 / 完整 / 可编辑

文件编号:KG-AO-8271-28 发电机轴电压产生的原因、危害及

消除措施(正式)

使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。

(1)轴电压产生的原因

①磁通不对称。造成磁通不对称的原因,可能是由于定子铁芯局部磁阻较大、定子与转子气隙不均匀、分数槽电机(多为水轮发电机)电枢反应不均匀等所引起。

②电机大轴被磁化。

③高速蒸汽产生静电。

由于与发电机同轴相连的汽轮机的轴封不好,沿轴的高速蒸汽泄漏或蒸汽在汽缸内高速喷射等原因使

轴带电荷,这种性质的轴电压有时很高,当人触及时感到麻手。

(2)危害及消除措施

高速蒸汽产生的静电荷,不易传导到励磁机侧,在汽轮机侧也有可能破坏油膜和轴瓦,通常在汽轮机轴上装设接地炭刷来消除。

对于其他原因所产生的轴电压,如果在安装时和运行中不采取有效的措施,当轴电压足以击穿轴与轴承间的油膜时,将产生一个由发电机大轴、轴颈、轴瓦、轴承支架及机组底座为回路的轴电流,虽然轴电压不高,通常在1V以下,个别机组为2—3V,但由于回路的电阻非常小,因此产生的轴电流可能很大,有时可达数百安培,轴电流会使轴承油的油质劣化,严重时会将轴瓦烧坏,被迫停机造成事故。

为了防止轴电流的产生,设计安装时,在位于发电机励磁机侧的轴承支架与底座之间己加装绝缘垫,同时将所有螺杆、螺钉(控制销)及油管等均已采取绝缘措施。

(3)测量轴电压的意义

由以上分析可知,发电机一侧的轴承支架与底座之间的绝缘垫是否保持良好的绝缘性能,对于防止发电机的轴和轴瓦的损坏以及轴承油质的劣化,保证机组的安全运行起着重要作用。因此,机组在安装时和运行中,通过测量比较发电机两端的电压和轴承与底座的电压,检查判断发电机轴承支架和底座之间的绝缘好坏是十分必要的,所以,交接试验标准和预防性试验规程中都把发电机轴电压的测量列为必做的试验项目。

请在这里输入公司或组织的名字

Enter The Name Of The Company Or Organization Here

发电机保护现象、处理

发电机保护1 对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护 失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A

教科版九年级物理上册《4.2电压电流产生的原因》教案(表格版)

第2节 电压:电流产生的原因 【教学目标】 一、知识与能力 1.了解电压,知道电压的单位。 2.会正确使用电压表。 3.探究串、并联电路中电压的规律。 二、过程与方法 1.提出关于串、并联电路的电压分配规律的猜想,设计实验方案并进行实验探究。 2.结合电压概念的引入,培养学生类比推理的能力。 三、情感、态度与价值观 1.通过随堂实验及相应的演示实验,培养学生观察物理现象、分析物理本质的兴趣。 2.通过交流合作,培养学生科学的态度与团队协作精神。 【教学重点】 串、并联电路的电压分配规律。 【教学难点】 电压的概念。 【教学突破】 让学生经历“探究串、并联电路电压的特点”的过程,用电压与水压进行类比来理解电压的概念。 【教学准备】 ◆教师准备 自制的PPT课件、电压表仿真课件、电池两节、灯泡一只、开关一个、电压表一个、导线若干。 ◆学生准备 灯泡四只、开关一个、电压表一个、导线若干。 ┃教学过程设计┃第1课时 教学过程批注 一、观察思考,引入新课。 教师出示幻灯片:瀑布图片,学生观察。 教师:水的流动形成水流,电荷的定向移动形成电流。 提问:水流是怎样形成的?电流又是怎样形成的呢?

二、进行新课。 (一)认识电压。1.水流的形成。 (出示课件)问题:①水轮机在什么条件下会转动?在什么条件下又停止转动?学生回答后教师小结:水压是形成水流的原因。水压消失水流停止,水轮机停止转动。②怎么样才能得到持续的水流?用抽水机提供水压,就能得到持续的水流。 2.电流的形成。 (出示课件)学生讨论,对比分析电流的形成与水流的形成,指出其相似之处,如图4-2-1所示。 灯泡――→犹如 水轮机 开关――→犹如 阀门 电路――→犹如 水路 电流――→犹如 水流 电压――→犹如 水压 电源――→犹如 抽水机 图4-2-1 3.电压的单位。 (1)实验探究:怎样才能改变小灯泡的亮度?(通过改变电池的节数,即改变电池两端的电压) 教师:对于某一水管来说,水压越大,则水流越大;同样,对于某一用电器来说,电压越大,则电流越大,即电压是有大小的。 (2)单位:(学生阅读课文后回答) 在国际单位制中,电压的单位是伏特,简称伏,符号是V ,常用的电压单位还有千伏(kV)、毫伏(mV)、微伏(μV)。它们之间的换算关系是:1kV =1000V 1V =1000mV 1mV =1000μV (3)常用的电压:一节干电池的电压一般是1.5V ;一节蓄电池的电压一般是2V ;对人体的安全电压:不高于36V ;家庭电路电压:220V ;工业动力电压:380V 。 (二)测量电压。1.观察认识电压表。 观察手中的电压表,你可以获得哪些信息? 学生观察后交流:①表上有一个标记符号V ;②三个接线柱:“-”“3”和“15”。标“-”的表示是“-”接线柱,另两个就是“+”接线柱。所标的“3”“15”是表示量 通过电流的形成与水流的形 成进行类比,对学生渗透类比的思想方法。 要求学生最好能够识记这些常用电压值。

发电机轴电压监测

发电机轴电压监测 众所周知,大型汽轮发电机在正常运行中都会产生的轴电压,如果不采取有效的预防措施,或者预防措施失效,都将会导致轴瓦烧伤的严重后果。国内的发电机制造商都有消除轴电压危害的规范设计,就是在发电机大轴靠近汽轮机端处轴承外侧安装一个大轴接地碳刷,并在发电机大轴靠近励磁机端的轴承底座加装可靠 的绝缘垫片。这些装置只要正确地起作用,就可以解决大型汽轮发电机转子轴电压过高导致发电机轴瓦损坏的问题,但遗憾的是,国内众多发电厂实际运行情况显示,大型汽轮发电机轴瓦烧伤的事件仍时有发生,主要原因是缺少有效的在线监测手段来保证这些预防措施处于可靠的工作状态。只有采取了有效的在线监测手段,才可以彻底避免轴电压导致轴瓦烧伤事故的发生,为了寻求有效的监测方法,还得从分析轴电压的产生原因及危害途径入手。 发电机中轴电压主要有以下几个来源: (1) 由于汽轮发电机的轴封不好,沿轴向有高速蒸汽泄漏或汽缸内的高速喷射而使转轴本身带静电荷。 (2) 由于汽轮发电机的转子表面的不平整,毛刺、转轴上的螺栓、转轴上冷却风扇等在高速旋转时与周围气体(空气、氢气)发生摩擦而产生静电荷。上述两种轴电压有时很高,可以使人感到麻电。但在运行时已通过炭刷接地而被消除。 (3) 由汽轮机最后一级动叶上甩出的水珠所形成的静态电压。如没有提供其它更为便捷的电流通道,该电压会逐渐增大,并通过轴承的油层放电。高温蒸汽温度降低时会发生正负电荷分离,随着蒸汽冲击叶片,电荷就聚集在叶片上。 (4) 直流电压场(发电机转子电压)中的交流波,会通过直流场的线圈和绝缘的电容在轴上形成一个相对地面的交流电压。该电压包括了励磁系统中的二极管或半导体闸流管交变所产生的高频电压峰值(直流同轴励磁机也存在脉动分量,只不过由于整流子极数较多,显得相对比较平缓) 。上述两种电压都很弱,而且如果通过接地刷等允许电流流出,该电压将逐渐衰减。正因为这个原因,应使用一个高电抗仪表测量这些相对于大地的电压。 (5) 因发电机磁场回路的不对称性,在发电机轴的末端会形成一个电压。磁场不平衡的原因一般是因为定子铁芯的局部磁阻较大(例如定子铁芯锈蚀) ,以及定、转子之间的气隙不均匀所致。该电压很强,如果不加以阻止,会形成一股强大的轴电流从轴的一端通过轴承框架流向轴的另一端。该电压有一个频率,主要是发电机的额定频率。 (6) 由于发电机定子绕组对转子铁心间存在耦合电容,转子对轴承间存在耦合电容。而由于电路、元器件、连接和回路阻抗的不平衡,发电机三相电压不平衡实际存在,即发电机定子中有零序分量存在。三相中性点电压将不可避免地产生位移。该电压将在由发电机定子—大轴—轴颈—轴瓦—轴承支架—机组底座组成的系统中产生零序电流,即轴承变为发电机零序回路的一部分。由轴承电容产生的发电机轴电压,虽然在数值上很低,但定子绕组对转子的耦合电容越大,轴电压越高。 轴电压监测系统工作原理 1 装置介绍 监测系统由安装在控制柜内的轴电压监控器、轴电流监控器和安装在发电机汽机联轴器端上发电机转子大轴接地装置组成,接地装置见图1,接地装置接线原理图见图2。

发电机轴电压产生的原因、危害及处理措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 发电机轴电压产生的原因、危害及处理措施(正 式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4103-45 发电机轴电压产生的原因、危害及 处理措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常 工作或活动达到预期的水平。下载后就可自由编辑。 随着电源建设的迅猛发展, 单机容量的逐渐增大, 轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。研究轴电压、轴电流有着很重要的意义。轴电压的波形具有复杂的谐波脉冲分量, 对油膜绝缘特别有害当轴电压未超过油膜的破坏值时, 轴电流非常小。若轴电压超过轴承油层击穿电压, 则在轴承上形成很大的轴电流, 即所谓电火花加工电流, 将烧蚀轴承部件, 造成很大危害。磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。【文献2】 轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起

变频电机轴电压与轴电流产生机理分析

变频电机轴电压与轴电流产生机理分析(一) 1 引言 当电动机在正弦波电源驱动下运行时,通过电机轴的交变磁链产生轴电压。这些磁链是由转子和定子槽、分离铁心片之间的连接部分、磁性材料的定向属性和供电电源不平衡等因素引起磁通不平衡而产生的[1]。到90年代,以IGBT为功率器件的PWM逆变器作为电机驱动电源时,电机轴电流问题更加严重,且其产生机理与正弦波电源驱动时完全不同。文献[1]指出,具有高载波频率(例如10kHz以上)的IGBT逆变器导致电动机的轴承比低载波频率的逆变器驱动时损坏更快。Busse较为详细地分析了轴承电流的产生及轴承电流密度与轴承损坏之间的关系[2],并建立了PWM驱动下的轴承电流电路模型,但该模型未能体现出轴承电流与逆变器开关频率之间的关系。为讨论高频PWM脉冲电压驱动时电机轴电压与轴电流的产生机理,本文在建立轴电压与轴电流电路模型的基础上,分析轴电流产生的条件及形式,并针对逆变器输出电压的特性变化以及电机端有无过电压等情况,通过仿真分析得到不同情况下的轴电压与轴承电流波形。 在抑制轴承电流方面,文献[1]给出的办法用正弦波滤波器将PWM电压转换成正弦波电压,使电机工作在正弦波供电状态下,但该方法所串电感大,系统动态响应慢,同时电感上的压降和功耗增大。本文在逆变器输出端串小电感并辅以RC吸收网络,可有效抑制PWM 逆变器驱动下出现的轴电流。 2 共模电压与轴电压 一般认为,磁路不均衡、单极效应和电容电流是电机中产生轴电压的主要原因[3]。在电网供电的普通电机中,人们一般比较重视磁路不平衡的影响。但在逆变器供电的电机中轴电压主要由电压不平衡,即电源电压的零序分量产生。由于电路、元器件、连接和回路阻抗的不平衡,电源电压将不可避免地产生零点漂移,该电压将在系统中产生零序电流,轴承则是电机零序回路的一部分。 正弦波电源驱动时,通过计算可知=0。在PWM逆变器驱动下,的值取决于逆变器开关状态,且变化周期与逆变器载波频率一致。事实上,只是共模电压的一种表现形式,由于静电耦合,电机各部分间存在着大小不等的分布电容,因此构成电机的零序回路。根据传输线理论,一个分布参数电路可用等效的具有相同输入输出关系的集总参数π网络模型代替。 因此,电机分布参数电路可用集总参数电路来等效,形成轴电压的绕组--转子耦合部分电路如图2a)所示,其中Vbrg为轴电压,Ibrg为轴承电流,Va,Vb和Vc为电机输入电压。尽管Iws不流过轴承,但它与轴承电流在定子绕组上有相同的路径,势必对轴承电流有所影响。为便于分析,绕组中心点到定子的耦合部分将不予考虑。为计算方便,将图2 a)简化为图2 b)所示等效单相驱动电路模型。图中Z1为电源中点对地阻抗,Z2为旁路阻抗,表征驱动回路中的共模电抗线圈、线路电抗器和长电缆等;R0和L0为定子的零序电阻和电感;Csf、Csr和Crf分别为电机定子对地、定子对转子和转子对地电容;Rb为轴承回路电阻;Cb 和R1为轴承油膜的电容和非线性阻抗;Usg和Urg分别为定子绕组与转子中性点对地电压。 对于采用逆变器供电的电机,当轴承油膜未被击穿时,由于载波频率高,电容的容抗大大减小,与Xcb相比,Rb很小而R1很大,由于PWM驱动电压为非正弦电压,计算时先将其分解,然后分别求取,轴电压有效值为: 3 轴承模型与轴承电流的产生 由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均

同步发电机灭磁及转子过电压保护

同步发电机灭磁及转子过电压保护 上海鑫日电气科技有限公司 一概述 随着大型同步发电机组单机容量的不断增大,特别是采用具有高顶值自励可控硅励磁系统,对灭磁及转子过电压保护的技术要求已提到了一定的高度。用常规的磁场断路器及非线性电阻相结合的方式已不能满足大型同步发电机组正常可靠灭磁的要求。在电站实际运行的过程中,由于灭磁失败,引起磁场断路器烧毁以及因灭磁不力而造成转子过压击穿励磁设备的事故屡见不鲜。因此人们长期以来一直在致力于研究用新的方法来解决直流电感性负载的大电流开断领域这一难以攻克的课题。 二同步发电机的灭磁及技术要求 同步发电机的灭磁,即把储藏在同步发电机转子回路中的磁场能量消耗掉。 由于电力系统的不断扩大和大型同步发电机组单机客量的增大,快速切除故障电流是确保电力系统稳定和安全运行的重要条件,特别是当发电机内部或外部(包括机端变,励磁变及主变,出口母线等)出现短路或接地故障时,必须快速切断励磁电流,并在尽短的时间内消耗掉储藏在发电机励磁绕组中的能量。在电站实际运行的过程中,曾出现过因灭磁失败而引起转子过压,造成磁极击穿,烧毁磁场断路器及励磁设备等严重事故,甚至还出现过因灭磁时间过长,烧毁定子绕组及因主变短路时未能迅速灭磁断流,造成主变绕组烧损,外罩炸

裂的恶性事故。由此可见,快速可靠的灭磁及有效的限制转子过电压措施成了大型发电机组安全运行至关重要的问题。设计大型同步发电机的灭磁系统,通常应满足以下基本的技术要求: 1.必须满足各种运行状况下可靠灭磁的要求。 大型同步发电机组励磁电流的不断增长,转子绕组的电感越来越大,转子所储存的磁场能量也相应随之增大,所以大型机组的灭磁装置必须满足有足够大的灭磁容量,他除了在正常及机端短路等强励状况下能可靠灭磁外,特别是对于具有高顶值系数的自励可控硅系统,还必须满足在空载误强励、三相短路等极限状况下可靠灭磁的要求。2.满足快速灭磁的要求,尽可能实现接近理想灭磁时间。 大型发电机组虽然采用了现代快速灵敏的继电保护装置,但这种保护装置的作用是当发电机出现故障时,能尽快地将机组解列,但即使机组已经解列,可故障电流依然存在,不论发电机的故障是一相短路还是部分绕组短路,在故障电流期间,损坏的程度是随绝缘燃烧和铜线熔化的时间而增加,所以只有在发电机解列的同时,采用快速灭磁才是限制故障电流和使绕组免于全部烧毁最充分有效的措施。3.灭磁应更加彻底。 大型机组的出口母线电压很高,在这种高压机组中,哪怕只要有维持发电机母线电压10%的励磁残压,这种残压也足以维持故障处的电弧,为此大型机组的灭磁应更加彻底,其灭磁时间应以转子电流下降到定子的电压不足以维持故障处电弧的燃烧的时间才称灭磁结束。4.有效的转子过电压限制措施。

过电压产生的危害及防止措施

编号: 中国农业大学现代远程教育 毕业论文(设计) 论文题目:过电压产生的危害及防止措施 学生 指导教师 专业 层次 批次 学号 学习中心 工作单位 年月 中国农业大学网络教育学院制

目录 摘要 (3) 前言 (4) 1过电压的基本概念 (4) 1.1过电压的定义 (4) 1.2过电压的分类 (4) 2过电压的危害 (5) 2.1雷击过电压的危害 (5) 2.2操作过电压的危害 (6) 2.3暂态过电压 (7) 3过电压的防止措施 (8) 3.1变电站倒闸操作 (8) 3.1.1切断空载线路过电压 (8) 3.1.2切断空载变压器的过电压 (9) 3.1.3电弧接地过电压 (10) 3.1.4铁磁谐振过电压 (11) 3.1.5电磁式电压互感器饱和过电压 (11) 3.2雷电 (12) 4过电压保护设备及其保护原理、作用 (13) 4.1避雷器 (13) 4.2避雷针 (14) 4.3避雷线 (14) 4.4放电间隙 (15) 结束语 (15) 参考文献 (15)

电力系统过电压是危害电力系统安全运行的主要因素之一,过电压一旦发生,往往造成电气设备损坏和大面积停电事故。过电压来自两个方面,一种是遭受雷击产生的外部过电压,另一种是操作和事故时引起的内部过电压,主要是操作过电压。过电压的数值与电力网和结构、系统容量及参数、中性点接地方式、断路器性能等有关。通常采用避雷器、避雷针、避雷线等方法限制外部过电压。而对于内部过电压,针对操作中产生过电压的形式可采取不同的控制措施,如对于谐振过电压,可采用并联电阻或改变系统运行参数的方法加以限制,对于电弧接地过电压,则产用将系统中性点直接接地的方法等,以达到保证设备安全、系统安全、人员安全的目的。 关键词:过电压危害防止限制

物理:教科版九年级上 第四章 2.电压电流产生的原因(同步练习)

[第四章 2.电压:电流产生的原因第1课时电压及电压表的使用] 一、选择题 1.关于电压,下列说法正确的是() A.电路两端有电压,电路中一定有电流 B.电压使自由电荷定向移动形成电流 C.电压只能使自由电子定向移动形成电流 D.经验证明,对人体安全的电压是不高于220 V 2.如图甲所示的电池盒,盒外有三个接线柱A、B、C,盒内有三个5号电池插槽,还有a、b、c、d、e、f六个与电池的触点;若这个电池盒内部的实际连接情况如图乙所示,则下列关于选择盒外不同接线柱所获得的电压的说法正确的是() A.选择A、C两接线柱时获得的电压为3 V B.选择B、C两接线柱时获得的电压为1.5 V C.选择A、B两接线柱时获得的电压为4.5 V D.使用该电池盒能获得1.5 V、3 V及4.5 V的电压 3.关于如图所示电表,下列说法中不正确的是() A.它是一个电压表 B.它的示数一定是1.7 V C.它的示数可能是8.5 V D.它有一个负接线柱和两个正接线柱

4.如图所示,小壮同学将两个规格不同的灯泡L1、L2串联接在电源上。当开关S闭合后,电压表V所测的电压是 () A.电源电压 B.L1两端电压 C.L2两端电压 D.L1和L2两端总电压 5.如图所示,闭合开关后能测出小灯泡L1两端电压的电路是() 6.如图所示是小壮同学在某次测量中连接的实物电路,根据实物电路画出的电路图如图所示,其中正确的是() 7.小壮同学在练习使用电压表时,把电压表接成了如图所示的电路。当闭合开关时所发生的现象是()

A.灯泡会发光、电压表有示数 B.灯泡会发光、电压表无示数 C.灯泡不会发光、电压表有示数 D.灯泡不会发光、电压表无示数 二、填空题 8.某电压表有0~3 V和0~15 V两个量程,现在用它去测量某灯泡两端的电压,若估计灯泡两端的电压是2 V,则应选择_________V量程;若不能预先估计电压值,则应先用_________V量程进行试触,若电压表示数小于3 V,再换用_________V 量程。 9.如图所示,甲、乙两个电压表的示数分别为_________V和_________V。 10.如图所示,①②是测量电压或电流的仪表;当开关S闭合后,为了使小灯泡L1、L2都能发光,则①是_________表,②是_________表。 11.如图所示,在烧杯中加入盐水,然后将连在电压表上的铜片和锌片插入盐水中,这样就制成了一个盐水电池。观察电压表的接线和指针偏转情况可知:锌片是盐水电池的_________极,电池的电压为_________V。 12.如图所示,闭合开关后,图甲中电压表测________ 电压,图乙中电压表测_________ 电压,图丙中电压表测________电压。

发电机轴电压产生的原因、危害及处理措施

发电机轴电压产生的原因、危害及处理措施随着电源建设的迅猛发展,单机容量的逐渐增大,轴电压成为大型发 电机采用静止自并励磁系统后的一个严重问题。研究轴电压、轴电 流有着很重要的意义。轴电压的波形具有复杂的谐波脉冲分量,对油 膜绝缘特别有害当轴电压未超过油膜的破坏值时,轴电流非常小。若 轴电压超过轴承油层击穿电压,则在轴承上形成很大的轴电流,即所 谓电火花加工电流,将烧蚀轴承部件,造成很大危害。磁路不对称、 单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永 久性磁化均有可能引起轴电压。【文献2】 轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生 的电压。在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存 在的润滑油膜能起到较好的绝缘作用。但是,如果由于某些原因使得 轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化, 同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小, 电流密度很大,在瞬间会产生高温,使轴承局部烧熔。被烧熔的轴承 合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。最终,轴 承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停机。【文献12】

发电机轴电压一直是存在的,但一般不高,通常不超过几V~十几V,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以 击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却 的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 1、发电机轴电压产生的原因 (1)、磁不对称引起的轴电压它是存在于汽轮发电机轴两端的交流 型电压。由于定子铁芯采用扇形冲压片、转子偏心率、扇形片的导 磁率不同,以及冷却和夹紧用的轴向导槽等发电机制造和运行原因引 起的磁不对称,结果产生包括轴、轴承和基础台板在内的交变磁链回路。由此在发电机大轴两端产生电压差。每一种磁不对称都会引起 相应幅值和频率的轴电压分量,各个轴电压分量叠加在一起,使这种 轴电压的频率成分很复杂,其中基波分量的幅值最大,3次和5次谐波幅值稍小,更高次谐波分量幅值很小。这种交流轴电压一般为1~10V,它具有较大的能量。如果不采取有效措施,此种轴电压经过轴——— 轴承———基础台板等处形成一个回路,产生一个很大的轴电流。轴 电流引起的电弧加在轴承和轴表面之间,其主要后果是引起轴承上的

灭磁与转子过电压保护

技术讲座讲稿 灭磁与转子过电压保护 2004年10月

灭磁与转子过电压保护 1.非线性电阻 所谓非线性电阻是指加于此电阻两端的电压与通过的电流呈非线性关系,其电阻值随电流值的增大而减少。 作为非线性电阻的材料一般用碳化硅和氧化锌。就非线性特性而言,氧化锌电阻优于碳化硅。在评价非线性电阻特性时,通常以非线性电阻系数β来表征,此系数仅与电阻阀片的材质有关。碳化硅S iC 非线性电阻β=0.25~0.5;氧化锌ZnO 非线性电阻β=0.025~0.05。 U G U D U C U 对于氧化锌非线性电阻,标志其特征的主要数据有: (1)导通电压U D (U 10m A) 当元件的漏电流为10mA 时的外加电压值,其后如果电压继续上升,流过非线性压敏元件的电流将迅速增大,为此,定义在导通电压U D 以下的区域为截止区,U D 以上的区域为导通区。 (2)残压U C(U 残) 当元件流过100A 电流时,非线性电阻两端的残压值。 对于氧化锌非线性灭磁电阻元件而言,在正常工作及导通条件下流多的漏电流均会引起元件部分分子结构的损坏并影响到元件的使用寿命,为此正常工作电压的选择不宜过高。 (3)荷电率S U G 为元件工作电压,此值影响到元件的老化寿命。荷电率比值取得越高,元件的漏电流也越大,从而加速老化过程。一般S ≤0.5为宜。 U fN ——额定励磁电压 U f0——空载励磁电压 U ac ——阳极电压 Um in ——最小工作电压 COS α=U f0/ U ac /1.35 U min = 2U ac S IN(120+α) S=︱U min ︱/U D

2.灭磁开关 2.1 名词、术语 2.1.1 断路器 按规定条件,对配电电路、电动机或其他用电设备实行通断操作并起保护作用,即当电路内出现过载、短路或欠电压等情况时能自动分断电路的开关电器。 2.1.2磁场断路器 用于配合非线性(或线性)电阻分断发电机励磁回路的断路器。 2.2条件 发电机成功灭磁的条件,是磁场断路器在分断过程中主触头上的弧压应足够高以保证转子电流全部转移至灭磁电阻,且主触头可以承受此转移过程中的燃弧弧能。 3.灭磁工作原理 当发电机组的内部或发电机出口端发生故障以及正常停机时都要快速切断励磁电源,由于发电机转子绕组是个储能的大电感,因此励磁电流突变势必在转子绕组两端引起相当大的暂态过电压,造成转子绝缘击穿,所以必须尽快将转子电感中的磁能快速消耗,这就是通常所说的灭磁。 通常使用的灭磁方法有:线性电阻灭磁、灭磁开关灭磁、逆变灭磁和非线性电阻灭磁。本公司采用氧化锌非线性电阻灭磁方式利用其特殊的伏安特性,达到近似恒压灭磁的效果。 灭磁的原理如图1所示,其中i转子中的电流、FR1为氧化锌非线性电阻、FMK为灭磁开关、Uo为励磁电压、LP为整流电源、Uk为灭磁开关弧压、U 为氧化锌非线性电阻残压。若要 R 使转子电流衰减至零,必须在转子两端加一个与其励磁电源电势相反的电势U,灭磁方程式为Ldi/d t+U=O。可见电感中电流衰减率正比于反向电势U,反向电势越大,灭磁时间越短。但反向电势受转 子绝缘水平限,限不能超过转子绝缘允许值因此最理想的灭磁方式是灭磁电压保持恒定,电流保持 变化很小,一个固定的变化率(di/dt=-U/L)按直线规律衰减至零。由于氧化锌非线性电阻残压U R =U。发电机正常运行时转子电压低,氧化锌非线性电阻呈高阻态,漏电流灭磁时近似于恒压,即U R 仅为微安级。灭磁时,灭磁开关FMK跳开,切开励磁电源,在满足Uk≥Uo+U 时,电流被迫入灭磁 R 过电压保护器中,转子绕组中所储能量被氧化锌非线性电阻消耗,且氧化锌良好的伏安特性保证了 这部分能量几乎以恒压的形式消耗,确保了发电机组的安全。

轴电压测量及注意事项

发电部关于#1发电机轴电压测量的说明 一、发电机轴电压测量目的: 发电机组由于某些原因引起发电机组轴上产生了电压,如果在安装或运行中,没有采取足够的措施,当轴电压足以击穿轴与轴承间的油膜时,便发生放电,会使润滑冷却的油质逐渐劣化,严重者会使轴瓦烧坏,被迫停机造成事故。所以在运行中,测量检查发电机组的轴及轴承间的电压是十分必要的,对于检修机组判定轴瓦绝缘是否良好具有重要意义。根据《电力设备预防性试验规程- DL/T 596—1996》,轴电压应小于10V。京海电厂#1发电机运行期间未进行轴电压测量,为了对近2年运行期发电机轴瓦绝缘情况准确判断,建议在B修前对#1发电机轴电压进行测量,发现问题,根据测量结果并在检修期内消除轴瓦隐患,有利于发电机长期稳定运行。 二、产生轴电压的原因 1.由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。磁场不平衡的原因一般是因为定子铁芯的局部磁阻较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。 2.高速蒸汽产生的静电 由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。这种轴电压有时很高,可以使人感到麻手,但它不易传导至励磁机侧,在汽机侧也有可能破坏油膜和轴瓦,通常在汽机轴上接引接地碳刷来消除。 为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 三、发电机结构特点 我厂330MW发电机由东方汽轮发电机厂生产。发电机冷却方式为水氢氢。在发电机进行轴瓦座绝缘测量,绝缘值要求最小不得低于0.5MΩ,否则要对轴瓦进行干燥处理,规范轴瓦安装工艺,直至轴瓦对地绝缘合格。

过电压引起设备烧毁事故的原因分析及处理

编号:SM-ZD-50557 过电压引起设备烧毁事故的原因分析及处理 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

过电压引起设备烧毁事故的原因分 析及处理 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 【摘要】:在10KV或35KV中性点不接地(或非有效接地)系统中,由于谐振过电压、间歇性弧光接地过电压的存在,经常导致10KV(或35KV)接地电压互感器烧毁或使PT的熔断器的熔丝熔断,从而造成系统的停电检修,给电力系统造成不必要的损失。本文结合实例,对谐振过电压,尤其是间歇性弧光接地过电压引起设备烧毁事故的原因进行分析,并采取了相应的对策,保证了变电站设备的正常运行。 【关键词】:过电压设备事故分析和处理 前言 本文对处理固原西吉新营35KV变电站发生单相接地后,烧毁电压互感器的一次保险及二次计量电表的原因进行分析和探讨,认为烧毁电压互感器及二次设备的原因,不仅和谐振过电压有关,间歇性弧光接地也可能是造成此现象更重要

电机轴电流的分析

电机轴电流的分析 电 机 轴 电 流 的 分 析轴电流的存在对电动机轴承的使用寿命具有极大的破坏性, 根据现场实际运 行情况,分析其产生的原因,采取装设转轴接地碳刷、加强非轴伸端轴承座与支 架的绝缘等有效措施,从而从根本上解决轴电流危害的问题。 1 轴电流的危害 在电动机运行过程中,如果在两轴承端或电机转轴与轴承间有轴电流的存 在,那么对于电机轴承的使用寿命将会大大缩短。轻微的可运行上千小时,严重 的甚至只能运行几小时,给现场安全生产带来极大的影响。同时由于轴承损坏及 更换带来的直接和间接经济损失也不可小计。 2 轴电压和轴电流的产生 (1) 磁不平衡产生轴电压 电动机由于扇形冲片、 硅钢片等叠装因素, 再加上铁芯槽、 通风孔等的存在, 造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴 的两端感应出轴电压。 (2) 逆变供电产生轴电压 电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压 脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。 (3) 静电感应产生轴电压 在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的 两端感应出轴电压。 (4) 外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保护、 测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。 (5) 其他原因 如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。 轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。 3 轴电流对轴承的破坏 正常情况下,转轴与轴承间有润滑油膜的存在,起到绝缘的作用。对于较低 的轴电压,这层润滑油膜仍能保护其绝缘性能,不会产生轴电流。但是当轴电压 增加到一定数值时,尤其在电动机启动时,轴承内的润滑油膜还未稳定形成,轴 电压将击穿油膜而放电,构成回路,轴电流将从轴承和转轴的金属接触点通过, 由于该金属接触点很小,所以这些点的电流密度大,在瞬间产生高温,使轴承局 部烧熔,被烧熔的轴承合金在碾压力的作用下飞溅,于是在轴承内表面上烧出小 凹坑。一般由于转轴硬度及机械强度比轴承烧熔合金的高,通常表现出来的症状 是轴承内表面被压出条状电弧伤痕。 4 轴电流的防范 针对轴电流形成的根本原因,一般在现场采用如下防范措施: (1) 在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与 转轴可靠接触,保证转轴电位为零电位,以此消除轴电

变压器浪涌电流产生的原因和简单测试方法.

变压器浪涌电流产生的原因和简单测试方法 变压器在通电瞬间会产生一个很大的电流尖峰叫浪涌电流 浪涌电压 /电流产生的原因 由于电压突变引起的 当变压器合闸时正是电源正弦波的波形进入零的位置时, 变压器会产生很大的冲击电流, 甚至会造成变压器保护动作跳闸。不过这种概率很低, 所以平时变压器合闸时,其冲击电流都很小 变压器在空载合闸时会出现激磁涌流。其大小可达稳态激磁电流的 80-100倍, 或额定电流的 6-8倍。涌流对变压器本身不会造成大的危害, 但在某些情况下能造成电波动,如不采取相应措施,可能使变压器过电流或差动继电保护误动作。变压器励磁涌流是变压器全电压充电时在其绕组中产生的暂态电流 . 变压器投入前铁芯中的剩余磁通与变压器投入时工作电压产生的磁通方向相同时 , 其总磁通远远超过铁芯的饱和磁通量 , 因此产生较大的涌流 , 其中最大峰值可达到变压器额定电流的 6-8倍 . 励磁涌流与变压器投入时系统电压的相角 , 变压器铁芯的剩余磁通和电源系统阻抗等因素有关 . 最大涌流出现在变压器投入时电压经过零点的瞬间 (该时磁通为峰值 . 变压器涌流中含有直流分量和高次谐波分量 , 随时间衰减 , 其衰减时间取决于回路电阻和电抗 , 一般大容量变压器约 5-10S, 小容量变压器约为 0.2S 左右 一般在工厂生产检验时在电源输入处串接设定电流的保护开关(如常用的 DZ47-63 C20开机时不发生跳闸就说明激磁涌流小于该保护开关的额定电流当然要多开关几次 测试实际的激磁涌流可以用用示波器 , 在输入电源串接一小无感电阻 , 用示波器监测开机瞬时的涌浪电流的峰值

但变压器浪涌电流最大是在开机时刚好在电源正弦波的波形进入零的位置时。 , 人工开机时间是随机的在最大值的机率很小要用专用罗氏线圈来测量, 目前全球做的最好的是 pearson 这一家的,很贵,动辄几万,一般的不具备

变频器过电压的原因及解决方法

变频器过电压的原因及解决方法 过电压产生后,变频器为了防止内部电路损坏,其过电压保护功能将动作,使变频器停止运行,导致设备无法正常工作。 变频器在调试与使用过程中经常会遇到各种各样的问题,其中过 电压现象最为常见。 过电压产生后,变频器为了防止内部电路损坏,其过电压保护功能将动作,使变频器停止运行,导致设备无法正常工作。因此必须采取措施消除过电压,防止故障的发生。由于变频器与电机的应用场合不同,产生过电压的原因也不相同,所以应根据具体情况采取相应的 对策。 过电压的产生与再生制动 所谓变频器的过电压,是指由于种种原因造成的变频器电压超过额定电压,集中表现在变频器直流母线的直流电压上。正常工作时,变频器直流部电压为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压Ud=1.35U线=513V。 在过电压发生时,直流母线上的储能电容将被充电,当电压上升至700V左右时,(因机型而异)变频器过电压保护动作。造成过电压的原因主要有两种:电源过电压和再生过电压。电源过电压是指因电

源电压过高而使直流母线电压超过额定值。而现在大部分变频器的输入电压最高可达460V,因此,电源引起的过电压极为少见。 本文主要讨论的问题是再生过电压。产生再生过电压主要有以下原因:当大GD2(飞轮力矩)负载减速时变频器减速时间设定过短;电机受外力影响(风机、牵伸机)或位能负载(电梯、起重机)下放。由于这些原因,使电机实际转速高于变频器的指令转速,也就是说,电机转子转速超过了同步转速,这时电机的转差率为负,转子绕组切割旋转磁场的方向与电动机状态时相反,其产生的电磁转矩为阻碍旋转方向的制动转矩。所以电动机实际上处于发电状态,负载的动能被“再生” 成为电能。 再生能量经逆变部续流二极管对变频器直流储能电容器充电,使直流母线电压上升,这就是再生过电压。因再生过电压的过程中产生的转矩与原转矩相反,为制动转矩,因此再生过电压的过程也就是再生制动的过程。换句话说,消除了再生能量,也就提高了制动转矩。如果再生能量不大,因变频器与电机本身具有20%的再生制动能力,这部分电能将被变频器及电机消耗掉。若这部分能量超过了变频器与电机的消耗能力,直流回路的电容将被过充电,变频器的过电压保护功能动作,使运行停止。为避免这种情况的发生,必须将这部分能量及时的处理掉,同时也提高了制动转矩,这就是再生制动的目的。 过电压的防止措施

产生轴电压的原因如下

产生轴电压的原因如下: 3p W ]!F0C-s y u ①、由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。磁场不平衡的原因一般是因为定子铁芯的局部磁组较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。②、由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。这种轴电压有时很高,可以使人感到麻电。但在运行时已通过炭刷接地,所以实际上已被消除。轴电压一般不高,通常不超过2~3 伏,为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 发电机磁场非常强大,发电机的主轴穿过磁场中心,可是一旦有微小偏差,在发电机轴两端就有感应电压,如果发电机轴两端经轴承和机座成为闭合环路,就会产生巨大的短路电流,为了切断这个环路,发电机轴承的一端必须加绝缘垫片的 轴电流是由于发电机磁场不对称,发电机大轴被磁化,静电充电等原因在发电机轴上感应出轴电压,引起的从发电机组轴的一端经过油膜绝缘破坏了的轴承、轴承座及机座底板,流向轴的另一端的电流

逆变器供电的电机轴电流及其防治 1 引言 感应电动机的轴电压和轴电流现象并不是什么新的问题,alger在1920年就阐述了引起这些电流的原因,即磁通在电机内的不对称分布。而c.u.t.pearce在1927年也说到:只要有可能设计出一个完美平衡或是对称的电机,轴承电流在理论上和实际上都是不存在的。而事实上,感应电机在正弦波电源的驱动下,就会因电机内部的因素产生轴电流,这些因素可以分为两点:一是同极的磁通,例如通过电机轴中央的磁通;二是通过电机轴的交变磁链。其中第二种情况更普遍一些。而这些磁链主要是由转子和定子槽机械尺寸的偏差、磁性材料的定向属性的改变以及供电电源不平衡等因素引起的磁通不平衡所产生的。 近年来,以绝缘栅双极晶体管(igbt)为功率器件的脉宽调制(pwm)逆变器作为感应电机的驱动电源时,轴电流的问题变得日趋严重,这也使得轴承出现问题和损坏的机率增加、损坏的速度加快。而且具有高载波频率(大于12khz)的igbt逆变器导致电机轴承的损害比低载波频率的逆变器更快。此时产生的轴电流的主要原因就是pwm逆变器的输出在电气上的瞬时不平衡。 过大的轴电流将造成轴承的损坏,从而使得电机不能正常运行。通过电机可靠性研究表明电机轴承的损坏占电机损坏总数的40%,而轴承制造商反映几乎在所有损坏的轴承中有25%是由于逆变器输出电压的dv/dt过大,损坏的数字还在飞速地增长。 本文通过电机模型的建立,分析了电机在正弦波供电和pwm逆变器供电时的轴电压、轴电流产生的机理,由此重视起对电机轴承的研究;所阐述的几种不同的轴承电流的流向,为的

发电机轴电压产生的原因、危害及消除措施详细版

文件编号:GD/FS-3926 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________ (解决方案范本系列) 发电机轴电压产生的原因、危害及消除措施详细 版

发电机轴电压产生的原因、危害及 消除措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 (1)轴电压产生的原因 ①磁通不对称。造成磁通不对称的原因,可能是由于定子铁芯局部磁阻较大、定子与转子气隙不均匀、分数槽电机(多为水轮发电机)电枢反应不均匀等所引起。 ②电机大轴被磁化。 ③高速蒸汽产生静电。

由于与发电机同轴相连的汽轮机的轴封不好,沿轴的高速蒸汽泄漏或蒸汽在汽缸内高速喷射等原因使轴带电荷,这种性质的轴电压有时很高,当人触及时感到麻手。 (2)危害及消除措施 高速蒸汽产生的静电荷,不易传导到励磁机侧,在汽轮机侧也有可能破坏油膜和轴瓦,通常在汽轮机轴上装设接地炭刷来消除。 对于其他原因所产生的轴电压,如果在安装时和运行中不采取有效的措施,当轴电压足以击穿轴与轴承间的油膜时,将产生一个由发电机大轴、轴颈、轴瓦、轴承支架及机组底座为回路的轴电流,虽然轴电

相关文档
最新文档