焦炉荒煤气余热回收技术概述

焦炉荒煤气余热回收技术概述
焦炉荒煤气余热回收技术概述

烟气余热回收技术方案样本

烟气余热回收技术 方案

烟气余热回收利用改造项目 技术方案 ***节能科技有限公司 二O一二年

一、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在160-180℃,平均热效率在88%,(标准应不高于160℃)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。有着显著的节能效益。主要原理:1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,因此对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。加装烟气冷凝器的主要

目的就是经过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),而且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。 瑞典AIREC公司是世界上唯一一家 钎焊式模块化非对称流量板式换热器的 专业生产制造商,凭借独到的设计理 念,雄厚的产品开发能力和多年行业丰 富的实践经验使AIREC成为在非对称流量换热领域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真空和高温的环境下,板片用铜或镍焊接在一起,具有很高的机械强度,更大的传热面积,更高的效率,更轻便小巧。AIREC经过继承CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,气体/液体应用

焦炉烟气余热回收项目

焦碳焦炉烟气余热回收项目 煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。约700℃左右的荒煤气在桥管内被氨水喷洒冷却至90℃左右。荒煤气中的焦油等同时被冷凝下来。煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。 焦炉加热用的焦炉煤气,由外部管道架空引入。焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子砖把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。 对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。该方案就是为回收这一部分烟气的余热而设计。 1、烟气流程:在地下主烟道翻板阀前开孔,将主烟道路热烟气从地下主烟道路引出,经余热回收系统换热降温后,将热烟气降至约160℃,经锅炉引风机再排入主烟道翻阀后的地下烟道,经烟囱排空。 2、余热回收系统的组成:该系统由软化水处理装置、除氧器、水箱、除氧给水泵、锅炉给水泵、中温热管蒸气发生器、软水预热器、低温热管蒸气发生器、汽包、上升管、下降管、外连管路和控制仪表、锅炉引风机等组成,并且互相独立。 3、汽水流程 工业软化水经过软水泵进入热力除氧器除氧,除氧水一部分由给水泵输入热管软水预热器预热到后进入汽包,水通过下降管进入中温热管蒸汽发生器,水吸收热量变成饱和水,饱和水再经上升管进入汽包,在汽包里进行水汽分离,形成0.6MPa的饱和蒸汽,送至蒸汽总管或用户;除氧水另一部分由给水泵输入低温热管蒸发器,经加热后进入低压汽包,在汽包内进行汽水分离,形成0.3MPa的饱和蒸汽,送至除氧器除氧或给用户。 4、余热回收的主要原理: (1)蒸汽发生器的原理为:热流体的热量由热管传给放热端水套管内的水(水由下降管输入),并使其汽化,所产汽、水混合物经蒸汽上升管到达汽包,经集中分离以后再经蒸汽主控阀输出。这样由于热管不断将热量输入水套管内的水,并通过外部汽—水管道的上升及下降完成基本的汽—水循环,达到将热流体降温,并转化为蒸汽的目的。 (2)省煤器的工作原理为:热流体的热量由翅片热管传给放热端水套管内的水,水吸收热量,使热流体降温,使套管内的水由欠饱和态达到相应压力下的饱和态,再进入汽包内参与自然循环过程。 (3)低温蒸汽发生器的工作原理为:热流体的热量由热管传给水套管内的水(水由下降管输入),并使其汽化,所产汽、水混合物经蒸汽上升

发电厂烟气余热利用热经济性分析与计算

发电厂烟气余热利用热经济性分析与计算摘要面对我国能源和水资源紧缺等状况,在电厂设计中,优化系统设计,合理地利用电厂的烟气余热,提高机组效率,节约用水,减少煤耗,是节能的重要措施之一。本文针对我院某投标工程,对烟气余热利用的可行性及收益情况进行了分析。 关键词优化设计;烟气余热利用;投资;收益 the analysis and calculation of heat recovery from exhaust gas of power plant hua xiu-feng ,li xiao-ming (states nuclear electric power planning design & research institute, beijing 100094, china) abstract: according to the shortage of the energy sources and water in our country, when we design the power plant, optimum design is adopted, the heat from the exhaust gas is used. the efficiency of the power plant is increased, water and coal is saved. this is a good method to save the resource. in this article, based on a power plant our company bid for, the feasibility and income of the heat recovery from exhaust gas of power plant is analyzed. key words: optimum design; heat recovery from exhaust gas; investment; income 在火力发电厂中,锅炉的排烟余热问题即锅炉的排烟温度高一

浅谈焦化上升管余热回收技术的发展历程和应用情况(初稿框架)

浅谈焦化上升管余热回收技术的发展历程和应用情况焦化上升管余热回收技术或设备,自六七十年代以来各大焦化生产企业,分别作了研究和尝试,包括夹套式、盘管式、导热油式等几大流派。但在实际生产中总出现这样或那样的问题,导致相关技术研究一度被搁置。自2014年新一代水夹套式上升管换热器在福建三钢试验成功以来,上升管余热回收技术再次走进各焦化企业的视线。诸如武钢、邯钢、安钢等各大国有企业先后做了技术引进的尝试。同时焦化上升管余热回收节能项目也进入了国家十三五节能规划推广目录。 市场一度沸腾,也激发了各行技术人员的热情。导致各种技术再次成为技术人员讨论话题和试验对象,瞬间盘管式、导热油式等技术也再次涌现,并进行工业化试验,市场上再次出现五花八门技术组合、各夸各好声音,导致有的企业也分不清哪种技术更先进,哪种技术更安全。 本文通过对各家技术调研整理分析,得出如下结论。 1、没有绝对安全、万无一失的设备和技术。 2、特殊情况下及时采取措施,保证系统安全和减小损失。 3、设备是整个工艺技术的一方面,整个工艺的完整性高、流畅性、可调节性,也是整套工艺技术是否成熟可靠的重要方面。 4、作为企业自身,应先企业的地理位置、工艺要求等实际情况,确定选取的余热回 收采取的技术路线,比如确定所需蒸汽参数等。 5、选定技术路线后,考虑完善技术方案保证系统安全稳定运行,如采用双汽包、水 力平衡、调节、断水断电应急等。 通过对焦炉上升管余热回收技术的长期关注与研究发现,之所以在一定领域内取得突破性进步,主要源自于近年来制造水平的提升和新材料的出现。但技术难点依然存在。一是上升管数量多,系统庞大;二是工况恶劣,成分复杂,温度变化范围大;三是焦炉生产365天时刻不停,不易检修;四是空间跨度大,管路长,阻力不均;五是每个单体设备都要具备单独切换(断水、断气及排水、排气),确保应急情况或单体解列、更换能够顺利进行;

完整版钢铁行业余热回收

烧结线余热 烧结生产线有两部分余热,一是冷却机产生的热风,二是烧结机尾的高温烟气。用余热锅炉将这两部分余热来产生蒸汽,再通过汽轮机发电。据经验数据,每10m2的烧结面积可产生 1.5t/h 的蒸汽,可发电300kW,折合标煤120kg/h 。 转炉余热 转炉汽化冷却烟道间歇产生的蒸汽,通过蓄能器变为连续的饱和蒸汽,采用我公司的专利——机内除湿再热的多级冲动式汽轮机发电。每炼1t 钢,可产生80kg 饱和蒸汽,每吨饱和蒸汽大约可发电150kWh,折合标煤60kg。 转炉煤气经过汽化冷却烟道冷却后温度仍高达800?900 C,采用我公司的干 法煤气显热回收技术,通过下降管烟道、急冷换热器回收显热生产蒸汽,经蓄能器调节后发电。 电炉余热 电炉冶炼过程中产生200?1000 C的高温含尘废气,采用余热锅炉将其回收, 电炉烟气属于周期波动热源,因此余热锅炉产生的蒸汽需要经过蓄能器调节后方可进入汽轮机发电。 加热炉余热 加热炉有两处余热可以利用:一处是炉内支撑梁的汽化冷却系统,另一处是 烟道高温烟气。根据炉型不同,加热炉的烟气量在7000?300000Nm3/h,若用来发电,以烟气量10万Nm3烟气温度400 C计算,发电量约2000kWh,折合标煤0.8t ; 汽化冷却系统可生产 0.4~1.0Mpa的饱和蒸汽,每吨蒸汽(0.5Mpa)可发电120kWh,折合标煤48kg。 高炉冲渣水 用高速水流冲击炉渣使之充分急冷、粒化的过程中,会产生大量的冲渣热水。每吨铁排出约0.3t渣,每吨渣可产生80?95 °C,5?10t的冲渣水,将这部分热水 减压产生低压蒸汽,再进入饱和蒸汽凝汽式汽轮机发电。每吨90 C热水可发电 1.5kWh,折标煤0.6kg,80 C热水可发电1kWh,折标煤0.4kg 。

600万大卡导热油炉烟气余热回收方案讲解

实益长丰纺织有限公司 600万大卡导热油炉-余热回收装置 项 目 说 明 书 目录

1.摘要 (1) 2.公司营业执照和资质证书复印件 (1) 3.授权委托书 (2) 4.用户供热系统分析、节能分析及节能计算 (3) 5. 热量回收计算表 (4) 6.热管技术介绍 (5) 7.国内常用余热回收方式对比分析 (9) 8.热管余热回收解决方案 (10) 9. 施工方案 (12) 10. 工程报价及付款方式 (13) 11.售后服务 (14) 12.公司部分实体图片 (15) 13.公司简介 (16)

摘要 本文详细介绍了英德市实益长丰纺织有限公司供热系统余热回收工程方案,分析英德市实益长丰纺织有限公司供热系统并对余热回收技术做了系统的描述,根据工作需求及工作背景做出技术解决方案、施工方案、工程报价、节能分析、售后服务,对超导热管技术做了较为具体的描述。本文还对国内各种常用余热回收方式做了系统比较。

2 供热系统分析 英德市实益长丰纺织有限公司目前1台600万大卡燃煤导热油炉,在能源日趋紧张的背景下,同时企业的经营成本不断上升。排烟温度在280℃以上,造成很大的资源浪费。 备注:根据现有锅炉情况,排烟温度为280℃以上,其节能有很大的空间,因为其烟气量较大,热焓高。 节能分析 英德市实益长丰纺织有限公司导热油炉可以改进节能设备: 在导热油炉与引风机之间加装热管余热回收器,烟气温度由300℃降到130℃左右,每小时可产生173度的蒸汽1.15吨,回收74万大卡的热量,为企业带来可观的经济效益。 节能计算 每小时回收74万大卡热量,按煤燃烧值5000大卡、锅炉效率80%计算,每小时可省煤 74万大卡÷5000小时÷80%=185公斤/小时 185公斤/小时×24/天×320天=1420800公斤/每年 1420800公斤÷1000=1402.8吨 1402.8吨×0.7143=1001tce(每年可节省) 按煤价650元/吨,每小时节省费用 185公斤/小时×0.65元/公斤=120元/小时 每年锅炉运行时间按7200小时计,则每年可节约 120元/小时×7200小时=86万元 设备总投资约16万,则设备的回报周期为: 16万/(86万/12月)=2.23个月,保守估计3个月收回全部投资。

余热回收设计方法

恒昌焦化 焦炉烟气余热回收项目 设计方案 唐山德业环保设备有限公司 二〇一二年三月 一、焦化工艺概述: 备煤车间送来的配合煤装入煤塔,装煤车按作业计划从煤塔取煤,经计量后装入炭化室内。煤料在炭化室内经过一个结焦周期的高温干馏制成焦炭并产生荒煤气。 炭化室内的焦炭成熟后,用推焦车推出,经拦焦车导入熄焦车内,并由电机车牵引熄焦车到熄焦塔内进行喷水熄焦。熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛焦工段,经筛分按级别贮存待运。 煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。约800℃左右的荒煤气在桥管内被氨水喷洒冷却至84℃左右。荒煤气中的焦油等

同时被冷凝下来。煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。 焦炉加热用的焦炉煤气,由外部管道架空引入。焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子赚把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。 对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。 二、余热回收工艺流程图 技术方案如下:该系统由热管蒸气发生器、软水预热器、汽包、上升管、下降管、外连管路和控制仪表等组成,并且互相独立。 主要技术特点: 1、地下烟道开孔技术:如何实现地下主烟道在焦炉正常行产情况下在线开孔,是本项目成功实施的第一关键。我公司根据多次地下烟道的开孔经验,成功总结出一套行之有效施工方案。 地下烟道路截面尺寸如上图所示。

【CN209940900U】一种焦炉上升管余热利用装置【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920608323.7 (22)申请日 2019.04.29 (73)专利权人 潍坊业兴新型建材有限公司 地址 261000 山东省潍坊市钢厂工业园潍 钢东路 (72)发明人 张洪峰 张寿臣 张善伟  (51)Int.Cl. C10B 27/00(2006.01) F28D 1/047(2006.01) F28F 19/04(2006.01) (54)实用新型名称一种焦炉上升管余热利用装置(57)摘要本实用新型公开了一种焦炉上升管余热利用装置,包括上升管本体,上升管本体的进气和出气端均固定连接有用于外部连接的法兰盘,上升管本体的左侧内壁上贯穿设有换热件,上升管本体是由多种材料复合组成。本实用新型通过紧贴于耐蚀合金层设置的由聚氨酯泡沫塑料组成的绝热层,能够有效的对上升管本体进行隔热,防止上升管本体内外温差过大导致管体内壁出现开裂,通过设置的由聚四氟乙烯组成的耐腐蚀层和涂覆的耐蚀陶瓷涂料,能够有效提升上升管本体的耐腐蚀性,防止上升管本体的内壁因荒煤气长期冲刷而腐蚀开裂,延长上升管本体的使用寿命,通过设置的螺旋状的换热管,有效增加荒煤气和换热管之间的换热面积, 提升换热效率。权利要求书1页 说明书3页 附图2页CN 209940900 U 2020.01.14 C N 209940900 U

权 利 要 求 书1/1页CN 209940900 U 1.一种焦炉上升管余热利用装置,包括上升管本体(1),所述上升管本体(1)的进气和出气端均固定连接有用于外部连接的法兰盘(2),其特征在于,所述上升管本体(1)的左侧内壁上贯穿设有换热件(3),所述上升管本体(1)是由多种材料复合组成。 2.根据权利要求1所述的一种焦炉上升管余热利用装置,其特征在于,所述换热件(3)包括设置于上升管本体(1)内的换热管(4),所述换热管(4)呈螺旋状设置,所述换热管(4)靠近上下两端的右端侧壁上均固定连接有用于固定换热管(4)的连接块(5),两块所述连接块(5)远离换热管(4)的一端侧壁与上升管本体(1)的环形内壁固定连接。 3.根据权利要求1所述的一种焦炉上升管余热利用装置,其特征在于,所述上升管本体(1)的最内层为耐蚀合金层(6),所述耐蚀合金层(6)的材质为镍基合金。 4.根据权利要求3所述的一种焦炉上升管余热利用装置,其特征在于,所述上升管本体(1)的中间层为绝热层(7),所述绝热层(7)紧贴于耐蚀合金层(6)设置,所述绝热层(7)的材质为聚氨酯泡沫塑料。 5.根据权利要求4所述的一种焦炉上升管余热利用装置,其特征在于,所述上升管本体(1)紧贴左侧绝热层(7)的最外层为耐腐蚀层(8),所述耐腐蚀层(8)的材质为聚四氟乙烯。 6.根据权利要求5所述的一种焦炉上升管余热利用装置,其特征在于,所述耐腐蚀层(8)上还涂覆由耐蚀涂层(9),所述耐蚀涂层(9)的材质为耐蚀陶瓷涂料。 7.根据权利要求4所述的一种焦炉上升管余热利用装置,其特征在于,所述上升管本体(1)紧贴右侧绝热层(7)的最外层为耐磨层(10),所述耐磨层(10)的材质为金刚砂。 2

夹套式焦炉上升管荒煤气余热回收工艺技术的改进与完善

夹套式焦炉上升管荒煤气余热回收工艺技术的改进与完善 发表时间:2019-08-27T11:37:26.887Z 来源:《工程管理前沿》2019年第12期作者:左国辉韩雷雷[导读] 阐述了焦炉荒煤气余热回收运行过程中的常见问题及难点。河北汉尧环保工程有限公司河北石家庄 050031 摘要:本文阐述了焦炉荒煤气余热回收运行过程中的常见问题及难点,通过对工艺装置进行技术改进和完善,有效解决易腐蚀、易析碳 结、换热效率低、水利分布不均、冒黑烟等问题,实现了装置安全、稳定、高效运行,效益明显,对同类项目实施具有一定的参考和借鉴意义。 关键词:余热回收荒煤气上升管 概述 2018年9月底,由我公司设计、实施、调试的宣钢5#、6#焦炉荒煤气显热回收利用改造工程正式完工投运,实现了产生0.5~0.8公斤饱和蒸汽12t/h以上的良好节能效果。经过历时10个月的生产跟踪和调试改进,掌握和完善了一系列施工和调试过程中的技术提升和工艺优化,在安全生产、环境保护、节能效果等方面得到进一步保障,为今后同类项目设计实施提供了技术积累和经验借鉴。实施方案及组成 焦化厂2×50孔6米焦炉年产焦炭100万吨,建于2008年,从炭化室经上升管逸出的750℃~850℃荒煤气通过喷洒大量70℃~75℃循环氨水将高温荒煤气冷却至82℃~85℃,再经初冷器冷却到22℃~35℃,荒煤气带出的热量被白白浪费。针对这一现状,公司通对焦炉及荒煤气参数进行计算,设计一套由补水泵、缓冲水箱、加药装置、给水泵、汽包、强制循环泵、上升管换热器、调节阀组、管网及相关附属设施构成余热回收系统。整个方案从设计到施工到投运计划总工期5个月,在保证不影响焦化正常生产的情况下进行节能改造。工艺流程 工艺过程是除盐水通过补水泵进入缓冲水箱,再经给水泵至汽包。然后水从汽包通过下降管经强制循环泵至上升管换热器,吸热后的汽水混合物再经上升管至汽包,经汽水分离后,饱和蒸汽供入蒸汽管网,未汽化的水重新进入下一个循环。换热器另一侧从炭化室逸出的750℃~850℃荒煤气经过本换热装置温度降至450℃~500℃后,经桥管、集气管进入化产车间。工艺流程图如下: 运行期间出现的问题和解决方案 (1)当停电或强制循环泵停运后,二次恢复供水过程中,在管道末端上升管换热器易出现过热干烧和气阻现象。分析:末端换热器从给水角度讲位置处于最远端,水克服管道阻力损失,因此末端换热器进口压力Pn进低于其它换热器进口压力;从汽水混合物角度讲位置也是处于最远端,汽水混合物要流回汽包也要克服沿途管道阻力损失,因此末端换热器出口压力Pn出要高于其它换热器出口压力;这样就造成末端换热器介质流动性很差,在流动状态被破坏之后易形成气阻,造成设备过热干烧。解决方法:①.短时间出现过热和气阻现象,可以短期提高强制循环泵出力,使系统建立新的平衡;②.长时间出现过热和气阻现象,需先对过热换热器进行蒸汽冷却,在提高强制循环泵出力,建立新平衡;③.总之系统庞大,重在优化单体设备的自动化和调控水平。效果:不良现象消除,系统运行稳定,总产气量指标有所提升。(2)近汽包端个别上升管底部有结焦现象,开盖有冒黑烟现象。分析:①.近端换热器水量过大,取热过多,造成上升管直管段荒煤气温降过大,出现析碳结焦现象,进而开盖有黑烟冒出。②.各企业操作过程控制碳化室顶部温度不一,总体780±20℃,再加上单孔碳化室结焦过程荒煤气温度类似正弦曲线波动,结焦末期开盖本身荒煤气正处于温度偏低阶段。 解决办法:①.轻微现象可以通过及时清理换热器内壁和短时间开盖焚烧处理。②.严重现象需控制近端换热器进水量,控制出汽口蒸汽的饱和度。③.经过调整摸索和精确计算对近端换热器进口增加节流孔板精准控制单体设备进水量,同时强制内循环系统增加精确插入式流量测量装置,精准调节内系统循环流量。 设计改进及施工优化 经过整个项目从设计到实施到调试到运营全流程跟踪和试验,并结合实际实施效果和生产数据对比得出如下结论: 1.设计方面优化提升 ①.采用树状网络布管技术(见下图), 通过强制循环泵变频、大流量高扬程、分段的管网布局、节流调节等手段保证每个上升管换热器的进水相对均匀,保证整个系统各单体设备水量均匀。

溴化锂直燃机烟气余热利用计算方法

烟气余热回收热量计算方法 一.烟气余热回收热量Q的计算 1.烟气的平均比热:Cp 烟气的入口温度T1时的比热C1 烟气的出口温度T2时的比热C2 烟气的平均比热Cp=(C1+C2)/2 2.烟气的质量流量:Vm(kg/h) 烟气入口温度T时的密度P 烟气的质量流量Vm= P*V 3.烟气换热量(显热):Q烟气 烟气换热量Q=Cp×Vm×△T=Cp×Vm×(T1-T2) 4.水蒸汽的凝结热量(潜热):Q凝水 天然气密度:0.642kg/m3;甲烷纯度为:90% 1kg甲烷燃烧产生2kg水蒸汽,1kg水蒸汽冷凝成水释放539kcal热量。 Q凝水=天然气量(m3/h)×0.642×90%×2×539 5. 烟气余热回收热量:Q=Q凝水+Q烟气 二.计算实例 例:某用户采用100万大卡直燃机组,额定制冷时排气温度为160℃。利用一台烟气板交对烟气余热进行回收利用将卫生热水由25℃加热至55℃,烟气通过烟气板交后排气温度降至75℃。 1.计算烟气换热量:Q烟气 烟气换热量Q烟气=Cp×Vm×△T=Cp×Vm×(T1-T2) 1万大卡燃料热值充分燃烧排气量为18m3; 100万大卡机组额定天然气用量为84.5m3/h,排气量V(m3/h)为:84.5×8600÷10000×18=1308 排气温度为160℃时,烟气质量流量Vm(kg/h): Vm=P×V=0.829×1308 =1084 烟气的平均比热Cp: 烟气入口温度为160℃时的比热C1:0.2590 烟气出口温度为75℃时的比热C2:0.2520 Cp=(C1+C2)/2=(0.2590+0.2523)/2=0.2555 烟气换热量Q烟气=Cp×Vm×△T =Cp×Vm×(T1-T2) =0.2555×1084×(160-75) =23541kcal 2. 计算水蒸汽凝水热量:Q凝水 Q凝水=84.5×0.642×90%×2×539=52632kcal 烟气余热回收热量: Q=Q烟气+Q凝水=23541+52632=76173kcal 3. 余热回收效率:76173÷(8 4.5×8600)×100%=10.4%三.烟气温度、密度、比热关系

烟气余热回收利用装置

钻井柴油机烟气余热回收利用装置 申请号/专利号:200920139896 本实用新型公开了一种钻井柴油机烟气余热回收利用装置,包括水罐以及盘管热交换器,盘管热交换器具有进气端与出气端,进气端与柴油机的排气管相连通;盘管热交换器还具有进水口与出水口,进水口与出水口之间连接着装有循环泵的循环水管路,循环水管路从油罐中穿过,水罐连接在循环水管路上。本实用新型结构简单,易于制造,利用柴油机排出的烟气余热加热油罐中的存油,达到了在冬季用0#柴油替代-35#柴油、节能减排的目的,同时提高了井队冬季开钻工作效率,降低了井队运行成本。 申请日:2009年02月24日 公开日: 授权公告日:2010年01月06日 申请人/专利权人:新疆塔林石油科技有限公司 申请人地址:新疆维吾尔自治区克拉玛依市白碱滩区门户路100号 发明设计人:杜其江;何龙;李树新;田成建;林宣义;吕伟;姚庆元;尚玉龙;李建华;马伟;王琪 专利代理机构:乌鲁木齐新科联专利代理事务所有限公司 代理人:李振中 专利类型:实用新型专利 分类号:F02M31/16;F02G5/02;F01N5/02 点此查看跟该专利相关的主附图\公开说明书\授权说明书 烟气余热回收装置的利用 2010年第10期沿海企业与科技一一NO.10.2010l堂箜12堇塑!£Q△曼坠坠量烈!垦!丛:墅墨竖趔坠錾!量丛堡E鱼匹垦丛丛Q!!E蔓羔!垡丛婴坚!坐i!曼!!塑Q:12主!烟气余热回收装置的利用梁著文〔摘要〕文章主要介绍锅炉排烟余热回收的必奏巨和利用方向。当今国内外烟气回收蓑王的应用情况。从设计角度提出设置

烟气余热回收装王(烟气冷却器)需要考虑的问题。并列举工程设计方案及其预期的节能效果。〔关键词〕烟气余热回收;低温腐蚀;节能〔作者简介】粱著文,广东省电力设计研究院,广东广州。510000〔中圈分类号〕TM621.2〔文献标识码〕A〔文章编号〕1007-7723(2010)10-0111-0003一、引言2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150。C的热烟气由迸料端或出料端进入,从另一端的上部排出,热烟气和物料以逆流或顺流的方式接触,出口烟气温度约降至120℃左右。3.安装防腐蚀管式换热器,用来加热厂房或是厂区的水暖系统热网循环水,以替代或部分替代常规的热网加热器,从而节省了热网加热器的加热蒸汽量,增加了发电量。4.利用烟气的余热加热凝结水,用来提高全厂的热效率,降低煤耗,增加电厂发电量。加热的方式主要有两个:一是直接加热方式,即安装烟气回热加热器,使烟气与凝结水直接进行热交换;二是间接加热方式,即安装烟气回热加热器及水水换热器,使烟气在闭式水和烟气回热加热器内进行热交换;吸收烟气余热后的闭式水进入水水换热器内与凝结水进行热交换,然后再将热量带入主凝结水系统,图l为系统流程图。在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180—2200C左右;中型锅炉排烟温度在110—180℃。一般来说,排烟温度每升高15.20。C,锅炉热效率大约降低1.o%。因此,锅炉排烟是—个潜力很大的余热资源。二、烟气余热的利用方向烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风。将进人预热器前的冷风预加热。以减少常规蒸汽暖风器辅助蒸汽用量。硝装置电功tn水牟龠圈1系统流程万方数据三、烟气余热回收装置在国内外的应用情况1.德国黑泵(Schwa眺Pumpe)电厂2×800MW褐煤发电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水。2.德国科隆Nidemusseml000MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把低温省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部分烟气到旁通烟道内加热锅炉给水。3.日本的常陆那珂电厂采用了水媒方式的管式GGH。烟气放热段的GGH布置在电除尘器上游,烟气被冷却后进人低温除尘器(烟气温度在90—100℃左右)。4.外高桥电厂三期2×1000MW机组进行了低温省煤器改造,低温省煤器布置在引风机后脱硫吸收塔前,根据性能考核报告,其节能效果明显。目前国内较多应用。器传热管的金属安全壁温Ta。由于以上烟气酸露点的计算采用的是经验公式,但实际煤质及具体的运行情况会通常偏差较大,按锅炉厂的常规经验设计,一般会加5~lO℃的温度裕量作为金属安全壁温。如果在实际运行中通过取样检测能够获得较准确的烟气露点温度,可以相应调整烟气冷却器的金属安全壁温ta。(三)传热管的堵灰问题低温受热面的积灰不仅会污染传热管表面,影响传热效率,严重时还会堵塞烟气流动通道,增加烟气流动阻力,甚至影响锅炉安全运行,而导致不得不停炉清灰。为保证烟气余热回收装置不发生堵塞,应保持传热管的积灰为干灰状态。因此,在电站锅炉烟气余热回收装置运行过程中,保证传热管金属温度高于烟气水蒸汽露点温度、传热管上不会造成水蒸汽结露至关重要。对于干灰的清理,可采取以下几方面的措施:1.烟道内烟气流动顺畅,在结构设计上不出现大量积灰源,同时保证吹灰器能吹到所有的管束,不留吹灰死角。2.烟气流动速度均匀,设计烟气流速高于lOm/s,使烟气在流动中具有一定的自清灰功能。3.采用成熟可

焦炉烟气脱硫脱硝及余热回收方法手册

精心整理山西焦化股份有限公司 焦炉烟气脱硫脱硝项目二期工程 方案书 1#焦炉烟气脱硫脱硝及余热回收 2017年03月02日

一、设计方案 1、工程概述 山西焦化股份有限公司焦炉烟气脱硫脱硝项目工程二期,共有3台50孔焦炉,每台产能50万吨/年。由于现有生产工艺并未配备相应的烟气净化处理装置及设施,生产过程中产生的烟气(含SO2和NOx)通过地下烟道引至烟囱直接排放。随着环保形式的日益严峻,个别地区机械焦炉烟囱已经开始执行《炼焦化学工业污染物排放标准》(GB16171-2012)中的特别排放限值要求:SO2≤30mg/Nm3(干基),NOx≤150mg/Nm3(干基),颗粒物 ≤15mg/Nm3(干基)。为积极响应国家环保部关于焦炉生产污染物排放指标的控制,峰煤焦化厂相关领导拟对焦炉烟气进行脱硫脱硝净化处理,以达到污染物排放指标。 2、基础参数及条件 2.1、焦炉烟气参数 在正常生产过程中,1#、4#、5#焦炉各有一个烟囱,每个烟囱排放的烟气量和烟气成分基本相同,详细参数见下表: 序号名称单位数值 1 烟气量Nm3/h 90000-120000 2 烟气温度℃230-290 3 SO2浓度mg/Nm3 ≤200 4 NOx浓度mg/Nm3 ≤1200 5 粉尘浓度mg/Nm3 ≤30 6 含O2量% 7-11% 2.2、设计原则及标准 《焦化安全规程》GB12710—2008 《炼焦化学工业污染物排放标准》GB16171-2012 《火电厂烟气脱硝工程技术规范-选择性催化还原法》HJ562-2010 《工艺金属管道设计规范》GB50316-2000 《工业企业厂界噪声标准Ⅲ类标准》GB12348-90 《工业企业设计卫生标准》GBZ1-2002 《工业金属管道工程施工及验收规范》GB50235-97 《自动化仪表施工及验收规范》GB50093-2002 《机械设备安装工程施工及验收规范》GB50231-98

焦炉荒煤气上升管余热利用方案比较

焦炉荒煤气上升管余热利用方案比较 焦炉是焦化企业生产的关键设备和能量聚集点。焦炉的支出热主要由三部分组成:一是焦炉炭化室出焦时所推出的红焦带出的高温余热,约占37%;二是焦炉上升管排出的高温荒煤气带出的中温余热,约占33%;三是焦炉烟道排出的废气带出的低温余热,约占17%。 焦炉荒煤气是焦煤在结焦过程中挥发份逸出而形成,通常温度为600—800℃左右,其显热占焦炉热支出的约33%左右。为降低焦炉荒煤气温度便于后续焦化工艺处理,传统工艺采用喷氨水急冷的工艺冷却高温荒煤气,使荒煤气急剧降温至80-85℃。该工艺流程不仅浪费了大量的荒煤气显热,而且消耗大量的氨水、又浪费了大量的水资源和电力,增加污水排放。 其中,红焦带出的高温余热目前已通过干熄焦技术予以回收并发电;烟道气排出的低温余热也已采用煤调湿、煤干燥、热管技术予以回收;但对于焦炉顶部上升管排出的800℃荒煤气,其带出的热量在焦炉输出显热中位居第二,该项中温余热是焦炉余热余能回收利用的最后一道亟待攻破的技术难关。 目前关于荒煤气显热利用已经研究了近30年,有水套式、热管式、风媒式、荒煤气引出式、介质浴式等等方法。 水套式。这种方式试验最早,是在原上升管外面包覆一层水套,形式有若干种,利用荒煤气的部分热量产生热水或蒸汽。以6m焦炉为例,每根上升管产0.5MPa蒸汽约 79kg/h,荒煤气从692℃降低到606℃,100根上升管可产蒸汽约7.9t/h,强制循环泵功率约30KW,设备总投资约1000~2000多万元。水套式的优点是设备体积较小,不结焦,对焦炉原有工艺没有太大影响,但是焦炉的上升管变成一个压力容器,存在运行时起停不易的限制和泄漏隐患。 风媒式。这种方式是在原上升管外面制造一个风冷却套,其形式也有若干种,将荒煤气的一部分热量吸收产生热风,再将热风引到地面的余热锅炉中产生蒸汽,热风放热后再通过风机循环回上升管中。还是以6m焦炉为例,荒煤气从692℃降低到637℃,100根上升管可产蒸汽约4.5t/h,循环风机电耗约179KW,设备总投资约600~1000万元。风媒的优点是也是对焦炉原有工艺没有太大影响,不结焦,控制方便、安全,但是蒸汽产量比水套式的少约40%。

空压机余热回收方案

空压机余热利用中央热水系统设计案 致: 根据贵员工宿舍中央热水系统工程项目的邀请,设计施工市森茂节能环保工程有限公司,按贵要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水式为不定时不定量,热水温度在55℃以上。 1.2 工程总案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管

道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 在管路上水箱、水泵、换热器两头及各预留检修处,均安装铜制优质阀门,另在保暖水箱出口及换热器出口处安装水过滤器各1个。 1.2.2保暖水塔 贵司安装两个50吨保暖水箱,即可满足贵公司员工的用水要求。水箱材质为双层不锈钢,50mm厚聚脂泡沫保溫层,24小时温降5℃以。 1.2.3 换热装置 本工程将对13台螺杆式空压机加装余热利用装置,分两套系统,每小时分别可产水800L以上,10小时可产水160吨,完全可以满足员工的用水要求。 1.2.4 补水系统 补水系统使用水位开关、电磁阀、温度控制器控制

焦炉烟气余热回方案

焦化厂节能减排项目 -----热管式余热锅炉应用的可行性 项 目 方 案 书 上海蕲黄节能环保设备有限公司山西办事处 二○一一年一月

上海蕲黄节能环保设备有限公司成立于2009年,是在上海蕲黄节能设备有限公司(2004年)无法满足市场需求的基础上成立的,是国内较早开展余热回收的厂家之一,2010年被选为上海市节能协会服务产业委员会委员,并于2011 年获批国家第三批节能服务公司。通过近 几年的发展,经我公司成功改造的锅炉、工业窑炉已有1000多台,公司在锅炉及工业窑炉的余热回收利用及节能改造、纺织印染定型机的余热回收利用及 节能改造、废气净化处理等领域处于国内先进水平。公司坐落在璀璨的东方明珠——上海浦东新区,公司现有锅炉节能高级专家10名,产品研发工程师人员30多名,公司拥有国内先进生产、检测设备,拥有专业的运输、安装、售后服务队伍。公司是集锅炉余热回收、环保设备研发、设计、制造、配套、安装、调试及售后服务于一体的多元化高科技环保企业。

多年来,公司自主研发的波形给煤节能装置(国家专利号:ZL 3120.9)、热管余热蒸汽发生器(国家专利号:ZL 7839.9)在纺织印染、石油化工、金属冶炼等行业广泛运用,尤其在锅炉、玻璃窑炉、陶瓷窑炉、焦化炉、矿热炉、石灰窑炉、水泥窑炉、烧结炉、退火炉、定型机等高能耗领域,为用户创造了巨大的经济效益。由我公司承担的上海重型机械厂、上海华峰集团、上海五四助剂厂的锅炉余热回收节能改造项目被列入《2009年上海市重点节能技术改造项目汇编》。另外公司在流化床锅炉改造、冷凝水回收、余热发电、锅炉富氧燃烧改造、烟气脱硫脱硝、除尘工程等方面也处于国内领先水平。 公司以“服务于企业,贡献于社会”为宗旨,长期致力于“电力、冶炼化工、纺织印染、造纸食品、电子电器、农业”等行业的节能降耗、锅炉余热回收、定型机余热回收、废气净化、烘干干燥等工业、农业领域的集成化治理工作,并全面开展合同能源管理(EMC)项目的节能改造工程。 蕲黄人不断加大技术创新投入,始终采用国内领先的生产设备、生产工艺和科学管理方法,一如既往的以优质产品服务广大客户。在发展的道路上,我们始终奉行“一切为了节能、一切为了客户”的宗旨,为客户提供节能产品、节能诊断改造、节能规划与设计服务及合同能源管理项目服务,以实现企业节能增效、互惠互利、共获双赢的目标,与新老朋友携手共创辉煌的明天! 我公司将以严谨的科技作风,良好的信誉,合理的价格,竭诚为广大公司做好服务,共创辉煌。

工业烟气余热回收利用方案优化分析

龙源期刊网 https://www.360docs.net/doc/f217659826.html, 工业烟气余热回收利用方案优化分析 作者:罗先辉 来源:《科技与创新》2015年第14期 当前,我国资源、能源问题日益严峻,引起了国家与各地政府的高度关注。在节能减排的背景下,为了节约资源,实现社会经济的可持续发展,对工业烟气余热进行回收利用成为了大势所趋。在工业生产中,对烟气余热进行回收利用不仅节约了能源,保护了生态环境,还能为我国经济社会的建设与发展提供强大动力支持。 1;;工业余热回收利用现状 工业余热主要是指在工作生产过程中使用的热能转换设备和相关机械设备中未被利用的能量。总体来看,我国余热资源较为丰富。相关研究资料显示,我国余热资源数量平均高达 4.0×107;t标准煤。 工业部门的余热资源平均率为7.3%,但是回收利用率却只为34.9%.我国余热资源之所以回收利用率较低,主要原因是过多的余热量以各种形式浪费掉。在工业未来发展中,可以看出余热资源存在巨大的回收利用潜力。随着科学技术的发展,通过有效的管理、设备改造升级、节能操作等手段,可以使余热资源得到有效利用,余热资源利用回收率将会大幅提高。在现代工业发展中,充分利用余热资源,对提高资源平均利用率具有重要意义,同时这也是工业发展中亟需解决的问题。 2;;利用烟气余热的原则 3;;设计工业烟气余热回收利用优化方案 烟气回收工作中使用的主要设备是余热回收换热器,它是工业生产中的主要节能设备,在提高工业烟气热效率的同时,还能够大幅提升能量的有效能效率。因而在设计工业烟气余热回收利用优化方案时,就需要对换热器进行优化。 3.1;;确定优化目标 余热回收换热器最优方案受到多种因素的影响,包括能源价格、原材料价格、安装费用、贷款方式和利率等。另外,技术因素也会对其产生影响,例如换热器性能和使用寿命。 当前比较明显的优化目标方案主要有换热器回收预热年净收益最大目标函数、基于相对费用参数的换热器优化目标函数、最小投资回收年限目标函数等。这些目标函数的取法各有利弊,利用追求年净收益最大和相对费用参数的目标函数对预热回收效果进行了定量研究,但是能量、质量没有得到准确反映;而换热器优化目标函数虽然对能量的考虑更全面,但在投资经济效果方面存在欠缺。

余热回收项目实施方案

第一章总论 一、项目概况 (一)项目名称 余热回收项目 (二)项目选址 某经济新区 项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和自然生态资源保护相一致。 (三)项目用地规模 项目总用地面积9924.96平方米(折合约14.88亩)。 (四)项目用地控制指标 该工程规划建筑系数76.42%,建筑容积率1.09,建设区域绿化覆盖率7.26%,固定资产投资强度199.92万元/亩。 (五)土建工程指标 项目净用地面积9924.96平方米,建筑物基底占地面积7584.65平方米,总建筑面积10818.21平方米,其中:规划建设主体工程8230.01平方米,项目规划绿化面积785.47平方米。

(六)设备选型方案 项目计划购置设备共计42台(套),设备购置费900.53万元。 (七)节能分析 1、项目年用电量867524.29千瓦时,折合106.62吨标准煤。 2、项目年总用水量5447.22立方米,折合0.47吨标准煤。 3、“余热回收项目投资建设项目”,年用电量867524.29千瓦时,年 总用水量5447.22立方米,项目年综合总耗能量(当量值)107.09吨标准 煤/年。达产年综合节能量43.74吨标准煤/年,项目总节能率20.34%,能 源利用效果良好。 (八)环境保护 项目符合某经济新区发展规划,符合某经济新区产业结构调整规划和 国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明 显的影响。 (九)项目总投资及资金构成 项目预计总投资4019.78万元,其中:固定资产投资2974.81万元, 占项目总投资的74.00%;流动资金1044.97万元,占项目总投资的26.00%。 (十)资金筹措 该项目现阶段投资均由企业自筹。 (十一)项目预期经济效益规划目标

相关文档
最新文档