简述信号特征提取使用小波变换的优点小

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述信号特征提取使用小波变换的优点

摘要:通过对小波变换所进行的理论分析和计算机模拟发现,利用小波变换具有的高低频分离的特点,可在不丢失原信号重要信息成分的前提下,将原光谱信号的边缘部分进行滤化处理,消除了噪音信息,重构出更加清晰的光谱特征图形,从而提高了信号的清晰度,为信号的预处理提供了更加方便的条件。该信号特征提取的方法,与傅氏变换相比较,具有多项明显的优点,在实际工程应用中具有重要的意义。

关键词小波变换傅氏变换;信号

一、引言

在当今科技飞速发展的信息时代,信息资源中的信号应用日益广泛,信号的结构越来越复杂,为了更加清楚地分析和研究实际工程信号的有用信息,对信号进行预处理是至关重要的。例如,对于环境的监测,其中对空气成分的检测已经成为必不可少的环节,其方法是将空气中的某一成分(例如丁烯)进行特征的提取,提取的信息中仍然会存在着由一系列高频信号构成的噪音信号。由于这些边缘部分的存在,使原信号的基本特征在光谱信号中不能完全清晰地呈现,导致某些信息的细微环节部分难以识别,致使研究目的无法实现。

本文通过对小波变换所进行的理论分析和计算机模拟发现,利用小波变换具有的高低频分离的特点,可在不丢失原信号重耍信息成分的前提下,将原光谱信号的边缘部分进行滤化处理,消除了噪音信息,重构出更加清晰的光谱特征图形,从而提高了信号的清晰度,为信号的预处理提供了更加方便的条件。

二、傅氏变换与小波变换

近年来,小渡变换己经成为对信号、图像等进行分析不可或缺的实用工具之一,其实质是对原始信号的滤波过程。与傅氏变换相比较,小波变换的优势在于,对分析信号可进行任意的放大平移并对其特征进行提取。对复杂信号作小波变换,进行多分辨率分析,在信号图象分析领域已占据着相当重要的地位。

已有的科研成果表明,物质的荧光光谱取决于物质的原子分子结构,所以不同的物质具有不同的荧光光谱。非线性荧光光谱是利用大功率超短激光脉冲和气体的非线性作用得到的;对于这种非线性荧光光谱的研究,主要集中在形成原理、光谱强度等方面。①由于采用传统的光谱分析方法分析该光谱存在很大的困难,所以这方面的研究还处丁•刚刚起步的状态。笔者发现,由此得到的非线性荧光光谱与超短脉冲激光器的波长以及强度无关,只与气体的分子原子结构有关;对于混合气体,则与其组成成分(包括浓度的不同)有关,因而可以用来进行混合气体成分识别。含有不同成分的混合气体的非线性荧光光谱虽然不同,但不同的气体在同一波段上可能有很大成分的交叉重叠,因此很难像吸收光谱那样找出每种气体特有的非线性荧光光谱,然后利用最小二乘法进行拟合而加以识别。神经网络对于不能精确识别或用数学公式近似加以描述的模式识别具有非常好的识别能力和推广性。对此,已有不少关于气体传感器(电子鼻)

联合神经网络识别分析气体组成成分的报道,这些方法的一个共同特点,就是必须对检测的气体进行取样,因而不能实时地检测混合气体的组成成分。本文正是基于这种原理,提出利用混合气体的非线性荧光光谱联合神经网络模式识别的方法,来实时检测识别混合气体成分的新方法。

傅氏变换②和小波变换⑦,在通信技术和其他工程技术方面,是两种非常有用的工具,也是数学中一个十分活跃的研究领域④。但在对丁烯特征提取的实验过程中不难发现,用傅氏变换仅仅只可以将时域中的现象反应到频域当中去。对丁•简单的信号来说,傅氏变换可用于观察并且一目了然,但对于复杂信号来说,由于傅氏变换只能表示成各频率部分的叠加和,对于时域,傅氏变换没有任何能力去改变,无法从傅立叶变换后公式F(w)中分析f(t)在任意一点的形态,而小波变换虽不能反映出垒局观,但是利用基函数窗口形状可任意改变的特性,通过平移放大,像是显微镜头一样,对任意一点可进行细致的观察。

总之,傅立叶变换由干正弦波是无限宽度的,这使得被分析的信号也需耍具有从负无穷大到正无穷大都有意义的特性,所以傅立叶变换不能很好地处理一些局部信号。比如,一个在局部范围内有非0值而其余所有地方都等于0的函数,它的频谱会呈现出一幅相当混乱状况。这时,频域的信号反而不如时域的直观,频谱分析变得很艰难,而小波变换则克服了这些缺点,这也是小波变换的优势所在。

小波函数是不具备唯一性的,这与傅立叶变换是截然不同的,比如说

Matlab工具包提供的小波函数就有8种小波函数⑤。同一个工程应用问题,用

不同的小波函数进行分析得到的结果相差甚远。小波函数的选择是小波分析中

的一个难点,⑥也是小波变换研究的一个热点,往往只是通过实验或不断地实

验来选杼小波。

三、小波函数的选取

小波函数不是唯一的,选取最优的小波函数是小渡应用中一个十分重要的问题。根据小波选取原则,因为信号的滤波对实时相移方面的要求并不高,所以小波的支撑尺度和对称性不在选取小波的考虑之中。笔者选取小波的准则是要求小波的正则性好,基于小波选取的四个基本原则经反复比较各小波函数实际的滤波效果后,决定采用dB5小波,它正则性很好,在频域方面具有较好的局部性。在实验中选取M atl ab工具包提供的dB 5小波,用waveinfo( ‘dB5’)命令可以获得该函数的主要性质。

小波变换的实质是对原始信号的滤波过程,由于小波是一种开窗口的傅立叶变换,其主要应用之一是对非平稳或时变信号的分析,基于经典小波变换的去噪方法明显优于非线性和线性滤波方法。对于一般白噪声,可以证明它几乎处处奇异,且具有负的奇异指数,随着尺度J的增加,噪声小波变换模极大值点的平均幅度和随稠密度减小。但是一般信号,它的奇异指数大干0,也就是说,随着尺度j的增加,信号小波变换模极大值点的平均幅度会平稳地增大,即使出现不连续的情况,其幅度随尺度增大基本不变,表征信号重要特征的极大值点能从小尺度传播到大尺度,并且尺度空间模极大值点的相对逶迤在一个锥形范围内。这样一来,在大尺度下剩余的极大值将属于信号,以位移在一个锥形范围内。以此为基础,可以采用由粗及精的策略跟踪各尺度下的小波变换

模极大值,找出属于信号的部分,并将属于噪声的部分去除。因此,如果某个信号的小渡变换局部模极大值的幅度及稠度随尺度减小而快速增加,表明该处的奇异性主要由噪声控制,在消噪时应予以祛除。

在信号奇异性为正的点上,有时叠加了噪声更大的负奇异性,严格地讲,

结果呈现负的奇异性。但是,若信号在该点上具有比噪声更大的幅值,根据传播特性在较大尺度上由信号奇异性控制的模极大值点,仍能够同噪声的模极大值点区分开来,而且随着尺度的减小其幅度只是轻微增加。在较小的尺度上,当信噪比较低时,局部模极大值的位置和幅度主要由噪声控制,此时很难直接利用该尺度上的模极大值信息来恢复信号。

四、小波变换信号特征提取的优点

基于小波变换的多分辨率分析,是时间(空间)一频率域上的分析方法已得到广泛应用。首先,小波方差是基于多分辨率分析的一个有效特征量,可以表征不同尺度的信号特征,它撇开了直接处理大量的小波系数,而是建立在挖掘这些数据及共蕴涵信息的普适量上;其次,小波方差具有意义明确、计算简单,对噪声不敏感的特点。同时,笔者注意到,单一尺度下的小波方差对信号特征的提取效果依赖于尺度的选择,但对于事后分析来说,这一点并不难做到。

利用混合气体的非线性荧光光谱联合神经网络可以识别混合气体的组成成分。而且如果有足够多的样本,利用此方法不仅可以定性识别混合气体的组成成分,还可以判别其组成浓度;此方法和其他方法相比较具有如下优点:1不需要采集被测气体样本,避免了采集过程中所带来的误差,而且通过

对自聚焦距离的控制可以对有害环境进行遥控检测;

2可以实时检测大气污染情况或检测气体成分,得到所希望空间的气体分

布情况;

3它与飞秒激光器的波长和强度无关,利用同一光源可以对多种气体进行

分类识别;

4由于用此方法得到的非线性荧光光谱具有较强的强度,所以不需要高灵

敏度的光电探测器如光电倍增管等,可使用普通的CCD阵列即可;

5、方便易操作。

相关文档
最新文档