小学数学《数学游戏》练习题(含答案)

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学《数学游戏》练习题(含答案)

(一)智取火柴

【例1】桌上放着100根火柴,甲、乙二人轮流取,每次取1~4根,规定谁取到最后一根谁获胜.假定双方都采用最佳方法,甲先取,谁一定获胜?给出一种获胜方法.

分析:乙一定获胜,甲取几根,乙就接着取5减几根火柴.

甲取几根,乙取4减几根可以么?不可以,那样的话甲取4根,乙就没法取了.

甲取几根,乙取6减几根可以么?不可以,那样的话甲取1根,乙就没法取了.

这里我们把(1+4)根火柴看成一组,100共有20组,因为甲先取,所以每一组乙都可以取到最后一根.

[前铺]桌子上放着10根火柴,甲、乙二人轮流每次取走1~2根.规定谁取走最后一根火柴谁获胜.如果双方都采用最佳方法,甲先取,那么谁将获胜?

分析:如果获胜方在最后取得最后一根火柴,那么在倒数第二次取时,必须留给对方3根,要想留给对方3根,倒数第三次取时,必须留给对方6根.要想留给对方6根,倒数第四次取时必须留给对方9根,而甲每次取完都能留给乙3的倍数根,所以在双方都采用最佳策略的情况下,甲必胜.

[拓展一]在例1中将“每次取走1~4根”改为“每次取走1~6根”,其余不变,情形会怎样?

分析:由例1的分析知,只要始终留给对方(1+6=)7的倍数根火柴,就一定获胜.因为100÷7=14……2,所以只要甲第一次取走2根,剩下98根火柴是7的倍数,以后总留给乙7的倍数根火柴,甲必胜.

由例题看出,在每次取1~n根火柴,取到最后一根火柴者获胜的规定下,谁能做到总给对方留下(1+n)的倍数根火柴,谁将获胜.

[拓展二]将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?

分析:最后留给对方1根火柴者必胜,按照例1中的逆推的方法分析,只要每次留给对方5的倍数加1根火柴必胜.甲先取,只要第一次取4根,剩下96根(96除以5余1),以后每次都将除以5余1的根数留给乙,甲必胜.

由此看出,在每次取1~n根火柴,取到最后一根火柴者为负的规定下,谁能做到总给对方留下(1+n)的倍数加1根火柴,谁将获胜.

[小结]我们可以把解决这类问题的一般方法总结为余数问题.,即如果有余数,则先取者胜,且取余数根数;如果没有余数,则后取者胜,每“回合”共取N+1根.

【例2】甲、乙两人轮流往一张圆桌面上放同样大小的硬币,规定每人每次只能放一枚,硬币平放且不能有重叠部分,放好的硬币不再移动.谁放了最后一枚,使得对方再也找不到地方放下一枚硬币的时候就赢了.说明放第一枚硬币的甲百战百胜的策略.

分析:采用“对称”思想.设想圆桌面只有一枚硬币那么大,当然甲一定获胜.对于一般的较大的圆桌面,由于圆是中心对称的,甲可以先把硬币放在桌面中心,然后,乙在某个位置放一枚硬币,甲就在与之中

心对称的位置放一枚硬币.按此方法,只要乙能找到位置放一枚硬币,根据圆的中心对称性,甲定能找到与这一位置中心对称的地方放上一枚硬币.由于圆桌面的面积是有限的,最后,乙找不到放硬币的地方,于是甲获胜.

[巩固]今有两堆火柴,一堆35根,另一堆24根.两人轮流在其中任一堆中拿取,取的根数不限,但不能不取.规定取得最后一根者为赢.问:先取者有何策略能获胜?

分析:本题虽然也是取火柴问题,但由于火柴的堆数多于一堆,故本题的获胜策略与前面的例题完全不同.

先取者在35根一堆火柴中取11根火柴,使得取后剩下两堆的火柴数相同.以后无论对手在某一堆取几根火柴,你只须在另一堆也取同样多根火柴.只要对手有火柴可取,你也有火柴可取,也就是说,最后一根火柴总会被你拿到.这样先取者总可获胜.

请同学们想一想,如果在上面玩法中,两堆火柴数目一开始就相同,例如两堆都是35根火柴,那么先取者还能获胜吗?

[拓展]有3堆火柴,分别有1根、2根与3根火柴.甲先乙后轮流从任意一堆里取火柴,取的根数不限,规定谁能取到最后一根或最后几根火柴就获胜.如果采用最佳方法,那么谁将获胜?

分析:谁在某次取过火柴之后,恰好留下两堆数目相等的火柴,谁就能取胜.

甲先取,共有六种取法:从第1堆里取1根,从第2堆里取1根或2根;第3堆里取1根、2根或3根.无论哪种取法,乙采取正确的取法,都可以留下两堆数目相等的火柴(同学们不妨自己试试),所以乙采用最佳方法一定获胜.

【例3】有1994个球,甲乙两人用这些球进行取球比赛.比赛的规则是:甲乙轮流取球,每人每次取1个,2个或3个,取最后一个球的人为失败者.

(1)甲先取,甲为了取胜,他应采取怎样的策略?

(2)乙先拿了3个球,甲为了必胜,应当采取怎样的策略?

分析:为了叙述方便,把这1994个球编上号,分别为1~1994号.取球时先取序号小的球,后取序号大的球.还是采用倒推法.甲为了取胜,必须把1994号球留给对方,因此甲在最后一次取球时,必须使他自己取到球中序号最大的一个是1993(也许他取的球不止一个).为了保证能做到这一点,就必须使乙最后第二次所取的球的序号为1990(=1993-3)~1992(=1993-1).因此,甲在最后第二次取球时,必须使他自己所取的球中序号最大的一个是1989.为了保证能做到这一点,就必须使乙最后第三次所取球的序号为1986(=1989-3)~1988(=1989-1).因此,甲在最后第三次取球时,必须使他自己取球中序号最大的一个是1985,….

把甲每次所取的球中的最大序号倒着排列起来:1993、1989、1985、….观察这一数列,发现这是一等差数列,公差d=4,且这些数被4除都余1.因此甲第一次取球时应取1号球.然后乙取a个球,因为a+(4-a)=4,所以为了确保甲从一个被4除余1的数到达下一个被4除余1的数,甲就应取4-a个球.这样就能保证甲必胜.

由上面的分析知,甲为了获胜,必须取到那些序号为被4除余1的球.现在乙先拿了3个,甲就应拿5-3=2个球,以后乙取a个球,甲就取4-a个球.

所以,(1)甲为了获胜,甲应先取1个球,以后乙取a个球,甲就取4-a个球.

(2)乙先拿了3个球,甲为了必胜,甲应拿2个球,以后乙取a个球,甲就取4-a个球.

相关文档
最新文档