蓄热技术在CSP中的应用现状

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蓄热技术在聚焦式太阳能热发电系统中的应用现状

作者:左远志丁静杨晓西聚焦式太阳能热发电系统(CSP)利用集热器将太阳辐射能转换成高温热能,通过热力循环过程进行发电。作为一种开发潜力巨大的新能源和可再生能源开发技术,美国等国家都投入了大量资金和人力进行研究,先后建立了数座CSP示范工程,目前该项技术已经处于商业化应用前期、工业化应用初期。CSP 只利用太阳直射能量,不接受天空漫辐射。由于太阳能的供给是不连续的,一部分CSP系统采用蓄热技术来保障有效使用和提供时间延迟,另一部分CSP系统采用燃气等作补充能源。这种混合动力技术可提供高价值的、可调度的电力。

CSP系统依其集热方式的不同,大致分为槽式、塔式、碟式3种。槽式系统是利用抛物柱面槽式反射镜将阳光聚焦到管状的接收器上,并将管内传热工质加热,直接或间接产生蒸气,推动常规汽轮机发电。塔式系统是利用独立跟踪太阳的定日镜,将阳光聚焦到一个固定在塔顶部的接收器上,以产生很高的温度。碟式系统是由许多镜子组成的抛物面反射镜,接收器在抛物面的焦点上,接收器内的传热工质被加热到高温,驱动发动机进行发电。

槽式系统的技术已经成熟,正处于商业拓展阶段,基本上没有技术和经济风险。美国加州有9个SEGS(Solar Electric Generating system)采用槽式系统,已运行15年,目前运行状况更好,最大输出功率354 MW,采用混合动力:75%太阳能,25%天然气。但蒸气最高温度375℃,太阳能日效率20%,年效率15%。槽式系统是目前均化成本(LEC)最低的CSP系统,是美国能源部近期计划推荐的优选项目。在西班牙、印度、埃及、希腊、墨西哥、摩洛哥、南非等国家都有不少槽式系统的示范工程。

塔式系统正处在研究其商业化可行性的阶段。一些国家着手建立大容量的、参加电网统一调度的示范工程。(1)美国从1980年开始相继完成Solar One、Solar Two两个10MW级塔式CSP后,2002年与西班牙合作,在西班牙建造一个15MW级Solar Tres塔式CSP,预计2006年完工,这是第一个真正商业运作

的项目。该项目的定日镜组是Solar Two的3倍大,定日镜的性能大幅提高,但制造成本却下降了45%;它还采用了一个120MW.t高温集热器,热流能力更强,热吸收效率提高了3%;同时也采用了一个巨大的蓄热系统,贮存6250Mt 的硝酸熔融盐,总容量600MW•h,可维持16h。由于采用了许多先进技术,预计年发电效率将提高6%,年利用系数将达到65%。(2)南非ESKOM公司准备建造一个100MW级塔式CSP,目前可行性报告己经出来。还有一些国家也建立了或正在建造塔式CSP,但规模不够大,技术也未达到商业级应用水平。由于塔式CSP工作温度可超过l000℃,太阳能效率通常比槽式高些,日效率可达23%,年效率20%。

一般地,槽式与塔式CSP系统可能不具备分布式发电的经济性特点和潜在优势,这是因为:

(l)目前的发展策略集中在50MW以上的大系统,这对大多数分布式能源负荷场合显得过大;

(2)系统的安装需要大量的土地,而分布式能源是一个位于用户端或靠近用户端的能源利用设施,而这些用户端附近很难提供大量的土地;

(3)供气和电力输出的基础设施建设必须与当地供气/电力公司的输配系统相关联,独立性不强。这些特点决定了槽式与塔式系统将与传统的一些中央发电系统竞争,但由于CSP系统的最大功率输出通常与当地电网用电高峰一致,所以,CSP特别应用于电力削峰。

槽式与塔式系统的发电成本依赖聚光面积规模,即装机容量,如50MW槽式电站的发电成本只有10MW电站的50%,因此建立大规模太阳能热发电站是降低太阳能发电成本的趋势和必要途径。

美国Sandia国家实验室预测,到2015年前后,槽式与塔式系统的均化成本分别约为5美分/度与4美分/度,到2020年前后,槽式与塔式系统的均化成本分别约为4.3美分/度与3.5美/度,应用前景和竞争力可想而知。

以点聚焦的模块化的碟式系统输出功率规模可从2~50kw,适用于分布式能源系统。输出功率25kW的碟直径10m,目前最先进的是碟式嘶特林系统,工作温度750℃,太阳能日效率27%,年效率23%。但初装费用几乎是其他两种

CSP的2倍,MTBF(平均故障间隔时间)值尚不能满足可靠性运行要求,在远距发电方面又受到光伏电池的竞争,后者的安装与运行维护成本低得多,因此离市场化还比较远。

众所周知,蓄热(TES)技术是合理有效利用现有能源、优化使用可再生能源和提高能源效率的重要技术。蓄热技术主要应用于以下3个方面:(l)在能源的生产与其消费之间提供时间延迟和保障有效使用;(2)提供热惰性和热保护(包括温度控制);(3)保障能源供应安全。

CSP优于光伏发电一项重要特点就是能采用相对经济的TES技术,蓄电则非常昂贵。CSP系统中采用TES技术的目的是为了降低发电成本,提高发电的有效性,它可以实现:(l)容量缓冲;(2)可调度性和时间平移;(3)提高年利用率;(4)电力输出更平稳;(5)高效满负荷运行等。例如一塔式CSP 系统,如果无蓄热装置,年利用率只有25%,有则能提高到65%,且不需要燃料作为后备能源。因此,TES技术将是CSP成功走向市场化,能与传统电力相竞争的一个关键要素。

1 CSP系统中的蓄热技术

先根据TES的机理,分别介绍CSP系统中的显热蓄热、相变蓄热及化学反应蓄热。再讨论TES的一般设计原则。

1.1显热蓄热

CSP中的显热蓄热是目前技术最成熟且具有商业可行性的蓄热方式。显热蓄热又分为液体显热蓄热、固体显热蓄热、液-固联合显热蓄热3种。

1.1.1液体显热蓄热

槽式系统带TES装置通常有两种布置形式:图1的槽式系统常采用合成油作为传热介质(HTF),熔融盐液作为显热蓄热材料,HTF与蓄热材料之间有油-盐换热器,这种布置称为间接TES。图2的槽式系统采用熔融盐液既作为HTF 又作为显热蓄热材料的方式,无油-盐换热器,这种布置称为直接TES。后者的优点是可以减少一个换热步骤,避免了HTF与蓄热材料之间的不良换热,而且适用于400~500℃的高温工况。但后者也面临一个问题:槽式CSP的管网系统是平面布置,且管道多,管内的HTF不容易排出,又由于熔融盐的凝固点通常高于120℃,当采用熔融盐液HTF时,就得使用隔热和伴随加热的方法防止冻

相关文档
最新文档