锂离子混合电容器

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属-有机骨架派生的折皱薄板装配的长方体多孔碳可作为超高能量密度锂离子混合电化学电容器(Li-HECS)的正极活性材料

Abhik Banerjee,ab Kush Kumar Upadhyay,ab Dhanya Puthusseri,ab Vanchiappan Aravindan,*c Srinivasan Madhavi*cd and Satishchandra Ogale*ab

锂离子混合电容器(锂离子电化学电容器)成功的吸引了密切关注下一代先进储能技术的人们,这种技术可以同时满足高功率密度和高能量密度的要求。在这里,我们将演示合成的较高的表面积三维碳长方体是如何用于金属 - 有机骨架(MOF)作为阴极材料与钛酸锂作为负极的高性能锂离子电化学电容器中的。电池的能量密度是65 瓦时每千克,这明显高于市场上销售的可使用的活性碳(这种活性碳的能量密度只有36瓦时每千克),也高于对称的超级电容器基于相同的金属-有机骨架派生的碳(金属-有机骨架派生碳的能量密度是20瓦时每千克)。这种正极是金属-有机骨架派生的碳材料,负极是钛酸锂的锂离子电容器在1000恒电流的高循环率条件下,保留了初始值的80%(25瓦时每千克)的优良循环性能。这个结果清晰的表明:在锂离子电化学电容器配置领域中,金属-有机骨架派生出的碳材料将成为未来混合式电动汽车配置中最有前途的材料。

1.前言

近年来,金属 - 有机骨架材料(即MOFs)凭借其独特的形式和性质在材料科学领域已成为最有前途的结构材料之一。基本上,金属-有机骨架是金属和配位体的晶体组件。其中,金属离子和配位体相互协调形成一个高度开放的三维框架。简易的合成程序和其本身固有的多孔性使得金属-有机骨架成为了最有吸引力的候选材料,其用于各种领域包括催化,传感器,药物递送,气体吸附法,气体分离等等。【1-6】

事实上,金属-有机骨架材料合成了多种功能性强的无机材料和以碳为基础的材料的,其可用于不同的应用中,在这种情况下,金属-有机骨架材料也是一种有前途的先驱材料。多孔性氧化铁,氧化锌,氧化铜和其他氧化物都是用纳米结构合成的金属-有机骨架材料,这种材料已被评估可用于不同的应用领域,如:水的净化,去除有机污染物,血糖检测,超级电容器,油的回收等等。【7-9】一些氧化物也被检查出可作为有前途的锂离子电池的阳极(即LIB)。【10-12】

来源于金属-有机骨架材料和基于复合材料的金属-有机材料的高表面积碳材料已经被有效地用于二氧化碳的吸收和氢的吸附应用领域。含有氮配位体的金属-有机骨架材料中的

富氮碳已经被合成并且成功地用于电催化中的氧的还原反应。【16】金属-有机骨架衍生的碳材料已被发现其电荷存储能力良好,尤其是在用于超级电容器,用于两种溶液(硫酸和氢氧化钾)和有机(离子溶液)电解质时。

Chaikittisilp等人[17]在不同温度下直接热解以锌为基础的沸石咪唑酯骨架(即ZIF-8)来实现有1110平方米每克的高比表面积,还可在硫酸溶液介质中实现在每秒5毫伏扫描速率下有214法每克的电容值。Akita和他的同事们【18】将金属-有机骨架材料-5的三维信道作为聚合呋喃基醇的模板,其在氩气体流动下,用1000度的高温下热解八个小时之后产生了拥有2872平方米每克的高比表面积的纳多孔性碳。Hu【19】表示:233法每克的特定电容(在每秒2毫伏的扫描速率下)和312法每克(在每秒1毫伏的扫描速率下)可在1.0(阳极)的硫酸溶液中获得。Hu成功地使用MOF-5作为模板合成了可负载酚醛树脂或乙二胺和四氯化碳多种形式的碳。多孔性碳是通过热解模板而获得的,这种模板上有被激活的金属-有机骨架-5材料,并且这种材料是经过氢氧化钾调节了其多孔性和比表面积。接下来的两种途径有,负载有MOF-5材料的四氯化碳和乙二胺表现出了较高的比表面积(有2222平方米每克)。这种材料在水溶液中获得了271 法每克的最大电容量(能量密度=9.4 瓦时每千克),在有机溶液中(四乙基铵四氟硼酸盐)有156法每克的电容量(能量密度=31.2瓦时每千克)。Yuan【20】等人如是说,还使用了以锌为基础的金属-有机配位聚合物作为模板和甘油作为碳前体合成蠕虫状介孔碳。这种材料显示出了较高的比表面积(2587平方米每克)和较大的孔隙体积(3.14立方厘米每克)。在氢氧化钾溶液中,他们获得了一个电流密度为5安培每克的电容量为344法每克的特定电容器。对于超级电容器的大多数研究表明,电荷储存实验使用的金属-有机骨架材料派生的碳质材料已被用于对称配置,因此降低了能量密度的值(通常为9-30瓦时每千克)。这些数值比大家所期望的零排放交通工具低很多,如:电动汽车(即EVs,最小值为150瓦时每千克)和插电式混合动力电动汽车(即P-HEVs,其值为57-97瓦时每千克)。【21】

为了提高超级电容器的能量密度(在不对功率密度有显著影响的情况下),海图斯等【22】人表明:在已知的电化学能量储存装置的平台下,首次推出两个综合性很好的概念,即锂离子电池和超级电容器。一般情况下,这些所谓的锂离子混合电化学电容器(即Li-HECs)被制造为有高表面积的碳质材料和将锂嵌入材料作为反电极的材料。【22-27】高表面积的碳和插入式电极分别提供了高输出功率能力和高能量密度的能力。因此,在锂离子电化学电容器中可实现比锂离子电池更高的功率密度并且比超级电容器更高的能量密度的材料。最近几个研究工作已经开展,实现了良好的可插入阳极类似于这种装置,尖晶石相钛酸锂已被发现有

良好的电化学特性。【28-37】对于锂离子电池,钛酸锂是一个已被确定的“零应变”的插入主机,锂离子电容器由于其显著的特征,在1.55伏每微妙下,存在着一个相对平坦的放电曲线。比如说,三摩尔的锂有每小时每克175毫安的这么高的理论电容量。锂对应于一库伦效率的两相反应机理 > 99.9%,在锂嵌入或是锂抽出时,没有体积变化,亦无固体电解质界面层形成,相比于石墨阳极和廉价环保的原材料。【34,38-41】然而不幸的是,迄今为止,对于为理想的锂离子电化学电容器特别设计的碳电极。只有有限的资料记载可在文献中看到。

本文中,随着钛酸锂作为在有机介质中的反电极,我们提出了一份对金属-有机骨架材料衍生的高表面积的多孔性碳作为应用在锂离子电化学电容器的活性阴极材料的报告。这份实验的本质表现在图表1中,为了比较,一个金属-有机骨架材料衍生的对称超级电容器被制造并在相同的有机介质中进行测试。我们特别选择(进一步可在文本所讨论的理由)基于

方案1,合成的MOF-5长方体碳在锂离子电化学电容器中的应用。

以锌为基础的金属-有机骨架材料(即MOF-5)作为前体,得到高表面积多孔碳(金属-有机衍生碳或MOF-DC)。早先的研究已经确定,以锌为基础的金属-有机骨架材料(即MOF-5)的受控热解过程中产生碳的一个有趣的形态。【18,19】广泛的粉体和电 - 化学研究已进行上述配置和详细的描述。

2.实验部分

相关文档
最新文档