软化温度

软化温度
软化温度

4 材料的软化温度测定

4.1 实验目的意义

在无机材料的制备过程中,材料的软化温度指标相当重要,掌握该指标就能够指导控制无机材料的制备。无机材料中玻璃的成形是从高温到低温,陶瓷、耐火材料的制作是从低温到高温,三者的制备都需要软化温度指标作参考,由此制定和采用合理的制备工艺及工程技术。

本实验的目的本实验的目的::

(1) 了解材料转变温度范围的基本原理。

(2) 掌握材料软化温度的测试方法。

4.2 实验基本原理

材料的耐火度、熔融温度或软化温度都是同一个概念,所不同的是从不同的技术角度、材料制作进行称呼而已。在陶瓷、耐火材料的制作过程中常使用耐火度这一名称,而在玻璃的成形制作过程中则更多地称呼软化温度。

无机材料的转变与特征温度无机材料的转变与特征温度::

玻璃制备涉及熔体与玻璃体(含晶体)的结构转变,陶瓷、耐火材料的制作涉及固体与玻璃体的结构转变。玻璃的转变区域以玻璃液体的粘度值大小进行衡量,转变区域以软化温度(T f )为上限,转变温度(T g ) 为下限。陶瓷、耐火材料的转变区域可以用烧结温度范围进行确定(见烧结温度测定)。

(1) 操作点

操作温度范围的上限温度是指适合于成形操作的温度,其粘度值约为103~4 泊,操作温度范围的下限温度是指保持形状不出现变化时的温度,其粘度值为>104~7泊。

(2) 软化点

将Φ0.55 ~ 0.75 mm x 255 mm 的玻璃纤维以4 ~ 6 ℃/min 的速度进行加热时,其伸长速度达到1mm / min 时的温度,此时的粘度值约为107-9 泊。

(3) 退火点

将Φ0.65 mm x 460 mm 的玻璃纤维在1kg 荷重作用下,以4 ℃/min 的速度进行冷却时,其伸长速度达到0.135 mm / min 时的温度时,此时的粘度值约为1012~13泊。在该温度下,材

料的应力能够在几分钟内消除。

(4) 应变点

将Φ0.65 mm x 460 mm 的玻璃纤维在1kg 荷重作用下,以4 ℃/min 的速度进行冷却时,其伸长速度达到0.0043 mm / min 时的温度时,此时的粘度值约为1014.5 泊。在该温度下,材料的应力能够在几个小时内消除。

(5) 转变温度(T g )

无机材料的熔体从液态向玻璃态(含晶态)转变有一个区域范围,转变区域以软化温度(T f )为上限,转变温度(T g ) 为下限。无机材料的转变温度(T g )不是固定不变的,它取决于材料成形的冷却速度。在转变区域范围内有一些性能指标会发生突变,如膨胀系数、比热等,这是判断材料成形过程中转变区域的一个方法。一般无机材料的转变温度(T g )所对应的粘度值约为1013~14 泊。

(6) 熔点(T m )

无机材料的各种化合物的综合熔点,该熔点涉及各种单一化合物的熔点、材料的化学组成比例以及所形成的晶相。

4.3 实验仪器及装置

测定材料软化温度的实验仪器装置见图(9):

图7 软化温度实验装置

测定材料软化温度的实验相关配套仪器为测定材料软化温度的实验相关配套仪器为::

(1),(2) 电炉温度控制器

(3) 立式电炉

(4) 玻璃丝棒

(5) 电炉顶盖

(6) 悬挂玻璃丝棒样品的金属片

(7) 测温元件(热电偶)、秒表、显微镜

(8) 温度补偿元件、不锈钢桶、手套等

(9) 电位差计

(10) 状态观察系统

(11) 水平调节系统

(12) 显微镜

(13) 秒表、悬挂支架

4.4 实验样品的要求及制备

(1) 选择样品(A) 玻璃丝棒。

(2) 样品的制作(大小尺寸Φ、长度L 由实验指导教师规定)。

(3) 样品的数量(由实验指导教师规定)。

(4) 样品的质量检查(气泡、杂质、结石、表面裂纹状况)。

(5) 样品的保存(由实验指导教师规定)。

4.5 实验步骤

(1) 检查材料软化温度实验炉与电源控制器的工作状态。

(2) 样品(玻璃丝棒)的安置到位。

(3) 水平调节系统、状态观察系统(显微镜内样品影像)的调节。

(4) 设定升温加热曲线( ℃ / min )。

(5) 启动实验炉电源控制器,加热开始。

(6) 观察显微镜内样品影像与记录温度值(影像长度mm / min )。

(7) 当样品影像长度到达软化点附近时样品影像观察与记录温度值的频率增加。

(8) 到软化点后实验结束,关闭实验炉电源控制器。

操作注意点操作注意点::

(1) 操作该仪器设备由于涉及高温必须在实验教师指导下进行,严格执行操作程序,安全

防护措施必须到位。

(2) 该实验涉及的样品(玻璃丝棒)为脆性物体,操作时必须小心。

4.6 实验结果与数据处理

(1)记录设定升温加热曲线( ℃ / min ),制作图表。

(2)制作样品影像伸长与记录加热温度速度值对应表。4.7 实验结果与讨论

(1)为什么要正确设定升温加热曲线?

(2)材料提高或者降低软化点的途径与方法。

热变形维卡温度软化点测试仪使用说明书

目录 一、概述 (1) 二、仪器的主要性能指标 (1) 三、操作说明与安装 (1) 四、工作原理 (2) 五、变形量设定 (5) 六、注意事项及维护保养 (7) 七、试验机的搬运 (7) 八、附件及随机文件 (8) 九、附表 (8) 装箱单 (10) 合格证 (11)

一、概述: 1.1主要用途及使用范围: HS-XRW-300HB热变形维卡软化点温度测定仪运用PLC可编程控制器进行温度调节采用汉字液晶显示操作。该产品操作简单、使用方便、性能稳定、产品精度高,并在试验过程中可时实监控试验温度和变形量;试验结束时系统自动停止加热,该机可设定目标温度具有温度保护功能。该机是各质检单位、大专院校和各企业自检的必备仪器。 该机主要用于非金属材料如塑料、橡胶、尼龙、电绝缘材料等的热变形温度及维卡软化点温度的测定。产品符合IS075(E)、IS0306(E)、GB/T8802、GB/T1633、GB/T1634等标准要求。 二、仪器的主要性能指标: 2.1温度控制范围:室温—300℃ 2.2升温速率:50℃/h、120℃/h 2.3最大温度测量误差:±0.5℃ 2.4最大温度控制误差: ±1℃/6分钟(热变形试验) ±0.5℃/6分钟(维卡试验) 2.5最大形变测量范围:1.0mm 2.6最大形变测量误差:±0.005mm 2.7试样架数量:3个 2.8加热介质: 甲基硅油(200厘斯以下、闪点300℃以上,最好选用100厘斯、闪点300℃以上)2.9最大加热功率:3KW 2.10冷却方式:150℃以上气冷、150℃以下水冷 2.11电源:AC220V±10%20A50Hz; 2.12负载杆及托盘的质量:69g±1g

耐火材料概论知识点总结

硅砖的应用:是焦炉、玻璃熔窑、高炉热风炉、硅砖倒焰窑和隧道窑、有色冶炼和酸性炼钢炉及其它一些热工设备的良好筑炉材料。 粘土质耐火材料的原料 软质粘土 生产过程中通常以细粉的形式加入,起到结合剂和烧结剂的作用。苏州土和广西泥是我国优质软质粘土的代表。 硬质粘土 通常以颗粒和细粉的形式加入,前者起到配料骨架的作用,后者参与基体中高温反应,形成莫来石等高温形矿物。 结合剂 水和纸浆废液 粘土质耐火材料制品原料来源丰富,制造工艺简单,产量很大,广泛用于各种工业窑炉和工业锅炉上。如隧道窑,加热炉和热处理炉等的全部或大部分炉体,排烟系统内衬用耐火材料,其中钢铁冶金系统是粘土质耐火材料制品的大用户,用于盛钢桶,热风炉、高炉、焦炉等使用温度在1350℃以下的高温部位。 铝矾土的加热变化 a. 分解阶段(400~1200℃) b 二次莫来石化阶段(1200~1400℃或1500℃) 二次莫来石化时发生约10%的体积膨胀 c. 重结晶烧结阶段(1400~1500℃)。 ? 高铝质耐材的应用 ? 由于高铝质耐火材料制品的优良性能,因而被广泛应用于高温窑炉一些受炉气、炉 渣侵蚀,温度高承受载荷的部位。例如高铝风口、热风炉炉顶、电炉炉顶等部位。 ? 硅线石族制品具有较高的荷重软化温度、热震稳定性好、耐磨性和抗侵蚀性优良, 因此适用于钢铁、化工、玻璃、陶瓷等行业,如用作烟道、燃烧室、炉门、炉柱、炉墙及滑板等。在高炉上,为确保内衬结构的稳定性、密封性,避免碱性物的侵入和析出,或风口漏风,在出铁口、风口部位,选择内衬大块型组合砖结构的硅线石族耐火材料,延长了使用寿命。 ? 莫来石制品的抗高温蠕变、抗热震性能力远远优于包括特等高铝砖在内的其它普通 高铝砖 ,广泛应用于冶金工业的热风炉、加热炉、钢包,建材工业的玻璃窑焰顶、玻璃液流槽盖、蓄热室,机械工业的加热炉,石化工业的炭黑反应炉,耐火材料和陶瓷工业的高温烧成窑及其推板、承烧板等窑具。 刚玉耐材的原料 氧化铝 所有熔点在2000℃以上的氧化物中,氧化铝是一种最普通、最容易获 得且较为便宜的氧化物。氧化铝在自然界中的储量丰富。天然结晶的 Al 2O 3被称为刚玉,如红宝石、蓝宝石即为含Cr 2O 3或TiO 2杂质的刚玉。大 232232400~600()H O Al O H O Al O αα-?????→-℃刚玉假象+23222322400~600222H O Al O SiO H O Al O SiO ?????? →?℃+23223229503(2)324SiO Al O SiO Al O SiO ????→?℃+232232 12003232Al O SiO Al O SiO ≥+????→?℃

维卡温度

维卡软化温度维卡软化温度(Vicat Softening Temperature)是将热塑性塑料放于液体传热介质中,在一定的负荷和一定的等速升温条件下,试样被1平方毫米的压针头压入1毫米时的温度,对应的国标是GB1633-79(目前已被GB/T 1633-2000所代替);维卡软化温度是评价材料耐热性能,反映制品在受热条件下物理力学性能的指标之一。材料的维卡软化温度虽不能直接用于评价材料的实际使用温度,但可以用来指导材料的质量控制。维卡软化温度越高,表明材料受热时的尺寸稳定性越好,热变形越小,即耐热变形能力越好,刚性越大,模量越高。 维卡软化点 Vicat softening temperature(简称VST)——工程塑料、通用塑料等聚合物的试样于液体传热介质中,在一定的载荷、一定的等速升温条件下,被1m㎡的压针压入1mm深度时的温度。 维卡软化点试验 中文名称:维卡软化点英文名称:Vicat softening temperature(VST) 维卡软化温度:当匀速升温时,某一负荷条件下,截面1 m㎡的标准压针刺入热塑性塑料1mm深时的温度。该温度反映了当一种材料在升温装置中使用时期望的软化点。测试标准:ASTM D1525, ISO 306, GB/T 1633 试验数据:维卡软化点试验测定了针头压入试样1mm时的温度. 维卡软化点测定仪 维卡软化点适用于控制聚合物品质和作为鉴定新品种热性能的一个指标,不代表材料的使用温度。维卡软化点测定仪器为热变形维卡温度测定仪,是根据GB/T1633《热塑性塑料软化温度(VST)的测定》、GB/T1634《塑料弯曲负载热变形温度试验方法》、GB8802《硬聚氯乙烯(PVC-U) 管材及管件维卡软化温度测定方法》以及ISO75 、ISO306 、ISO2507 、ASTM1525 ASTM D648标准的要求设计制造的,广泛用于热塑性塑料、硬橡胶和长纤维增强复合材料等热变形温度(HDT)和维卡温度(VST)的测定。 挠曲在水平或平缓的岩层中,由一般岩层突然变陡而表现出的膝状弯曲,或是由于岩层翘曲或其他和缓变形所形成的弯曲均称挠曲。挠曲是弯曲折裂的意思。挠曲性是指某材料的弯曲性能。

耐火材料的六大使用性能

耐火材料的六大使用性能 耐火材料的使用性能是指耐火材料在高温下使用时所具有的性能。包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗酸性、抗碱性、抗氧化性、抗水化性和抗CO侵蚀性等。 (一般)耐火度 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。 耐火度与熔点不同,熔点是结晶体的液相与固相处于平衡时的温度。绝大多数耐火材料都是多相非均质材料,无一定熔点,其开始出现液相到完全熔化是一个渐变过程。在相当宽的高温范围内,固液相并存,固如欲表征某种材料在高温下的软化和熔融的特征,只能以耐火度来度量。因此,耐火度是多相体达到某一特定软化程度的温度。 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。耐火度是判定材料能否作为耐火材料使用的依据。 国际标准化组织规定耐火度达到1500℃以上的无机非金属材料即为耐火材料。耐火度的意义与熔点不同,不能把耐火度作为耐火材料的使用温度。 (二)荷重软化温度

荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。 荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。耐火材料高温荷重变形温度是其重要的质量指标,因为它在一定程度上表明制品在与其使用情况相仿条件下的结构强度。决定荷重软化温度的主要因素是制品的化学矿物组成,同时也与制品的生产工艺直接相关 (三)重烧线变化(高温体积稳定性) 首先应当了解耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。 耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。 耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。

维卡检验标准

塑料维卡软化温度的测定(GB/T 8802-2001) 塑料维卡软化温度的测定(GB/T 8802-2001) 适用于当材料开始迅速软化时,能测定出温度的热塑性塑料材料,不适用于结晶或半结晶的聚合材料。 塑料维卡软化温度的测定(GB/T 8802-2001) 适用于当材料开始迅速软化时,能测定出温度的热塑性塑料材料,不适用于结晶或半结晶的聚合材料。 1、基本原理 把试样放在液体介质或加热箱中,在等速升温条件下测定标准压针在50±1N力的作用下,压入从管材或管件上切取的试样内1mm时的温度,该温度即为试样的维卡软化温度(VST)。 2、试验设备 可采用液浴槽或烘箱加热装置,宜采用加热温度及压入深度可自动记录的设备。选用合适的液体(液体石蜡、变压器油、甘油和硅油等),应保证在测试温度下是稳定的,并且在测试中对试样不产生影响,如软化、膨胀、破裂。 3、试验步骤 管材试样应是从管材上沿轴向截下的弧形管段,长度约为50mm,宽度10mm~20mm;管件试样应是从管件的承口、插口或柱面上截下的弧形片断,对于直径小于或等于90mm的管件,试样长度和承口长度相等,直径大于90mm的管件,试样长度为50mm,试样的长度均为10mm~20mm,而且试样应从没有合模线或注射点的部位切取。如果管材或管件壁厚大于6mm,则应采用合适的方法加工管材或管件外表面,使壁厚减至4mm,如果管件承口带有螺纹,则应车掉螺纹部分,使其表面光滑。壁厚在2.4mm~6mm(包括6mm)范围内的试样,可直接截下测试。如果管材或管件壁厚小于2.4mm,则可将两个弧形管段叠加在一起,使其总厚度不小于2.4mm,作为垫层的下层管段试样应首先压平,为此可将该试样加热到140℃并保持15min,再置于两块光滑平板之间压平,上层管段应保持其原样不变。每次试验用两个试样,但在裁制试样时,应多提供几个试样,以备试验结果相差太大时作补充试验用。 将试样在低于预期维卡软化温度(VST)50℃的温度下预处理至少5min;对于ABS和ASA试样,应在烘箱中90±2℃的温度下干燥2h,取出后在23±2℃的温度和50±5%的相对湿度下,冷却15±1min,然后将试样在低于预期维卡软化温度50℃的温度下预处理至少5min。 将加热浴槽温度调节至约低于试样软化温度50℃并保持恒温。将试样凹面向上,水平放置在无负载金属杆的压针下面,试样和仪器底座的接触面应是平的,对于壁厚小于2.4mm的试样,压针端部应置于未压平试样的凹面上,下面放置压平的试样,压针端部距试样边缘不小于3mm。压针定位5min后,在载荷盘上加上所要求的重量,以使试样所承受的总轴向压力为(50±1)N,并将初始位置调至零点。以每小时(50±5)℃的速度等速升温,提高浴槽温度,在整个过程中应开动搅拌器。当压针压入试样内(1±0.01)mm时,记录此时的温度,此温度即为该试样的维卡软化温度。 4、数据处理 两个试样的维卡软化温度的算术平均值,即为所测试管材或管件的维卡软化温度。若两个试样结果相差大于2℃时,应重新取不少于两个的试样继续试验。

陶瓷烧成制度及材料

陶瓷窑炉分类 按工作方式分类(1)间歇窑(2)连续窑 按热源分类:(1)火焰窑——常用于普通陶瓷工业 (2)电热窑——常用于电子陶瓷或特种陶瓷工业 烧成过程是若干过程的综合,包括下面五个过程: (1)物料的物理化学变化过程(2)物料的运动过程(3)气体流动过程(4)燃料燃烧过程(5)传热过程 陶瓷的烧成制度须满足以下三点基本要求: 1、各阶段应有一定的升温或降温速度,不得超过,以免坯体内外温差过大而形成破坏应力,同时还应考虑到该阶段中所进行的物理化学变化所需要的时间。 2、在适宜的烧成温度下应有一定的保温时间,以使坯体内外温度趋于一致,保证坯体内外充分烧结和釉面成熟平整。 3、在某些阶段应保持一定的气氛,以保证坯体中某些物理化学过程的进行。 烧成制度:1温度制度2气氛制度3压力制度4温度制度: ①温度制度::将窑炉内制品温度随时间(或位置)变化的规律在直角坐标系上绘成曲线称烧成曲线。(温度为制品的表面温度)常用窑温来代替此温度。 ②气氛制度:窑炉内制品周围气体性质随时间(或位置) 变化的规律。 ③压力制度:窑内气体压力随时间(或位置)变化的规律 耐火材料的主要性能: A、耐火度 定义:耐火材料抵抗高温而不变形的性能叫耐火度。 B、荷重软化温度(荷重软化点) 定义:荷重软化温度就是耐火材料在一定压力下发生一定变形和坍塌时的温度。 C、热稳定性 定义:耐火材料抵抗温度急剧变化而不破裂或剥落的能力称热稳定性或称耐急冷急热性。 D、抗化学腐蚀性 耐火材料在高温下抵抗炉渣侵蚀的能力 E、高温体积稳定性(残余收缩或膨胀、重烧收缩或膨胀) 指材料在高温下长期使用时,体积发生不可逆变化(收缩或膨胀)的性能

热塑性塑料维卡软化温度(VST)的测定

热塑性塑料维卡软化温度(VST)的测定(GB/T1633) 1.试样准备*1 试样要求厚度在3~6mm,长、宽(或直径)分别为10 mm以上; 过厚的材料应单面加工成3~4 mm厚,安装时将加工面朝下; 过薄的材料可用2~3块试样迭合进行试验; 每组至少二个试样。 2.试验标准 2.1升温速率选择: 根据试验标准或规定选择: A 速度:5±0.5℃/6min B 速度:12±1.0℃/6min 2.2静负荷的选择: 施加的静负荷是砝码、负载杆(包括压头)和位移传感器的弹力的总和,根据试验要求,组成 静负荷的质量分别为: 1000 +039g (对应重力负荷 10N±0.2N); 5000+0199g (对应重力负荷 50N±1N)。 2. 3维卡软化点温度记录的标准 在指定速率的升温过程中,当负载杆下移(即针头针入试样体内)1mm时的温度,即确认为 维卡软化点温度。以同组二个试样的软化点温度的算术平均值表示试验结果,二个试验结果相差大于2℃时,应重做。 3.样品的放置 3.1取出测试单元,搁置在浴槽面板上; 3.2提起负载杆,把试样放在测试板中心位置(见图一),放下负载杆,压针头应位于试样中心;3.3将测试单元浸入浴槽,加上选定的砝码; 3.4将温度传感器和水银温度计各顺斜孔插入(水银温度计仅供校对使用,可以不用); 3.5调节位移传感器的上下位置,使传感器检测检测行程位于总行程的中间位置。 4.位移传感器的调整 位移传感器的调整比较简单,一般,位移传感器选用的量程为3~5mm,只要调节位移传感 器的上下位置,使行程大约处于量程的中间即可。 不过不要忘了,调整传感器前,最好要先将安置好试样的测试架放入面板上的长方孔内,浸入油中,并根据需要加上所需砝码稳妥就位。 5.参数设置 从电脑界面的测试仪菜单选项中,点击参数设定,出现以下界面: 参数设定 × 仪器设定单元1 单元2 单元3 升温速率[摄氏度/小时]: 〇 50 〇120 上限温度[摄氏度]: ×××.× 参与算术平均值计算:□单元1 □单元2 □单元3 确定取消 选择测试单元。如选择测试单元1,点击在上界面仪器设定后面的单元1,在选中该单元进行测试

Hercynite

Hercynite(铁尖晶石)中的Fe2+的“缓释” 及镁铁铝尖晶石砖的研制 一、烧成带材料的发展与现状 到二十世纪60年代中期,水泥回转窑高温带开始使用直接结合镁铬砖。由于镁铬砖在使用过程生成有毒的Cr6+,危害人的身体健康,所以,到了80年代中期,开始研制烧成带用无铬砖,包括白云石砖、改性的方镁石尖晶石砖、镁锆砖等。这些砖各有优缺点,但都不能完全替代原镁铬砖,其优点及不足等列于表1。 表1烧成带常用的几种碱性砖的优点与缺点 由于水泥回转窑烧成带温度高,使用条件复杂,一直未有替代镁铬砖的合适材料。尽管白云石砖等的挂窑皮性能非常优越,但是,由于CaO的水化以及容易结构剥落等原因,白云石砖的使用范围很受限制,仅在欧美等地使用。在日本,直接结合镁铬砖与改性方镁石砖在水泥窑烧成带的使用大致相当;而在中国,水泥窑烧成带则多数使用

直接结合镁铬砖。就使用性能而言,镁铬砖仍是水泥回转窑烧成带非常合适的材料。 由于镁铬砖的污染问题,RHI公司提出并研制出了基于hercynite(FeO〃Al2O3)和镁砂为主的新型材料——镁铁铝尖晶石砖。该材料依靠FeO〃Al2O3与水泥熟料中的CaO反应生成C4AF而达到良好的窑皮粘附效果,同时,也可因FeO〃Al2O3的存在而减少Fe3+的引入,防止因Fe3+向Fe2+的转化而导致的材料体积变化和强度损失。镁铁铝尖晶石砖已经成为直接结合镁铬砖的替代品和回转窑烧成带材料的未来发展方向。 二、Hercynite的性质及合成 2.1 Hercynite的性质 铁铝尖晶石是一种自然界少有的矿物。 铁铝尖晶石属于尖晶石族矿物,其结构通式为A2+B3+2O4。铁铝尖晶石属于正尖晶石,呈立方结构。 铁铝尖晶石是FeOn-Al2O3二元系(如图1)中唯一的稳定化合物,其化学式为FeO〃Al2O3,含FeO:41.3%,Al2O3:58.7%,熔点为1780℃,颜色棕绿至黑色,密度4.39g/cm3,线膨胀率为0.70%(25℃~850℃),平均比热为1.037J/g℃(50℃~1025℃)。 图 1 FeOn-Al2O3二元系相图 2.2 Hercynite的合成 要形成铁铝尖晶石(hercynite),必须保证氧化亚铁(“FeO”或FeOn)是处在其稳定存在的条件下才能保证与Al2O3形成的化合物是FeO〃Al2O3尖晶石。而在“FeO”稳定存在区域以外的条件下,铁的氧化物与Al2O3作用得到的产物都很难说是FeO〃Al2O3尖晶石,而可能是含有大量或主要是Fe2O3- Al2O3固溶体。即必需保证是在“FeO”稳定存在区域内的温度与氧压(pO2)下,“FeO”与Al2O3形成的才是FeO〃Al2O3尖晶石。 图2为根据“FeO”或FeOn、Fe3O4与Fe2O3的标准生成Gibbs 自由能而绘制出的在固体碳过剩条件下,Fe、“FeO”与Fe3O4稳定存在的温度区间。从图中看出,只有当温度在680~710℃之间,“FeO”

塑料维卡软化温度的测定(精)

塑料维卡软化温度的测定(GB/T 8802-2001,GB1633-2000) 塑料维卡软化温度的测定适用于当材料开始迅速软化时,能测定出温度的热塑性塑料材料,不适用于结晶或半结晶的聚合材料。 1、基本原理 塑料维卡软化温度的测定把试样放在液体介质或加热箱中,在等速升温条件下测定标准压针在50±1N力的作用下,压入从管材或管件上切取的试样内1mm时的温度,该温度即为试样的维卡软化温度(VST)。 2、试验设备 塑料维卡软化温度的测定可采用液浴槽或烘箱加热装置,宜采用加热温度及压入深度可自动记录的设备。选用合适的液体(液体石蜡、变压器油、甘油和硅油等),应保证在测试温度下是稳定的,并且在测试中对试样不产生影响,如软化、膨胀、破裂。 3、试验步骤 塑料维卡软化温度的测定管材试样应是从管材上沿轴向截下的弧形管段,长度约为50mm,宽度10mm~20mm;管件试样应是从管件的承口、插口或柱面上截下的弧形片断,对于直径小于或等于90mm的管件,试样长度和承口长度相等,直径大于90mm的管件,试样长度为50mm,试样的长度均为10mm~20mm,而且试样应从没有合模线或注射点的部位切取。如果管材或管件壁厚大于6mm,塑料维卡软化温度的测定则应采用合适的方法加工管材或管件外表面,使壁厚减至4mm,如果管件承口带有螺纹,则应车掉螺纹部分,使其表面光滑。壁厚在2.4mm~6mm(包括6mm)范围内的试样,可直接截下测试。如果管材或管件壁厚小于2.4mm,则可将两个弧形管段叠加在一起,使其总厚度不小于2.4mm,作为垫层的下层管段试样应首先压平,为此可将该试样加热到140℃并保持15min,再置于两块光滑平板之间压平,上层管段应保持其原样不变。每次试验用两个试样,但在裁制试样时,应多提供几个试样,以备试验结果相差太大时作补充试验用。 将试样在低于预期维卡软化温度(VST)50℃的温度下预处理至少5min;对于ABS和ASA 试样,应在烘箱中90±2℃的温度下干燥2h,取出后在23±2℃的温度和50±5%的相对湿度下,冷却15±1min,然后将试样在低于预期维卡软化温度50℃的温度下预处理至少5min。将加热浴槽温度调节至约低于试样软化温度50℃并保持恒温。将试样凹面向上,水平放置在无负载金属杆的压针下面,试样和仪器底座的接触面应是平的,对于壁厚小于2.4mm的试样,压针端部应置于未压平试样的凹面上,下面放置压平的试样,压针端部距试样边缘不小于3mm。压针定位5min后,在载荷盘上加上所要求的重量,以使试样所承受的总轴向压力为(50±1)N,并将初始位置调至零点。以每小时(50±5)℃的速度等速升温,提高浴槽温度,在整个过程中应开动搅拌器。当压针压入试样内(1±0.01)mm时,记录此时的温度,此温度即为该试样的维卡软化温度。 4、数据处理 塑料维卡软化温度的测定两个试样的维卡软化温度的算术平均值,即为所测试管材或管件的维卡软化温度。若两个试样结果相差大于2℃时,应重新取不少于两个的试样继续试验。1、注意事项 1)应严格按照规定进行制备试样,以免因尺寸达不到要求而损坏设备或造成偏差; 2)若从管件上截取试样,应从其承口、插口或柱面上截取,而且试样应从没有合模线或注射点的部位切取; 3)试验前,将加热浴槽温度调节至约低于试样软化温度50℃并保持恒温; 4)压针定位5min后,再加上砝码,不要将试样放在压针下面就开始试验。

热变形、维卡软化点温度测定仪技术参数

热变形、维卡软化点温度测定仪技术参数 概述 热变形、维卡软化点温度测定仪用于测定各种塑料、橡胶等热塑性材料的热变形温度和维卡软化点温度。广泛应用于塑胶原料和制品的生产、科研和教学中。该系列仪器结构紧凑、造型美观、质量稳定、并具有排出油烟异味污染和冷却功能。采用先进的MCU(多点微控制单元)控制系统,自动测控温度和变形、自动计算试验结果,可循环存储10组试验数据。该系列仪器有多种机型供选择:自动型采用液晶屏中(英)文显示,自动测量;微控型可连接电脑、打印机,由计算机进行控制,试验软件WINDOWS中(英)文界面,具有自动测量、实时曲线、存储数据、打印输出等功能。 执行标准 仪器符合ISO75、ISO306、GB/T1633、GB/T1634、GB/T8802、ASTM D1525、ASTM D648标准要求。 技术参数及指标 1、温控范围:室温~300℃ 2、升温速率:120℃/h [(12±1)℃/6min] 50℃/h [(5±0.5)℃/6min] 3、最大温度误差:±0.5℃ 4、形变测量范围:0~3mm 5、最大形变测量误差:±0.005mm 6、形变测量显示精度:±0.01mm 7、试样架(测试工位): 4 8、试样支撑跨距:64mm、100mm 9、负载杆和压头(刺针)重量:71g 10、加热介质要求:甲基硅油或标准中规定的其它介质(闪点大于300℃) 11、冷却方式:150℃以下水冷,150℃以自然冷却或风冷(风冷设备需自备) 12、具有上限温度设定,自动报警。 13、显示方式:液晶中(英)文显示 14、可显示测试温度,可设定上限温度,自动记录试验温度,温度达到上限值后自动停止加热。 15、变形测量方法:专用高精度数显表+自动报警。 16、具有自动排除油烟系统,可有效抑制油烟散发,时刻保持室内良好空气环境。 17、电源电压:220V±10% 10A 50Hz 18、加热功率:3kW

耐火材料学

耐火材料学 1、耐火材料定义:耐火材料为物理与化学性质适宜于在高温下使用的非金属材料,但不排除某些产品可含有一定量的金属材料。 2、耐火材料按性质分类为酸性、碱性、中性耐火材料。 3、耐火材料中的气孔可分为三类:开口气孔(显气孔)、贯通气孔、闭口(封闭)气孔。 真密度:带有气孔的干燥材料的质量与其真体积之比值。 显气孔率:带有气孔的材料中所有开口气孔体积与其总体积之比。 吸水率:带有气孔的材料中所有开口气孔所吸收的水的质量与其干燥材料质量之比。4、耐火材料的强度包括耐压强度与抗折强度。耐火材料的耐压强度是单位面积上所能承受而不破坏的极限载荷;耐火材料的抗折强度是指将规定尺寸的长方体试样在三点弯曲装置上能够承受的最大应力。 5、热膨胀系数:耐火材料的热膨胀系数通常是指平均热膨胀系数,即从室温升至试验温度,温度每升高1℃试样长度的相对变化率。线膨胀系数:有时也称为线弹性系数,指温度每变化1℃材料长度变化的百分率。 6、耐火材料的使用性质: ①耐火度:耐火材料在无荷重条件下抵抗高温而不熔化的特性。 ②高温蠕变:耐火材料在一定的压力下随时间的变化为产生的等温变形称为耐火材料的高温蠕变或者压蠕变。 ③耐火材料的高温体积稳定性。重烧线变化是指试样在加热到一定的温度保温一段时间后,冷却到室温后所产生的残余膨胀或收缩。 ④耐火材料的抗热震性。其测试方法是加热—冷却法,将一定的试样直接放入已经达到规定温度的炉内保温达到规定的时间后,迅速从炉中取出,在水等介质中或空气中淬冷。 7、耐火材料的抗渣性:耐火材料在高温下抵抗熔渣侵蚀的性能称为抗渣蚀性能。 8、渣向耐火材料中的渗透: ①通过开口气孔与裂纹向耐火材料内部渗透。 ②通过晶界向耐火材料内部渗透。 ③渣中的离子进入到构成耐火材料的氧化物中,通过晶格扩散进入耐火材料中。 以上三种方式通过气孔与裂纹的渗透是最大的。 9、实验室最常用的抗渣性试验方法为坩埚法。其优点是简单易行,可以在同一个炉子中进行多个坩埚的抗渣性试验;缺点是:耐火材料试样静止不动,试样周围的侵蚀介质(熔渣)变化小,很容易达到饱和状态,在耐火材料内部不存在温度梯度。 10、耐火材料配方设计: ①化学与相组成的设计。②颗粒组成的设计。 11、耐火材料泥料颗粒组成设计原则: ①临界粒度的确定。②最紧密堆积原理。 ③结构、性能与生产过程的综合考虑。 12、硅酸铝质耐火材料是以Al2O3和SiO2为基本化学组成的耐火材料。根据Al2O3含量的高低,硅酸铝质耐火材料又可分为:半硅质耐火材料,Al2O3含量为15%~30%;黏土质耐火材料,Al2O3含量为30%~45%;高铝质耐火材料,Al2O3含量大于45%。氧化铝质耐火材料是Al2O3含量在95%以上的耐火材料。 13 莫来石—高硅氧玻璃复合材料:在Al2O3·—SiO2系材料的低铝区域,存在于耐火材料中的主要相成分为莫来石,方石英及玻璃相。由于方石英的存在这类制品的抗热震性差。如果将方解石融入玻璃相中,不仅可以消除因方石英的相转变而导致的抗热震性差,而且可以获得SiO2含量高的玻璃相。生产莫来石—高硅氧玻璃复合材料有两种方法(1)直接将黏土等

维卡软化温度试验作业指导书

塑料埋地排水管维卡软化温度试验作业指导书 一编制目的: 为确保操作熟练、规范和检测数据的准确可靠、有效。 二试样要求: 1 取样 1)管材 试样应是从管材上沿轴向裁下的弧形管段,其尺寸如下: 长度:约50mm,宽度:10mm~20 mm。 2)管件 试样应是从管家的承口、插口或柱面上裁下的弧形片段,其长度为: 直径小于或等于90mm的管件,试样长度和承口长度相等; 直径大于90mm的管件,试样长度为50mm。 宽度为10mm~20mm. 试样应从没有合模限或注射点的部位切取。 2 试样制备 1)如果管材或管件壁厚大于6mm,则采用适宜的方法加工管材或管件外表面,使壁厚减至4mm。如果管件承口带有螺纹,则应车掉螺纹部分,使其表面光滑。 2)壁厚在2.4mm~6mm(包括6mm)范围内的试样,可直接进行测试。 3)如果管材或管件壁厚小于2.4mm,则可将两个弧形管段叠加在一起,使其总厚度不小于2.4mm。作为垫层的下层管段试样应首先压平,为此可将该试样加热到140℃并保持15min,在置于两块光滑平板之间压平。上层弧段应保持其原样不变。 3 试样数量 每次试验用两个试样,但在裁制试样时,应多提供几个试样,以备试验结果相差太大时做补充试验用。 三检测原理 把试样放在液体介质或加热箱中,在等速升温条件下测定标准压针在(50±1)N力的作用下,压入从管材或管件上切取的试样内1mm时的温度。 压入1mm时的温度即为试样的维卡软化温度(VST),单位:℃。 四预处理 1 将试样在低于预期维卡软化温度(VST)50℃的温度下预处理至少5min;

2 对于丙烯腈-丁二烯-苯乙烯(ABS)和丙烯腈-苯乙烯-丙烯酸(ASA)试样,应在烘 箱中(90±2)℃的温度下干燥2h,取出后在(23±2)℃的温度和(50±5)%的相对湿度下,冷却(15±1)min。然后再按第1条进行处理。 五仪器设备: 试样支架、负载杆;压针;千分表;载荷盘;砝码;加热浴槽;水银温度计;加热箱六检测依据: GB/T8802-2001《热塑性塑料管材、管件维卡软化温度的测定》 七试验步骤: 1 将加热浴槽温度调至低于试样软化温度50℃并保持恒温。 2 将试样凹面向上,水平放置在无负载金属杆的压针下面,试样和仪器底座的接触面 应是平的。对于壁厚小于2.4mm的试样,压针端部应置于未压平试样的凹面下,下面放置压平的试样。压针端部距试样边缘不小于3mm。 3 将试验装置放在加热浴槽中。温度计的水银球或测温装置的传感器与试样在同一水 平面,并尽可能靠近试样。 4 压针定位5min后,在荷载盘上加说要求的质量,以使试样所承受的总轴向压力为(50 ±1)N,记录下千分表(或其他测量仪器)的读书或将其调至零点。 5 以每小时(50±5)℃的速度等速升温,提高浴槽温度。在整个试验过程中应开动搅 拌器。 6 当压针压入试样内(1±0.01)mm时,迅速记录下此时的温度,此温度即为该试样 的维卡软化温度(VST)。 八结果计算: 两个试样的维卡软化温度的算术平均值,即为所测试管材或管件的维卡软化温度(VST),单位以℃表示。若两个试样结果相差大于2℃时,应重新取不少于两个的试样进行试验。

耐火材料复习资料

耐火材料:是指耐火度不低于1580℃的无机非金属材料。 主晶相:是指构成制品结构的主体且熔点较高的晶相。 基质:是指耐火材料中大品体或骨料间隙中存在的物质。 直接结合:指耐火制品中,高熔点的主晶相之间或主晶相与次晶相间直接接触产生结晶网络的一种结合,而不是靠低熔点的硅酸盐相产生结合。 成型:借助外力和模型将坯料加工成为具有一定尺寸、形状和强度的坯体或制品的过程。 主晶相陶瓷结合:又称为硅酸盐结合,其结构特征是耐火制品主晶相之间由低熔点的硅酸盐非晶质和晶质联结在一起而形成结合。 酸性耐火材料:含有相当数量的游离二氧化硅(Si02)。酸性最强的耐火材料是硅质耐火材料,几乎由94?97%的游离硅氧(Si02)构成。粘土质耐火材料与硅质相比,游离硅氧(Si02)的量较少,是弱酸性的。 碱性耐火材料:含有相当数量的MgO 和CaO 等,镁质和白云石质耐火材料是强碱性的, 格镁系和镁橄榄右质耐火材料以及尖晶石耐火材料属于弱诚性耐火材料。 热震稳定性:耐火材料抵抗温度的急剧变化而不破坏的性能。 抗渣性:耐火材料在高温下抵抗熔渣侵蚀怍用而不破坏的能力。 粘土质耐火材料:是用天然产的各种粘土作原料,将一部分粘土预先煅烧成熟料,并与部分生粘土配合制成Al2O3含量为30%-46%的硅酸盐铝质耐火材料。 耐火泥:是由粉状物料和结合剂组成的供调制泥浆用的不定形耐火材料。 矿化剂:泛指内生成矿作用中对成矿物质的运移和集中起重要媒介作用的物质。 防氧化剂:含碳耐火材料采用金属添加剂的作用在于抑制碳的氧化, 被称为防氧化剂 减水剂:是指在能在保持耐火浇注料的流动值基本不变的条件下,显著降低拌和用水量的物质。 镁碳砖:是由高熔点碱性氧化镁(2800℃)和难以被炉渣浸润的高熔点碳素材料为原料,添加各种非氧化物添加剂,用碳质结合剂结合而成的不烧碳复合材料。 电熔镁砂是以优质镁砂为原料经过熔化而制成。 低水泥浇注料:由耐火细粉和结合剂组成的基质中,用超细粉(指粒度小于10μm )来取代部分或大部分铝酸钙水泥,在加入少量分散剂使超细粉均匀地分散于骨料颗粒之间,填充在亚微米级的空隙中,从而形成均匀致密的组织结构。 液相烧结:凡有液相参加的烧结过程;液相起到促进烧结和降低烧结 温度的作用。 ,式子中的系数m 是SiO2/Na2O 的摩尔比。 显微结构:在光学和电子显微镜下分辨出的试样中所含有相的种类 及各相的数量、形状、大小、分布取向和它们相互之间的 关系,称为显微结构。 气硬性结合剂:气硬性结合剂是在大气中和常温下即可逐渐凝结硬化 而具有相当高强度的结合剂 热硬性结合剂:热硬性结合剂是指在常温下硬化很慢和强度很低,而在高于常温但低于烧结温度下可较快的硬化的结合剂 问答题: 1.耐火材料的组织结构有那两个类型? 答:宏观组织结构和微观组织结构。 2.耐火材料的高温蠕变可划分为哪三个特征阶段? 答:一次蠕变初期蠕变或减速蠕变;第2次蠕变或粘性蠕变,又可称为均速锘变或稳态蟠变;第3次蠕变又称加速緩变。 3. 莫来石、菱镁矿、白云石、镁铝尖晶石和镁橄榄石的分子式。 答:,,, ,。 4、杂质成分与主成分共熔产生液相对耐火材料性能有何影响。 222??水玻璃的模数:是在水玻璃(Na O mSiO nH O )2323:3Al 2O Si O 莫来石22MgO SiO ?镁橄榄石:33 白云石:CaCO MgCO 3Mg CO 菱镁矿:23MgO Al O 镁铝尖晶石:

耐火保温材料

耐火材料在冶金中的地位及作用 定义:耐火材料是指耐火度≥1580℃的无机非金属材料,它在一定程度上可以抵抗 温度骤变和炉渣侵蚀,并能承受高温荷重。 作用:耐火材料主要用于工业生产中的高温热工设备和各种窑炉,在冶金工业(钢 铁与有色金属)中所消耗的耐火材料占整个耐火材料消耗量的60~70%。而冶金炉是高温设备、是大量优质耐火材料的主要消耗者。因此,耐火材料在冶金工业占有重要的地位。 冶金炉对耐火材料的要求:耐火度高:≥1000~1800℃ ?高温结构强度大:高温下荷重不变形 ?热稳定性好:高温下抵抗温度骤变引起破坏的能力。 ?抗渣侵蚀能力:抵抗炉内高温下熔融炉渣、金属和炉气等的化学腐蚀。 ?高温体积稳定:高温下使用,其内部由于晶型转变会产生不可恢复的体积收缩或膨胀,而造成炉体破坏。因此,要求耐火材料在高温时体积稳定。 ?外形尺寸规整、公差小:筑炉时砌体要规整、砖缝小,以防止炉体从砖缝处破损,这就要求耐火材料制品不能有大的扭曲、缺损、熔洞和裂缝等;尺寸公差合乎规定的要求。 耐火材料的分类、组成及性质 耐火材料的分类: 耐火材料的分类有多种方式。如有按耐火材料的化学矿物组成、耐火材料的外型尺寸以及耐火材料制造方法等分类;而根据耐火材料的耐火度高低可分为: ⑴普通耐火材料耐火度为1580~1770℃; ⑵高级耐火材料耐火度为1770~2000℃; ⑶特级耐火材料耐火度为2000℃以上。 耐火材料的一般化学矿物组成 耐火材料的化学矿物组成是决定耐火材料物理性质和工作性质的基本因素。 1.2.2.1 化学组成: 耐火材料的化学成分按含量的多少及其作用不同可分为主成分和副成分。 主成分是耐火材料的主体,是影响耐火材料的基本因素。除碳质耐火材料以外,普通耐火材料的主成分都是氧化物,例如硅砖中的SiO2,粘土质耐火材料中的SiO2和Al2O3,镁砖中的MgO。 副成分包括杂质和添加物,其化学成分也是氧化物,如Fe2O3、、K2O、Na2O 等,它使耐火材料的性能降低,有的具有溶剂作用,即在耐火砖的烧成过程中产生液相实现烧结。 矿物组成 主晶相:主晶相是耐火材料中的主体,是熔点较高的结晶体,它在很大程度上决定耐火材料的性能,可以是一种,也可以是两种。例如,高铝砖中的莫来石和刚玉,镁砖中的方镁石,都是主晶相。 基质:是填充在主晶相之间的其他不同成分的结晶矿物和非结晶玻璃相,它的熔点低,起着溶剂作用,例如,镁铝砖的基质是一种称为尖晶石MgO·Al2O3的结晶成分,依靠它将砖紧紧粘结成整体,因此也称结合相。基质的数量虽少,但它对耐火材料的性能影响很大,在耐火材料的使用过程中,往往首先从基质部分开始损坏。

耐火材料

一、填空题 1,硅酸盐矿物显微结构:硅酸盐结合物胶结晶体颗粒晶体颗粒直接结合 成结晶网2,熔渣让耐火材料破坏的三种方式:单纯溶解、反应溶解、侵入变质溶解 3,让坯料重新分布的力:静电引力、机械结合力、内摩擦力 4,镁砖的分类:烧 成镁砖、不烧镁砖、再结合镁砖5,颗粒料的组成原则:两头大,中间小 6,氧化铝含量:<%72(莫来石) >%72(莫来石,刚玉) 7,测耐火材料的抗拉性的 两种方法:动态法、静态法 8,ZrO2增韧机理:①应力诱导相变增韧 ②微裂纹增韧 ③裂纹分支增韧④裂纹偏转和弯曲增韧 9,铬镁质材料:方镁石,尖晶石 其基质有三种:M2S 、 CMS 、 C3MS2 1.耐火材料的概念:指主要由无机非金属材料构成的且耐火度不低于1580℃的材料和 制品。耐火材料的品种和质量取决与耐火材料的原料和其生产工艺。 2.耐火材料 分类Ⅰ、化学矿物组成分类:氧化硅质、硅酸盐质、刚玉质、镁质、白云石质、橄榄 石质、尖晶石质、含炭质、含锆质、特殊等耐火材料。Ⅱ、按耐火度高低分为:①普 通耐火制品(耐火度1580-1770℃)、②高级耐火制品(耐火度1770-2000℃)、特级 耐火制品(耐火度2000℃以上)。Ⅲ、按制品形状和尺寸分为:标准砖、异形砖、特 异型砖等。Ⅳ、按化学性质分类:酸性耐火材料、中性耐火材料、碱性耐火材料。 (化性分类对了解耐火材料的化学性质,判断在使用过程中它们之间及耐火材料与接 触物间化学作用情况有着重要意义)3、氧化硅耐火材料为典型的酸性耐火材料, 其矿物组成为:主晶相为磷石英和方石英,基质为石英玻璃相。 4、两种矿物组成:①结晶相(主晶相和次晶相):主晶相是耐火制品结构的主体而且熔点较高的结晶相。其性质、数量、结合状态直接决定着耐火材料的性质。次晶相又称第二固相,也是熔 点较高的晶体,提高耐火制品中固相间的直接结合,改善制品性能。②玻璃相:基质 是指填充于主晶相之间的不同成分的结晶矿物(次晶相)和玻璃相,也称结合相。硅 砖的主晶相:磷石英、方石英粘土砖的主晶相:莫来石、方石英5、耐火材料的气孔 存在形态分类:封闭在制品中不与外界想通的闭口气孔,一端封闭另一端与外界相通 的开口气孔,两端都与外界相通的贯通气孔。气孔的存在主要影响材料的致密度,显 气孔率高时,材料结构疏松,强度低,抗渣性能弱。 耐火材料的化学组成是决定其矿物组成、组织结构的基础。根据各种化学成分的含量 和作用分为:主成分、杂质和外加成分三种。。主成分:指耐火材料中占绝大多数的,对材料高温性质起决定性作用的化学成分。杂质:指耐火材料中不同于主成分的,含 量微少而对耐火材料的抵抗高温性质带来危害的化学成分。外加成分:常称为外加剂,是在耐火制品生产中为特定目的另外加入的少量成分。 矿物:由相对固定的化学组分构成的有确定的内部结构和物理性质的单质或化合物 密度分为:体积密度、视密度、真密度。①体积密度d b:指材料的质量M与其含材料 的实体积Vb和全部气孔体积之和的总体积V b之比 d b=M/V b=M/(Vt+Vc+Vo)。②视密度(表观)da:指材料的质量与其含材料的实体积和封闭气孔体积之和的体积之比。 da=M/(Vt+Vc)③真密度dt:指材料质量与其实体积之比.dt=M/Vt 主晶相:指构成结构结构的主体且熔点较高,对材料的性质起支配作用的一种晶相,(其性质,数量,分布和结合状态直接决定耐火制品性质)。次晶相:又称第二晶相 或第二固相,指耐火材料中在高温下与主晶相和液相并存的,一般其数量较少和对材 料高温性能的影响较主晶相为小的第二种晶相。基质:指在耐火材料大晶体间隙中 存在,或由大晶体嵌入其中的那部分物质,也可认为是大晶体之间的填充物质或胶结物。 耐火度:耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性能,表征材料 抵抗高温作用的性能。其意义与熔点不同。熔点是结晶体的液相与固相处于平衡时的

耐火材料的六大使用性能

耐火材料的六大使用性能 ??? 耐火材料的使用性能是指耐火材料在高温下使用时所具有的性能。包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗酸性、抗碱性、抗氧化性、抗水化性和抗CO侵蚀性等。 (一般)耐火度 ??? 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。 耐火度与熔点不同,熔点是结晶体的液相与固相处于平衡时的温度。绝大多数耐火材料都是多相非均质材料,无一定熔点,其开始出现液相到完全熔化是一个渐变过程。在相当宽的高温范围内,固液相并存,固如欲表征某种材料在高温下的软化和熔融的特征,只能以耐火度来度量。因此,耐火度是多相体达到某一特定软化程度的温度。 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。耐火度是判定材料能否作为耐火材料使用的依据。国际标准化组织规定耐火度达到1500℃以上的无机非金属材料即为耐火材料。耐火度的意义与熔点不同,不能把耐火度作为耐火材料的使用温度。 (二)荷重软化温度

荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。 荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。耐火材料高温荷重变形温度是其重要的质量指标,因为它在一定程度上表明制品在与其使用情况相仿条件下的结构强度。决定荷重软化温度的主要因素是制品的化学矿物组成,同时也与制品的生产工艺直接相关 (三)重烧线变化(高温体积稳定性) ??? 首先应当了解耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。 耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。 耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。

相关文档
最新文档