隧道周边收敛监测月报数据

隧道周边收敛监测月报数据
隧道周边收敛监测月报数据

隧道监控量测月报告

(____年___月)

委托单位:

工程名称:

监控内容:拱顶下沉、周边收敛、地表沉降

报告编号:

________高速隧道检测预报项目组

报告编号:__________

委托单位:

工程名称:

监控容:拱顶下沉、周边收敛、地表沉降

监控日期:

报告日期:

监控人:

报告编写:

复核:

签发:

_________高速隧道检测预报项目组

目录

一、隧道概况 (1)

二、任务依据及目的要求 (1)

三、执行规范及文件 (2)

四、监控量测测点布置及实施情况 (3)

五、数据的采集及处理 (3)

六、量测数据整理与分析 (11)

七、附图 (17)

八、建议 (19)

一、隧道概况

该隧道洞轴走向约为205°-236°,隧址区岩性分布为中-上志留统-白龙江群上部(S2+3b12):中薄层-厚层白云质灰岩、硅质条带灰岩夹细砂岩、板岩。为较硬岩,呈中厚层状,岩层产状90~105°∠65~75°,岩层走向与洞轴走向呈大角度斜交,利于开挖。

监控段落用的开挖方法主要是分台阶开挖法、本次主要监控的断面有ZK81+050、ZK81+100、ZK81+150、YK81+000、YK81+050、YK81+100、YK81+150共七个断面。

本阶段报告中主要对ZK81+050、ZK81+100、ZK81+150、YK81+000、YK81+050、YK81+100、YK81+150共计7个报稳断面的监控结果进行汇总。

二、任务依据及目的要求

受____________高速公路建设项目办的委托,__________高速隧道预报检测组承担了本合同段隧道监控量测工作。

隧道现场监控量测是保证工程质量的重要措施,也是判断围岩和衬砌结构是否稳定、保证施工安全和工程质量、指导施工顺序、进行施工管理以及提重要信息的手段。在隧道施工阶段,使用各种量测仪表和工具,对围岩变化情况及支护结构的工作状态进行量测,及时提供围岩稳定程度和支护结构可靠性的安全信息,预见事故和险情,做出调整和修改支护设计的依据,并在复合式衬砌中,依据测量结果确定二次衬砌施作时间,以达到监控隧道围岩和支护结构的变位与应力不超过设计标准。

隧道现场量测的任务:

施工监控量测的目的:

三、执行规范及文件

(1)铁道部《铁路工程物理勘探规程》TB10013—98;

(2)交通部《公路工程质量检验评定标准》(JTG F80/1-2004);

(3)交通部《公路隧道设计规范》(JTG D70—2004);

(4)交通部《公路隧道施工技术规范》(JTJ042—94);

(5)交通部《公路隧道施工技术规范》(JTG F60—2009);

(6)《岩土工程勘察规范》(GB 50021—2001);

(7)《公路工程地质勘察规范》(JTJ064—98);

(8)水利部《水利水电工程物探规程》(SL326—2005);

(9)_________高速公路隧道工程施工图设计资料;

(10)________高速公路隧道工程地质勘察报告;

(11)________高速公路隧道监控量测、质量检测招标文件;

(12)________高速公路隧道监控量测、质量检测合同。

四、监控量测测点布置及实施情况

本次施工监控量测的内容:包括洞口地表沉降变形量测、隧道净空收敛量测、拱顶下沉量测及掌子面、洞壁围岩和支护状况观察。根据《公路隧道施工技术规范》(JTG F60-2009)的有关规定,洞口地表沉降变形量测共布设两条测线,测点布置见图1,位于洞顶上方地表,隧道净空收敛及拱顶下沉量测布点见图2,根据围岩状况布设一条或两条净空收敛测线。断面布设间距按照招标文件要求每50米一个断面,对于围岩变化段可视具体情况适当增减量测断面间距。

图1 地表变形量测测点图2 拱顶下沉及周边收敛测拱顶下沉量测采用托普康公司的AT-G2精密水准仪、测微器、铟钢尺等,仪器精度0.1mm;隧道周边收敛量测采用JSS30A型数显收敛计,仪器精度0.01mm;掌子面、洞壁围岩和支护状况观察采用目测观察。

围岩稳定评价标准:根据GBJ50086—2001《锚杆喷射混凝土技术规范》的规定,周边收敛速率为0.1-0.2mm/d ,拱顶下沉速率为0.07-0.15mm/d作为围岩稳定的标志之一。

五、数据的采集及处理

5.1拱顶下沉

5.1.1桩号ZK81+050拱顶下沉:

表1 ZK81+050拱顶下沉监控量测值

5.1.2桩号ZK81+100拱顶下沉:

表2 ZK81+100拱顶下沉监控量测值

5.1.3桩号ZK81+150拱顶下沉:

表3 ZK81+150拱顶下沉监控量测值

5.1.4桩号YK81+000拱顶下沉:

表4 YK81+000拱顶下沉监控量测值

5.1.5桩号YK81+050拱顶下沉:

表5 YK81+050拱顶下沉监控量测值

5.1.6桩号YK81+100拱顶下沉:

表6 YK81+100拱顶下沉监控量测值

5.1.7桩号YK81+150拱顶下沉:

表7 YK81+150拱顶下沉监控量测值

5.2周边收敛

5.2.1桩号ZK81+050周边收敛:

表8 ZK81+050周边收敛测量值

5.2.2桩号ZK81+100周边收敛:

表9 ZK81+100周边收敛测量值

5.2.3桩号ZK81+150周边收敛:

表10 ZK81+150周边收敛测量值

5.2.4桩号YK81+000周边收敛:

表11 YK81+000周边收敛测量值

5.2.5桩号YK81+050周边收敛:

表12 YK81+050周边收敛测量值

5.2.6桩号YK81+100周边收敛:

表13 YK81+100周边收敛测量值

5.2.7桩号YK81+150周边收敛:

表14 YK81+150周边收敛测量值

六、量测数据整理与分析

6.1拱顶下沉

6.1.1桩号ZK81+050拱顶下沉:

图3 ZK81+050拱顶下沉位移量与时间关系曲线

图4 ZK81+050拱顶下沉位移速度与时间关系曲线

图5 ZK81+050拱顶下沉位移量与开挖面距离关系曲线6.1.2桩号ZK81+100拱顶下沉:

图7 ZK81+100拱顶下沉位移量与时间关系曲线

图8 ZK81+100拱顶下沉位移速度与时间关系曲线

图9 ZK81+100拱顶下沉位移量与开挖面距离关系曲线6.1.3桩号ZK81+150拱顶下沉:

图11 ZK81+150拱顶下沉位移量与时间关系曲线

图12 ZK81+150拱顶下沉位移速度与时间关系曲线

图13 ZK81+150拱顶下沉位移量与开挖面距离关系曲线6.1.4桩号YK81+000拱顶下沉:

图15 YK81+000拱顶下沉位移量与时间关系曲线

图16 YK81+000拱顶下沉位移速度与时间关系曲线

图17 YK81+000拱顶下沉位移量与开挖面距离关系曲线

6.1.5桩号YK81+050拱顶下沉:

图19 YK81+050拱顶下沉位移量与时间关系曲线

图20 YK81+050拱顶下沉位移速度与时间关系曲线

图21 YK81+050拱顶下沉位移量与开挖面距离关系曲线6.1.6桩号YK81+100拱顶下沉:

图23 YK81+100拱顶下沉位移量与时间关系曲线

图24 YK81+100拱顶下沉位移速度与时间关系曲线

图25 YK81+100拱顶下沉位移量与开挖面距离关系曲线6.1.7桩号YK81+150拱顶下沉:

图27 YK81+150拱顶下沉位移量与时间关系曲线

图28 YK81+150拱顶下沉位移速度与时间关系曲线

图29 YK81+150拱顶下沉位移量与开挖面距离关系曲线

6.2周边收敛

6.2.1桩号ZK81+050周边收敛:

图32 ZK81+050断面周边位移速度与时间变化曲线

图33 ZK81+050断面周边位移量与开挖面距离关系曲线6.2.2桩号ZK81+100周边收敛:

图35 ZK81+100断面周边位移量与时间变化曲线

图36 ZK81+100断面周边位移速度与时间变化曲线

图37 ZK81+100断面周边位移量与开挖面距离关系曲线6.2.3桩号ZK81+150周边收敛:

图39 ZK81+150断面周边位移量与时间变化曲线

图40 ZK81+150断面周边位移速度与时间变化曲线

图41 ZK81+150断面周边位移量与开挖面距离关系曲线6.2.4桩号YK81+000周边收敛:

图43 YK81+000断面周边位移量与时间变化曲线

图44 YK81+000断面周边位移速度与时间变化曲线

图45 YK81+000断面周边位移量与开挖面距离关系曲线6.2.5桩号YK81+050周边收敛:

运营期间的地铁隧道结构变形安全监测技术研究

运营期间的地铁隧道结构变形安全监测技术研究 发表时间:2017-05-14T13:31:08.110Z 来源:《建筑学研究前沿》2017年1月下作者:王鹏 [导读] 随着我国现代化建设的飞速发展,城市基础设施地铁越来越多,是城市客运交通的大动脉以及城市生命线。 广州市吉华勘测股份有限公司 510260 摘要:随着我国现代化建设的飞速发展,城市基础设施地铁越来越多,是城市客运交通的大动脉以及城市生命线,其投资大、难度高、施工期长、环境复杂等。同时地铁沿线高强度的物业开发、市政工程建设对地铁结构和运营安全带来一定的隐患,城市轨道交通结构的安全保护工作日益严峻,一但出现城市轨道交通安全事件,将严重影响城市轨道交通的正常运营。因此,在外界施工影响下,对运营期间的地铁实施必要的变形安全监测至关重要。 关键词:地铁,测量机器人,自动化监测。 1 地铁监测的意义和目的 地铁结构本身由于地基的变形及内部应力、外部荷载的变化而产生结构变形和沉降。而地铁旁边的施工正是引起外部荷载变化的主要原因,地铁结构变形和沉降超过允许值,将会对地铁的运营安全造成影响。通过监测可动态收集地铁结构变形信息,掌握结构变形情况,保障运营安全。 地铁监测的主要目的如下:1)通过对测量数据的分析、掌握隧道和围岩稳定性的变化规律,修改和确认设计及施工参数;2)通过监控量测了解施工方法的科学性和合理性,以便及时调整施工方法,保证施工安全及隧道的安全;3)了解隧道结构的变形情况,实现信息化施工,将监测结果反馈设计,为改进设计施工提供信息指导,提供可靠施工工艺,为以后类似的施工提供技术储备。 2.监测实施 因地铁隧道的特殊性,对于地铁运营期的监测,需采用自动化监测手段,即采用测量机器人和自动监测系统软件建立隧道结构变形自动监测系统。在外部施工期间自动测量地铁隧道结构顶板、侧墙及道床在三维—X、Y、Z方向(其中:X、Y为水平方向,Z为垂直方向)的变形值。 2.1监测点与基准点布置 参考工程设计、实际情况及有关规定,确定地铁受外界项目施工影响的范围,监测断面可按5~20m间距布设,每断面布设一般情况下六个监测点。在隧道两端不受建设项目施工影响的隧道远处各设置3个基准点。 2.2自动监测系统 自动监测系统主要由监测设备、参考系、变形体和控制设备构成。监测设备由测量机器人、自动化监测系统软件和监测控制房组成;控制设备由工控机及远程控制电脑组成。 1)自动化监测网络系统的硬件部分包括高精度自动全站仪、目标棱镜、信号通信设备与供电装置、计算机及网络设备等部分组成(如图1)。 图1数据采集系统图 2)系统软件包括动态基准实时测量软件和变形点监测软件两大部分。动态基准实时测量软件功能上主要有以下特点:根据距离及棱镜布设情况自动进行大小视场的切换;依据布设的网形站与站之间的观测关系,对测站点的观测方向可分组设置,可适合任意控制网形,不局限于导线网;采用局域网技术进行数据的通信,并具有网络断开的自动判断功能;为满足各种测量等级和运营环境的需要,具有各项测量限差、时间延迟、重试次数、坐标修正的设置功能;考虑到地铁内局部范围内气象一致性,在平差计算中,采用加尺度参数解算,避免了气象参数的测定,提高控制网测量的精度。 3)变形点监测软件包括各分控机上的监测软件和主控机上的数据库管理软件两部分。分控机上的监测软件用来控制测量机器人按要求的观测时间、测量限差、观测的点组进行测量,并将测量的结果写入主控机上的管理数据库中。 2.3自动监测系统工作流程 首先建立计算机和测量机器人的通信,然后对测量机器人进行初始化,此外进行测站及控制限差的设置,所有设置完毕后进行学习测量,设置点组和定时器,根据点位的重要性以及监测频率将相同的观测点纳入同一点组,最后进行自动观测。一周期观测完毕后软件便对原始观测数据进行差分处理,得到各变形点的三维坐标、变形量及变形曲线图,设置软件还可以将数据通过手机网络发送至指定的邮箱。 3地铁隧道自动化监测的技术难点 地铁隧道是狭长形的空间环境,同时列车一般以平均5分钟左右的间隔在隧道中高速运行。地铁环境的这些特点及保证地铁正常运营等因素的制约,使得自动变形监测系统在地铁变形监测中的应用,遇到比其它工程中更多的技术问题,因此自动变形监测手段有着常规测量无法比拟的优越性。自动监测系统系统可以在无人值守的情况下,全天24小时连续地自动监测,实时进行数据处理、数据分析、报表输

监控量测工作计划

贵州省道真至新寨高速公路福寿场至和溪段 TJ02标隧道监控量测 工作计划 中交第二公路勘察设计研究院有限公司 2014年12月

目录 第一章工作概述 (3) 监控量测的实施 (3) 洞内外观察 (3) 周边位移 (5) 拱顶下沉 (9) 浅地表下沉 (11) 第二章隧道监测成果反馈 (15) 第三章项目实施过程中的主要问题及对策 (23) 3.1隧道超前地质预报关键问题 (23) (一)隧道施工塌方预报 (23) (二)隧道施工突水预报 (23) (三)隧道施工突泥预报 (24) 3.2基于本项目重点、难点的地质超前预报及监控量测的对策及措施 (24) 3.2.1 针对隧道可能出现的塌方事故的安全控制对策及措施 (24)

第一章工作概述 监控量测的实施 1.1监控量测方法和手段、测点及监测频率 洞内外观察 1)量测目的 (a)预测开挖面前方的地质条件及围岩级别; (b)为判断围岩、隧道的稳定性提供地质依据; (c)根据喷层表面状态及锚杆的工作状态,分析支护结构的可靠程度。 2)观测内容 (a)对开挖工作面观察: ①岩质种类和分布状态,近界面位置的状态; ②岩性特征:岩石的颜色、结构、构造; ③地层时代归属及产状; ④节理性质、组数、间距、节理裂隙的发育程度和方向性,断面状态特征,充填物的类型和产状等; ⑤断层的性质、产状、破碎带宽度、特征; ⑥溶洞的情况; ⑦石煤层情况; ⑧地下水类型、涌水量大小等;

⑨开挖工作面的稳定状态,顶板有无剥落现象。 (b)开挖后已支护段: ①初期支护完成后对喷混凝土层表面的观测及裂缝状况的描述与记录; ②有无锚杆被拉脱或垫板陷入围岩内部的现象; ③喷混凝土是否产生裂缝或剥离,要特别注意喷混凝土是否发生剪切破坏; ④钢支撑有无被压曲现象; ⑤是否有底鼓现象。 (c)洞外观察 包括对洞口地表情况、地表沉陷、边坡及仰坡的稳定以及地表水渗透等的观察。 3)量测方法 利用地质素描、照相或摄像技术将观测到的有关情况和现象进行详细记录,观测中,如发现异常现象,要详细记录发现的时间、距开挖工作面的距离以及附近测点的各项量测数据。 4)测试仪器 DQY-1地质罗盘、地质锤、钢卷尺、放大镜、手电、照相机等。 5)观测频率及断面 目测应在隧道开挖工作面爆破后及初期支护后进行,观察后应绘制开挖面略图,填写工作面状态记录集围岩级别判定卡。 初期支护完成区段观察:每天至少进行一次。

PPP项目、EPC项目—信息化管理

PPP项目、EPC项目—信息化管理 3号线二期工程建设规模量大,施工周期长,施工技术复杂,对周边环境影响大,涉及的专业主体多。为有效的协调各参建单位,工程信息有效的传递和存储,从而提高管理的能力和水平,项目公司建立信息化管理系统进行信息化管理。 一、施工监控量测 1、监测中心与各方的关系及管理职责 项目公司对监测单位进行管理,项目公司总工程师领导对监测单位的管理工作负责,项目公司安质环保部处理日常的相关事宜。监测单位对施工总承包单位和其它专业公司施工过程中的监测工作进行监督、检查管理。重大问题由总经理协调解决,总工程师领导负责对工程监测单位的管理工作,监测单位服从项目公司安质环保部的管理并对其负责,安质环保部处理监测有关事宜。 2、监测管理内容 监督检查施工总承包单位、分部在明挖施工、暗挖施工、盾构施工区间的地表沉降量测、基坑围护桩顶水平位移及垂直位移、地面建筑物沉降、变形、初期支护状况观测、水平净空收敛量测、拱顶下沉量测、地下管线沉降等项目监控量测实施情况,监控量测数据是否真实可靠和及时上报。 3、对工程监测单位的管理措施 (1)督促工程监测单位编制整体监测施工方案和分标段实施性方案,上报工程管理部审核、备案。监督工程监测单位按照国家、行业、哈尔滨市有关测量规范、规程的要求进行监测。 (2)督促工程监测单位和交桩单位进行交接桩、督促监测单位现场及时布设监测点,测量初始值并上报项目公司工程管理部。 (3)监督工程监测单位与承包商积极配合,及时审查承包商的监测资料并进行现场检查。在规定的时间内提交施工监测报告,保证工程监测资料及时、实时、准确、完整,确保为现场施工提供参考依据。 (4)监督和审查工程监测单位编制监测月报、监测成果资料管理、保证成果资料的真实、准确、可靠。抽查工程监测单位的施工监测相关资料。 (5)建立考评制度。通过监督、检查工程监测单位的工作进度和工作质量情况作出考评结论。根据考评结论,决定项目公司在其监测服务费用申请书上是

隧道监控量测技术

1隧道监控量测的定义:隧道现场监控量测是指在隧道施工过程中,对围岩和支护、衬砌受力状态的量测。现场监控量测是监视围岩稳定,判断支护、衬砌结构设计是否合理,施工方法是否正确的一种手段;也是保证新奥法安全施工、提高经济效益的重要条件;为施工中可能有的工程变更提供科学依据;它贯穿隧道施工的全过程。为此《公路隧道施工技术规范》(JTJ 042-94)中第9.1.1条作出下列规定:采用复合式衬砌的隧道,必须将现场监控量测项目列入施工组织设计,制定监控量测计划,并在施工中认真实施。 2、监控量测的目的与要求:量测的目的为: ⑴掌握围岩动态和支护结构的工作状态,利用量测结果修改设计,指导施工. ⑵预见事故和险情,以便及时采取措施,防患于未然. ⑶积累资料,为以后的新奥法设计提供类比依据. ⑷为确定隧道安全提供可靠的信息 ⑸量测数据经分析处理与必要的计算和判断后,进行预测和反馈,以保证施工安全和隧道稳定. 量测的要求:快速埋设测点.(一般设置在距掌子面、工作面2m范围内,开挖后24小时、下次爆破前测取第一次读数。)测量读数在隧道内尽量要快;保证测量点不被破坏;读数准确可靠。 3监控量测的任务:⑴确保安全。⑵指导施工。⑶修正设计。⑷积累资料。 4现场工作程序:准备工作;确定埋设断面;测点埋设;数据采集;数据整理分析;资料归档 5监控量测的项目与方法:隧道监控量测的内容应根据隧道工程地质条件,围岩类别(级别)、围岩应力分布情况、隧道跨度、埋深、工程性质、开挖方法、支护类型等因素确定。通常分为必测项目和选测项目,如地表下沉对城市地铁项目应为必测项目;但对于山地交通隧道可把地表下沉做为选测项目。《公路隧道施工技术规范》(JTJ042-94)对复合式衬砌的隧道现场监控量测要求内容见5.4下表 5.1监控量测的项目与方法:必测项目选测项目 5.2必测量测项目:必测项目:必测项目:包括围岩地质和支护描述、地表沉降观测、拱顶下沉量测、周边收敛量测。这类量测是为了在设计、施工中确保围岩稳定的经常性量测工作。量测方法简单,量测密度大,量测信息直观可靠,费用较少,贯穿在整个施工过程中,对监视围岩稳定,指导设计和施工有巨大的作用。土建施工完成量测工作亦告结束。 5.3必测量测项目所需设备:精密水准仪、塔尺、钢圈尺(测地表沉降、拱顶下沉);周边收敛仪(测周边收敛)。 5.4隧道现场监控量测要求内容表: 5.5地质、支护状态观察:该项目包括对掌子面观察和支护结构的支护效果观察。掌子面工程地质和水文 地质情况观察包括岩石的名称、岩层产状、断层、层理、节理等结构面的分布、走向、产状。每茬炮后需要观测一次。支护状态观察包括初期支护状态和已成峒支护效果观察。如喷射砼开裂部位、宽度长度及深度。二次衬砌的整体性、防水效果等,每天观察一次。洞内状态观察是可靠性很高且最直接的判断资料。 对洞外边仰坡稳定和地表渗透观察按要求进行描述;做好相关的观察记录。观察使用地质罗盘、地质锤、钢卷尺、放大镜、秒表、手电、照相机或摄像机等。 5.6 周边收敛量测:5. 6.1必测量测项目:围岩周边位移量测:在预设点的断面,隧道开挖爆破以后,沿隧道 周边的拱顶、拱腰和边墙部位分别埋设测桩。测桩埋设深度30cm,钻孔直径φ42,用快凝水泥或早强锚固剂固定,测桩头需设保护罩,测桩每断面6组共12根。采用钢尺式周边收敛仪量测周边收敛变形。所有测点布置在量测断面位置。 ①周边收敛量测是最基本的主要量测项目之一,布置在主测断面。先在测点处用凿岩机(或电钻)在待测 部位成孔,然后将藕合剂(锚固剂)置入孔中,最后将收敛预埋件敲入,旋正收敛钩,尽量使两预埋件轴线在基线方向上,以利收敛计悬挂和观测。待凝固后,周边收敛量测采用收敛计进行数据采集。 连拱必测项目测点断面布置图 我们用测线布置图中的BC和DE边的值变化来实现对净空水平收敛的量测。周边收敛数据处理:回归分析时,一般同时采用下面的三种函数,通过对比,推算最终位移时采用三个函数中回归精度(拟合程度)较高的一个函数,不同测点的回归函数可能不同。

地铁隧道变形监测中的三维激光扫描技术研究

地铁隧道变形监测中的三维激光扫描技术研究 发表时间:2018-11-14T17:16:54.063Z 来源:《建筑学研究前沿》2018年第20期作者:黄鑫 [导读] 有效减轻了监测的劳动强度、缩短了监测作业时间,并且获得了更加准确、全面的检测数据,大大提高了检测的质量。本论文以地铁隧道变形检测中的三维激光扫描技术为研究切入点,对其进行了详细的研究和论述。 黄鑫 广州云胜工程勘测技术有限公司广东广州 510000 摘要:在地铁隧道施工建设完成之后,做好地铁隧道变形监测尤为重要,是保证地铁工程施工质量,确保地铁安全运营的重要条件。在地铁隧道变形监测中技术中,充分融入三维激光扫描技术,有效减轻了监测的劳动强度、缩短了监测作业时间,并且获得了更加准确、全面的检测数据,大大提高了检测的质量。本论文以地铁隧道变形检测中的三维激光扫描技术为研究切入点,对其进行了详细的研究和论述。 关键词:地铁隧道;变形监测;三维激光;扫描技术 地铁隧道在施工建设完成之后,受到土地扰动、周边工程施工、建构物负载等因素的影响,在具体施工中会出现纵向、横向变形,严重影响了地铁隧道的安全运行。这就要在具体的施工中,加强地铁隧道变形监测工作。传统的检测具有明显的缺点,如:工作效率低下、数据不全、自动化程度低,而将三维激光扫描术引入到地铁隧道变形监测过程中,有效地弥补了传统监测的不足。 1.地铁隧道变形检测相关概述 随着城市化进程的加快,城市人口增加、机动车辆增加。各大城市都面临着较为严重的交通压力。为了有效的缓解城市交通压力,各大城市都加强了地铁隧道的建设。但是在地铁隧道建设完成之后,受到复杂地质地理因素的影响,原本设计的地铁线路可能会出现多种结构改变,如:沉降、弯曲、扭曲变形、开裂等,在一定范围内的结构变形,并不会对地铁隧道的发展产生重要的影响,一旦地铁隧道出现严重的结构变形,就会导致地铁隧道出现结构与道床剥离、地铁轨道设备几何形位改变等。 除此之外,地铁隧道建设完成后,在运营过程中,还会受到地面和周边建筑物负载、隧道周边工程施工、隧道工程结构施工、地铁列车运行过程中所产生的振动等因素的影响,也在一定程度上加强了地铁隧道的变形。 因此,对于新建的地铁隧道线路,必须要加强变形监测,根据监测结果充分了解其平面位移、竖向位移情况,以有效保障地铁隧道的运营安全[1]。同时,变形监测数据,还可以为以后的地铁隧道设计,提供一定的借鉴和依据。 2.三维激光扫描技术以及特点 2.1三维激光扫描技术 三维激光扫描技术主要是指在地铁隧道变形监测过程中,利用激光扫描装置进行自动、系统、快速的扫描,并将所获得相应数据进行整理分析,以获得对象的表面三维坐标。这种三维激光扫描技术是一种高科技的测绘技术,集成了多种高新技术的测绘仪器,并在具体监测过程中,采用非接触式的高速激光测量方式。 三维激光扫描技术在地铁隧道变形监测中的具体应用,应包括以下四个步骤: 步骤一:在地铁隧道内部建立一个监测基准网,并形成一个闭合的观测系统。通常,地铁隧道内部基准网往往在铺轨施工期间完成,并采用地铁的基本控制网进行建立。 步骤二:根据地铁隧道的实际情况,在每隔一定的距离上,可采用CPⅢ控制点埋设的方式,设置一个激光反馈观测点。通常,激光反馈观测点往往选择在增加横断面上,这样便于激光反馈点的收集。之后,根据激光反馈点所的到的数据进行分析,从而根据分析结果得出地铁隧道的变形程度。 步骤三:以地铁隧道和你建立的检测基准网为基础,采用三维激光扫描仪,对激光反馈光测点进行扫描,从而得到整个地铁隧道线路的三维激光扫描数据。 步骤四:将三维激光反馈点所得到的数据进行综合整理,并据此建立三维模型,进行综合检测。在这一过程中,对于大量的数据分析,要保证数据的完整真实,不能在分析过程中,随意更改[2]。 2.2三维激光扫描技术特点 具体来说,三维激光扫描技术在地铁隧道变形检测中的应用,具有一定的优势: 第一、效率高。 三维激光扫描技术在监测的过程中,所用的时间仅仅为传统监测时间的几十分之一,能够在短时间内完成高质量的监测。尤其是对于地形结构复杂的区域内部来说,三维激光扫描技术监测优势尤为明显。 第二、三维可视化 三维激光扫描技术在监测中,可以快速获取地铁隧道内部精确信息,充分反映其本身特点,并在此基础上,实现了地铁隧道内部表面的三维可视化。 第三、安全稳定,精度均匀 与传统的监测方法相比较,三维激光技术在应用中由于扫描仪自动识别,大大降低了监测过程中人为因素所造成的误差,在一定程度上提高了观测的精准度。另外,在监测过程中,由于三维激光获取数据密度较大,精度分布较为均匀,所谓在此基础上构建出的三维立体模型,具有较强的完整性和连贯性。 第四、数据监测更加全面 三维激光扫描技术在应用中,可以对隧道内部各个区域的沉降、结构变形、收敛情况进行详细、直观的了解,使得数据监测更加全面。 3.三维激光扫描技术的具体应用 3.1制定监测方案 制定科学的检测方案,是实施三维激光扫描技术监测的第一步。在制定监测方案的过程中,不仅要根据地铁隧道的实际情况,还要对

隧道监测数据分析报告

中铁十三局固原隧道 围岩位移及钢梁应变远程自动化监测原始数据(2014-3-12至2014-4-6) 监 测 报 告 长沙亿拓土木工程监测仪器有限公司 二零一四年四月八日

一、 监测情况概述: 本周期观测时间:2014年3月12日-2014年4月6日 拱顶沉降位移变形观测仪器:多点位移计 拱架钢梁应变观测仪器:表面应变计 采集方式:远程自动化采集传输技术 分析软件:预警预报版本的采集分析软件(详细软件界面见软件实际操作) 二、传感器布点情况: 距离隧道口80米断面处,拱顶中间布设1个单点位移计测点;钢拱架上分别在中间和两肩45°方向布设一个表面应变计,共3个应变测点。 断面至隧道口采用一根485系统总线方式引至隧道口有移动信号处,采用亿拓远程自动化采集系统进行无线传输,数据可实时在监控中心观测,可设置报警值进行预警预报分析。 监测布点和系统组建示意图: 三、监测原始数据曲线 3.1位移计原始数据曲线:

3.2应变计原始数据曲线: 四、数据分析 3.1拱顶位移变形监测 3.1.1测点数据图表 表1距隧道口80米断面拱顶沉降累计变化表 自编号“位移计01”位移值单位(mm) 2014-3-12 2014-3-13 2014-3-162014-3-23 2014-3-24 2014-3-25 2014-3-26 0 0 0 2.4 2.5 2.5 2.5 2014-3-27 2014-3-28 2014-3-292014-3-30 2014-3-31 2014-4-1 2014-4-2 2.5 2.5 2.5 2.5 2.5 2.6 2.6 2014-4-3 2014-4-4 2014-4-5 2014-4-6 2.6 2.7 2.9 3.2

监控量测月报

安革连~琶布铁路隧道监控量测月报 (第1期) 单位:1#斜井工区 2014年1月22日

目录 一、本月施工情况概述 二、量测工作开展情况 1)量测项目 2)布点与观测 3)量测频率 三、数据统计与分析 四、总结

一、本月施工情况概述 开挖支护本月累计完成91.5米,部分里程段出现围岩破碎,掉块严重,如K0+266.965左侧局部出现滑层,现已经加强支护和量测观测频率。 二、量测工作开展情况 1)量测项目 拱顶下沉、斜距、斜距收敛。 2)布点与观测 目前掌子面围岩为Ⅲ级,按规范40米布设一组量测点,有时也根据围岩情况而及时布点。目前,观测采用莱卡全站仪TS02观测数据。3)量测频率 当位移、周边收敛、拱顶下沉量达到予测最终值的80~90%,收敛速度小于0.2mm/d,拱顶下沉速率小于0.15mm/d时,可认为围岩基本稳定。当位移~时间曲线出现反弯点时,同时支护开裂或掉块,此时尽快采取补强措施以防坍方。 按距开挖面距离确定的监控量测频率 按位移速度确定的监控量测频率

如果是由于基底下沉引起的,尽快仰拱封闭,如仍然下沉,在墙角处加设锚杆,复喷砼并在基底钻孔注浆加固; 如果是由于偏压引起的,复喷砼,加设锚杆; 如果是由于围岩压力引起的,可多次复喷并用锚杆加固围岩,补强初期支护。在下一循环施工时,修改支护参数,增强初期支护,同时增大观测频率;及时施作二次衬砌,必要时采用加强衬砌。 在浅埋地段有及膨胀性和挤压性围岩等情况下,采取监控量测分析判别。 表1 变形管理等级 注:U——实测位移值;U ——隧道的极限位移。

表2根据位移变化速率判断 注: v 为变形速率 表3根据位移速率变化趋势来判断 注:du 2/d 2t 为位移对时间的二阶导数,即位移速率变化。如下图示: 监控 测结束标准 根据收 敛速度别: 一般地段:收敛速度>5mm/d 时,围岩处于急剧变化状态,加强初期支护系统;收敛速度<0.2mm/d 时,拱部下沉速度小于0.15/d , U t 时态散点示意图

长大隧道超前地质预报及监控量测QC成果

长大隧道超前地质预报及监控量测QC成果 一、工程概况 1.1项目简述 温州绕城高速西南线工程(仰义至阁巷)第02标段,全长3.355公里,共设隧道1座:乌岩尖隧道,采用双洞六车道形式(上下行分离)。本标段隧道设置汇总表见下表。 本标段隧道设置汇总表 1.2隧道工程地质概况 乌岩尖隧道处于低山丘陵区,地面最高点225m左右,隧道设计洞顶高程49 ~30m。隧道进洞口处于沟谷中,地形坡度大,地势陡峭,洞口段有季节性溪流,水流不大,受流水作用,部分段中风化基岩裸露,较完整,呈大块状,进口段地质条件较好,围岩岩性有粉砂岩、细砂岩,属于硬质岩,抗风化能力较强,但该段隧道埋深较小,小于45m,受隧道埋深、风化及水文地质条件影响,围岩为Ⅳ~Ⅴ级;出洞口段处于丘陵山脊处,地形坡度较缓,围岩岩性有粉砂岩、细砂岩,岩质较坚硬,岩体较完整,属硬质岩,抗风化能力较强,出洞段工程地质条件较好,但该段隧道埋深一般较小,围岩以Ⅳ~Ⅴ级为主;隧道洞身段埋深一般在50 ~160m,其中发育一条节理密集带和霏细斑岩穿插其中,洞身段岩性一般为粉砂岩,属硬质岩,除节理密集带和霏细斑岩岩脉属于Ⅳ级围岩外,一般围岩稳定性较好,属于Ⅲ级。

二、QC小组概况

制表人:柳磊日期:2014年12月3日

三、监控量测作业 监控量测读取数据 洞内收敛测量

现场测量 拱顶沉降测量

四、选题理由及确定课题 1、本隧道属于长大公路隧道,设计为双向六车道,开挖断面大,不良地质情况较复杂,如何加强隧道施工过程中围岩的变形、沉降,确保隧道施工的安全极为重要的; 2、通过现场施工监控测量,及时有效提高隧道围岩险情预报,防止事故发生; 3、隧道施工量测是新奥法施工的重要环节,是反馈动态设计的重要依据,它关系到施工安全、结构稳定及工程造价等方面; 4、本工程工期紧,任务重,抓好围岩监控量测,指导隧道施工,以确保隧道安全施工是保证工程施工进度和质量的关键; 5、监控量测是温州绕城高速西南公司强力要求在每座隧道施工中实施,我项目部把围岩量测工作作为隧道施工的头等大事之一。 2013年11月1日项目部成立了QC小组,召开了第一次小组会议,确定了《加强隧道监控量测有效控制隧道施工安全》的课题,商讨如何提高围岩监控量测对隧道施工的指导作用。 五、现场调查 项目部管段内乌岩尖隧道在进洞施工时,洞顶、洞内均设置了观测点,对地表沉降、洞内水平收敛进行了观测。现场技术进行了观测,发现洞顶地表K8+290断面有一条长约6m,宽1~2mm的横向裂缝。 我们项目部及时组织工程部、安质部和项目部的各级技术质量管理人员及项目部QC小组开展了对管段内隧道开挖施工中存在的沉降、变形问题的QC攻关活动。通过现场施工调查,以及查阅相关施工技术资料后,经会讨论分析主要原因如下: 调查一:经QC小组调查,乌岩尖隧道洞口处于浅埋地段,围岩

试验检测继续教育答案隧道监控量测及控制标准(一)(二)(三)及参考答案

试题 第1题 新奥法是() A.一种施工方法 B.施工原则 C.矿山法 D.全断面施工法 答案:B 您的答案:B 题目分数:6 此题得分:6.0 批注: 第2题 隧道施工监控量测的必测项目之一是() A.地表下沉 B.锚杆轴力 C.围岩压力 D.围岩体内位移 答案:A 您的答案:A 题目分数:6 此题得分:6.0 批注: 第3题 隧道施工监控量测中,()的主要目的是了解隧道围岩的径向位移分布和松驰范围,优化锚杆参数,指导施工。 A.围岩周边位移量测 B.拱顶下沉量测 C.地表下沉量测 D.围岩内部位移量测 答案:D 您的答案:D 题目分数:6 此题得分:6.0 批注: 第4题 隧道周边收敛和拱顶下沉量测断面,一般间隔()布设一个断面。

A.10~60m B.5~60m C.5~50m D.10~50m 答案:C 您的答案:C 题目分数:6 此题得分:6.0 批注: 第5题 当周边收敛的位移速度≥5mm/d时,现场测量频率为() A.1次/7d B.1次/3d C.1次/d D.2-3次/d 答案:D 您的答案:D 题目分数:6 此题得分:6.0 批注: 第6题 隧道施工监控量测的任务是() A.确保安全 B.指导施工 C.修正设计 D.积累资料 E.提高效益 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:8 此题得分:8.0 批注: 第7题 隧道施工监控量测必测项目有() A.地表下沉 B.周边位移 C.拱顶下沉 D.钢支撑内力及外力

E.锚杆抗拔力 答案:A,B,C 您的答案:A,B,C 题目分数:8 此题得分:8.0 批注: 第8题 公路隧道施工规范规定二次衬砌的施作应在满足()时才能进行。 A.周边位移速率小于0.1~0.2mm/d B.拱顶下沉速率小于0.1~0.2mm/d C.已产生的各项位移已达到预计总位移量的80%~90% D.已产生的各项位移已达到预计总位移量的70%~80% E.各测试项目的位移速率明显收敛,围岩基本稳定 答案:A,B,C,E 您的答案:A,B,C,E 题目分数:8 此题得分:8.0 批注: 第9题 隧道施工监控量测的要求是() A.能快速埋设测点 B.每次量测数据所需时应尽可能短 C.测试元件应具有良好的防震、防冲击波能力 D.测试数据应准确可靠 E.测试元件在埋设后能长期有效工作,应有足够的精度 答案:A,B,C,D,E 您的答案:A,B,C,D,E 题目分数:8 此题得分:8.0 批注: 第10题 采用全站仪进行量测隧道周边位移时,对于全站仪的要求正确的是() A.测角精度一般为2″以内,测距精度为±(2mm+2ppm)以内 B.视准轴的仰角应保持在30°-60° C.前视点与后视点的距离应保持在50-100m D.需要与反光膜片联合使用 E.全站仪后视测点必须固定不动 答案:A,B,C,D,E

最新(地铁隧道)XXXX站-XXXX站区间监测方案教案资料

XX市及轨道交通XX号线 监控量测方案 编制: 审核: 批准: XX集团XX项目部 年月

目录 一、监测方案编制依据 (2) 二、工程概况 (2) 三、监测的目的和意义 (3) 四、信息化施工组织 (3) 五、施工监测设计 (4) 5.1、地表沉降监测 (4) 5.2、地表建筑物(构造物)沉降、位移、倾斜、裂缝监测 (6) 5.3、管线变形监测 (8) 5.4、隧道内管片沉降、收敛监测 (9) 5.5、东风渠、七里河交叉口过河监测 (9) 六、警戒值的确定及监测频率 (9) 七、人员设置及仪器配备 (10) 八、监测质量保证 (11) 九、监测成果报告 (11)

XX市及轨道交通XX号线体育中心站~博学路站隧道工程 监控量测方案 一、监测方案编制依据 1、XX市轨道交通XX号线XX标段设计图纸; 2、《地铁工程监控量测技术规程》DBI 1/490-2007 5、《地铁设计规范》GB50157-2003 6、《地下铁道、轻轨交通工程测量规范》GB50308-1999 7、《地下铁道工程施工及验收规范》GB50299-2003 8、《工程测量规范》(GB50026-2007) 9、《建筑基坑工程监测技术规范》GB50497-2009 10、《XX市轨道交通工程监控量测管理办法》; 二、工程概况 本工程为XX市轨道交通XX线一期工程土建施工第XX标段,包括一个车站(XX站)和两个区间段,区间段即XX站——XX站盾构区间段,XX站——XX段区间段(其间包括盾构区间、明挖区间)。 第XX合同段全长XXXX米,其中XXXX站长XXXX米,盾构区间长XXXX米,盾构段双线总长XXXX米,明挖区间长XXXX米。 XXXX站——XXXX站盾构区间段起止里程为,西起左线CK32+487.74(右CK32+487.74),东至CK34+698.25(CK34+698.25);XXXX站——车辆出入线段区间段,西起RCK0+056.152东至RCK2+962.0 ;XXXX站的起止里程为CK34+698.25至RCK0+056.152 。 其中XXXX站至XXXX区间工程区间长度约为XXXX米,联络通道三处,其中中间联络通道带有通风井。三处联络通道离始发井距离分别约为:490米、1309米、1869米。 线路平面包含两段圆曲线,曲率半径分别为350米和450米。竖曲线由21.4‰-2‰等坡度组成的V字型。 隧道盾构施工选用德国Herrenknecht公司生产的复合盾构机作为隧道掘进设备。该设

隧道监测

0 引言 河南省分水岭至南阳高速公路位于东秦岭伏牛山加里东造山带核部,地形、地质情况复杂。主线通过的地方多为高山、深谷和陡坡,桥隧相连,多处存在顺层、滑坡、坍塌和浅层软土等不良地质。该路全线分布着隧道5座,其中一座为小净距隧道,一座为单线隧道,其余为分离式双洞隧道。隧道建筑限界净高sm,限界净宽10.25m。隧道围岩由V、W、1类构成,其中岩性较差的V、W类围岩占全线隧道的大部分。 1 监控量测项目及仪器 1.1 量测项目的选定 本次监控量测项目选定根据《公路隧道施工技术规范》(JTJ042-94)的相关规定,在充分考虑各座隧道工程特点及围岩地质条件的基础上,并结合其他类似工程的监控量测经验,按照量测简便、结果可靠、成本低廉,同时便于施工单位采用等原则确定。 (1)必测项目 必测项目是为了在设计、施工过程中确保围岩稳定,并通过判断围岩的稳定性来指导设计、施工的经常性量测。此类量测通常测试方法简单,费用少,可靠性高,但对监视围岩稳定、指导设计施工却有巨大的作用。在本次量测任务中选择的必测项目有:地质和支护状况观察、周边位移、拱顶下沉。 (2) 选测项目 选测项目安装埋设比较复杂,量测项目较多、时间长、费用较大,但工程竣工后还可以进行长期观测。在本次量测任务中选择的选测项目有围岩体内位移(洞内设点)、二衬钢筋应力、孔隙水压力。 (3 )地质超前预报 工程实例表明,由于用于隧道施工图设计的地质勘探报告主要是从宏观方面对隧道的类别进行判定[3],因此,为了准确地评定围岩级别,继而调整支护参数和衬砌类别,同时对前方存在断层、溶洞等不良地质现象进行预报,提前做好过渡这些不良地质地段的工程措施,必须利用地质超前预报对掌子面前方地质状况进行施工现场全程勘察。在本次测量任务中将利用结果准确、操作简捷、使用灵活的地质雷达进行地质超前预报。 1.2 量测仪器的选定 在隧道监控量测中,仪器的选择决定着能否取得准确可靠的数据,甚至决定着监控工作能否顺利的完成。考虑本次所要监控隧道围岩均为硬岩,个别隧道施工环境较差,雨季有滴状出水,且各工地相距较远,量测工作量大等特点,在仪器选择上首先考虑功能与可靠性,其次为易操作性和便携性,最后兼顾性价比,最终选择仪器见表1。 2 测点布置及量测方法 对量测测点的科学布置是监控测量方案设计的又一关键问题。对此应重点监测围岩质量差或局部不稳定块体、节理或地下水发育地段,以及特殊工程部位(如洞口处)。监测点的安装埋设应尽可能靠近隧道掌子面,以便尽可能完整获得围岩开挖后初期力学形态变化和变形情况。基于以上某高速公路测点布置及量测方法如下。 2.1 地质和支护状况观察 地质和支护状况观察分为开挖工作面观察和已施工区段观察2部分。开挖工作面观察在每次开挖后进行,内容包括节理裂隙发育情况、工作面稳定状态、风化变质情况、断层分布、初期支护效果及涌水情况等。 已施工区段观察每天进行一次,内容包括喷射混凝土、锚杆、钢架的状况。每次观察除进行相关的记录外,均进行数码拍照,并及时整理成档。 2.2 拱顶下沉量测 拱顶下沉量测是在隧道开挖毛洞的拱顶及轴线左右各2m处设置3个带挂钩的膨胀螺钉作为测桩;埋设前先用小型钻机在待测部位成孔,然后将膨胀螺钉拧紧即可。对于稳定性较差的围岩,测桩可在锚喷支护后布置,量测时可借用钢尺式收敛计及附带挂钩挂在测点上稳定后用高精度水准仪量测(图1)

测量监控量测管理制度

测量、监控量测各项管理制度

目录 测量、监控量测各项管理制度 (1) 测量室管理制度 (4) 一、人员配备 (4) 二、测量主管工程师岗位职责 (4) 三、测量员岗位职责 (5) 四、测量室岗位工作职责 (5) 五、测量复核制度 (6) 六、测量资料管理制度 (7) 七、测量仪器设备使用与管理制度 (8) 二)仪器的调拨及购置 (8) 三)仪器设备的使用与管理 (8) 八、测量安全保障制度 (10) 监控量测室管理制度 (12) 一、监控量测室工作岗位职责 (12) 二、监测人员岗位职责 (13) 1、项目负责人岗位职责 (13) 2、技术负责人岗位职责 (13) 3、现场监测组长和巡视组长岗位职责 (14) 4、监控量测主管岗位职责 (14)

三、监测人员操作规定 (14) 四、监控量测内业工作技术要求 (15) 五、资料分析过程质量控制制度 (16) 六、监控量测审核和审定制度 (16) 七、质量控制制度和检查措施 (16) 八、监控量测信息报送与反馈制度 (20) 九、安全保证制度 (21)

测量室管理制度 工程测量工作是工程建设的重要环节,是技术管理工作的重要组成部分。它既是工程建设施工阶段的重要技术基础工作,又为施工和运营安全提供必要的资料和技术依据。 为了加强在公司范围所属项目、工程公司工程测量管理,搞好工程测量,提高工程测量水平,保证工程质量,加快施工进度,提高经济效益,使工程测量规范化、制度化,防止测量事故发生,更好地为施工生产服务,在测量成果交接、复测、施工过程检查等各个工程测量管理环节上特制定如下制度: 一、人员配备 本项目设测量主管工程师一名,具体负责对工程各部位的测量控制、放样数据的计算复核;设观测技师两名,分别负责现场现场施工放样、换位复核和相应内业资料复核整理; 设专职测量工三名,协助现场放样。 二、测量主管工程师岗位职责 1、在项目总工程师指导下负责对所承建工程的测量日常管理工作。 2、负责指导、监督、检查施工项目的测量工作。 3、认真审核设计图纸与建设单位移交的测量点位、数据,根据设计与施工要求编制可行性施工测量、监控量测方案;经项目总工程师审核后,上报监理总工程师审批。 4、按照工程部工作计划展开测量工作,工作认真严谨,对测量计算、放样结果负责。 5、负责对测量、监控量测仪器的定期检查鉴定和建议维修和购置,建立人员资质和建立人员资质、仪器设备校验台帐 5、负责组织本项目部的交接桩、复测和线路控制测量。 6、负责测量技术总结以及测量新技术、新设备的研究和推广应用。 7、参与项目部组织的质量检查、工程事故处理等技术管理工作,并提供必要的测量数据。 8、负责检查各分部(工区)的测量人员上岗、设备配备、技术资料的管理等工作。 9、配合和接受测量监理工作,按监理要求提交相关测量资料。

隧道监控量测方案完整版

隧道监控量测方案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

四川省雅安至康定高速公路工程项目 C17合同段 隧道监控量测实施方案 中铁隧道股份有限公司 雅康高速公路C17合同段项目经理部 二0一四年九月十五日

目录

一、编制依据 1、《工程测量规范》(GB 50026-2007) 2、《公路工程技术标准》JTG B01-2003 2、《公路隧道施工技术规范》(JTG F60-2009) 4、隧道监控施工技术规范 3、招投标文件、设计图纸等有关资料。 二、编制目的 现场监控量测是斜井施工管理的重要组成部分,它不仅能指导施工,预报险情,确保安全,而且通过现场监测获得围岩动态的信息(数据),为修正和确定初期支护参数及混凝土衬砌支护时间提供信息依据,为完善斜井工程设计与指导施工提供可靠的足够的数据。 三、工程概况 雅安至康定高速公路项目路基土建工程施工C17标段位于四川省西部二郎麓、甘孜藏族自治州东南部,界于邛崃山脉与大雪山脉之间,大渡河由北向南纵贯全境。川藏公路穿越东北部,是进藏出川的咽喉要道,素有之称。 本合同段横跨泸定县烹坝乡喇嘛寺村与黄草坪村、康定县姑咱镇大杠村与上瓦斯村,涉及2县2乡镇4村,起讫桩号为 K108+450~K118+370,线路全长9.92km。本标段工程主要包括路基工程:1段长283.5米;桥梁工程:3座总长522.5米;隧道工程:3座隧道,其中大坪隧道长3021米,最大埋深863m;大杠山隧道长

4799米,最大埋深669米,龙进隧道长1287.5米,最大埋深 328m;涵洞工程:钢筋混凝土盖板涵,33m+12.52m两处。 四、监控量测管理 1、成立隧道现场监控量测小组,受项目总工领导并配齐必须的检测仪器、设备、用品,明确工作职责和标准,承担量测任务。 2、量测组负责测点埋设、日常量测、数据处理和仪器设备的保养维修工作,并及时将量测信息反馈于施工和设计。 3、现场监控量测按制定的量测工作计划认真组织实施,并与其它施工环节紧密配合,不间断的贯穿于整个施工过程中。 4、各预埋测点埋设要牢固可靠,易于识别并妥善保护,不能任意撤换和避免破坏。 5、按现场监控量测计划,在做好现场量测工作的同时,及时分析整理内业资料并分类归档,按规范要求做好量测竣工文件。 6、监控量测组织机构框图 图一监控量测组织机构图 五、监控量测技术要求 1.量测数据必须准确可靠。

地铁隧道结构变形监测控制网及其数据处理

地铁隧道结构变形监测控制网及其数据处理 发表时间:2017-10-30T09:25:06.667Z 来源:《基层建设》2017年第20期作者:汪英宏王守横 [导读] 摘要:地铁隧道结构复杂,在长期使用过程中会受到各种因素的影响,因此,做好变形监测非常重要。 上海市机械施工集团有限公司大连地铁216标段项目经理部辽宁大连 116037 摘要:地铁隧道结构复杂,在长期使用过程中会受到各种因素的影响,因此,做好变形监测非常重要。本文将进行分析,以供参考。关键词:地铁隧道;变形监测;原因;措施 1.前言 对于地铁隧道结构变形的监测,不能采用传统的变形监测控制网布设方法,在施工过程中根据施工要求对工艺参数进行控制,为保证结果的准确度,必须进行基准点的稳定性检验。 2.地铁隧道变形原因 2.1轨道结构变形 地铁隧道变形包括轨道结构变形和隧道结构变形两种形式。其中轨道结构变形的主要原因是列车荷载长期对轨道产生反复作用,使轨道发生几何偏差进而影响轨道的平整性和顺畅性。除列车荷载作用外,隧道周边建设施工的卸载、负荷、加载也会引起道床的不均匀沉降。这种沉降同样会影响轨道的平整度及顺畅。对于铁路来说,地铁运行车辆重量较轻、速度低,轨道和车辆行走部分的变形一般不会引起地铁事故,但轨道变形造成的不平顺可能会导致列车发生不正常振动。这会降低列车运行的稳定性,减少用户的舒适度,更重要的是会加快轨道结构部件的损坏速度,从而间接影响列车的行车安全。 2.2隧道结构变形 地铁隧道结构变形发生在施工阶段和运营阶段,在施工阶段,地铁暗挖隧道工程是在岩土体内部进行的。在开挖过程中对地下岩土的扰动是不可避免的,这就破坏了地下岩土体原有的平衡条件。隧道开挖时地层初期受到的影响较小,发生的也是微型形变,随着开挖的不断深入,变形会极剧增大然后又趋于缓慢。因此,在隧道开挖过程中应对隧道的拱顶下沉量和地表的下沉量进行监测,以便于对隧道结构的稳定性和开挖工程的安全性提供分析依据。地铁隧道开挖引起的地层变形是一个漫长而缓慢的过程,无论是浅埋暗挖法还是盾构法在工程完工投入使用后都会不同程度的发生整体下沉的现象,尤其是工程处于软土层中时下沉现象更加明显。 3.地铁隧道变形监测技术 3.1传统监测技术 传统监测技术是利用水准测量仪的检测功能对隧道结构的变形情况进行监测,主要对隧道变形区域的断面进行监测。该法在实际使用过程中存在一系列不足: 首先,该法无法使用先进的远程测量技术。在监测过程中不得不打断监测区内的列车运行。 其次,地铁隧道内可视性差,空间受到限制,运行环境复杂,给监测的安全性和监测质量造成了不利影响。 最后,监测点数量受限,若设置监测点过多,不仅会增大工作量还会延长监测周期的长度,无法准确的反映出变形的真实情况;若设置监测点过少,无法根据有限的数据得到较为精准的变形趋势,这对后期的隧道结构的变形负荷分析是极为不利的。传统的监测技术已经无法适应现代社会的需求新型的监测技术急需被研发使用。 3.2高程监测控制网 在地铁进行跨河水准测量、测量机器人三角高程法测量、GPS 测高三种方法进行施测。 3.2.1跨河水准测量跨河水准观测采用威特 N3 及配套的铟瓦水准尺,施测前仪器 i 角检校为+1.2s。跨河水准测量严格按《国家一、二等水准测量规范》要求选定与布设场地,使仪器及标尺点构成平行四边形。作业方法、视线距水面的高度、时间段数、测回数、组数及仪器检查等按规范要求执行。按二等跨河水准观测精度施测 8个测回,高差中数中误差为±1.48mm。 3.2.2 测量机器人三角高程法测量采用徕卡 TCA2003 机器人完成,在 b1、b2 设置仪器,对向观测 12 个测回,测回间隔 5min。每测回量取 2 次仪高和棱镜高,量取至毫米。高差中数中误差为±1.00mm。 3.2.3 GPS 高程测量b1、b2大地四边形进行 GPS 联测,GPS 网解算的 b1、b2大地高的高差为-0.3403。 3.2.4 三种方法的成果比较高程监测控制网采用跨河水准测量、测量机器人三角高程法测量、GPS 测高三种方法进行施测结果进行对比。 4.基于组合后验方差检验法的灵敏度 4.1灵敏度的概念及其目的 通常情况下对基准点的稳定性进行判断是在测量结束后的内业处理过程中,删除一些不稳定的点带来人力物力和时间的浪费,在当今世界寻求的应是高效节能的方法,若是在观测现场测量人员或者测量机器人根据观测数据能感知到基准点的不稳定性,就可以给外业监测提供指导,提前对基准点进行筛选,甚至给基准网的布设提供意见,使得地铁隧道结构变形监测网和后期数据处理得到优化。 然而对同一个点的多次观测结果存在差异可能是误差影响也可能是基准点不稳定引起,要是知道到底出现多大的变动时可以认为是基准点发生了移动,那进行现场监测时就能对基准点的稳定性进行判断,不需要等到进行完内业处理才能得到答案。当观测值出现一定程度变化的时候,这种方法就能够有效的检测出结果。 4.2组合后验方差检验法灵敏度的探测 为模拟基准点的变动,对观测数据进行人为的改动。从众多基准点中任意选取3个,分别对方位角、天顶距和距离三个观测量进行测试,当角度偏差大于3秒小于6秒时对该点的稳定性应持怀疑态度,而大于6秒时该点稳定性就一定不可靠,当距离的测量偏差大于5mm时该点的稳定性同样不可靠。计算所得的组合后验方差检验法的灵敏度在实际工程实例中可以作为重要的比较参考值,通过比较监测数值间的差值,实现监测现场简单、快速判定基准点的稳定性。 5.隧道变形监控的系统建立 5.1系统数据库结构 变形监测数据库用于存储监测点属性、监测成果等数据信息,是数据管理系统的基础。因此,合理的数据库结构不仅是数据库设计的

相关文档
最新文档