变压器基础知识
变压器设计基础知识

变压器设计基础知识变压器基础知识第一章变压器的概述一. 变压器的用途在各种电气设备中,往往需要不同的电压电源。
如我们日常生活的照明用电,家用电器的电压一般都为220V,而各种动力的电压是380V,而线路的电压一般为:6、10、35、110、220、500KV的电压。
这些称为供电系统。
3KV以上的称为高压系统。
现代化的工业,广泛采用了电力为能源。
电能是由水电站、发电厂的发电机转化来的,发电机所发送来的电力根据输电距离将按照不同的电压等级传输出去,这种传输需一种特殊的专门设备。
这种设备就是我们熟悉的电力变压器。
变压器在输配电系统中有着很重要的地位,要求它能安全可靠的运行。
当变压器出现故障或损坏,将造成大面积的停电。
随着技术的发展,工农业生产需要,变压器在很多的领域也广泛的应用。
如,根据需要配套的冶炼用的电炉变压器、电解化工用的整流电压器、铁路电力机车用的牵引变压器……等很多。
二. 变压器的分类按用途分类:2.1电力变压器:这是目前工农业生产上广泛使用的变压器,它主要用途是为了输配电系统上使用的变压器。
目前电力变压器形成了系列,已经大批量生产。
按容量和电压等级分成以下类别:Ⅰ、Ⅱ类 10~630 KVA Ⅲ类 800~6300 KVA Ⅳ类8000~63000 KVA Ⅴ类 63000 KVA以上按电压所用和发电厂的用途不同可分为:1. 降压变压器;2. 升压变压器;3. 其中低压为400伏的降压变压器称为配电变压器。
电能的输配电过程首先发电厂发电机发出电能,电压一般是6.3或10.5KV,这样低的电压要输送几百公里以外的地区是不可能的。
所以要将电压升高到38.5、121、242、500KV以后再输出去。
这样高的电压到供电区域后还要经过一次变电所,(把电压降为38.5或110KV)和二次变电所(降为10.5或6.3KV)变压,再把电能直接送到用户区,经过附近的配电变压器降压为(一般为400V)以供工厂或住户使用。
箱式变压器的基础知识

箱式变压器的基础知识目录1. 箱式变压器的概述 (3)1.1 箱式变压器的定义 (3)1.2 箱式变压器的应用 (4)1.3 箱式变压器的主要组成部分 (5)2. 箱式变压器的设计特点 (5)2.1 结构设计 (7)2.2 材料选择 (8)2.3 安全性能 (9)3. 箱式变压器的工作原理 (10)3.1 交流电的传输 (11)3.2 变压原理 (13)3.3 变比和电压转换 (13)4. 箱式变压器的种类 (14)4.1 按电压等级分类 (15)4.2 按容量大小分类 (16)4.3 按冷却方式分类 (17)5. 箱式变压器的制造工艺 (18)5.1 线圈绕制 (19)5.2 铁心制造 (21)5.3 绝缘材料的应用 (22)6. 箱式变压器的安装与调试 (24)6.1 环境要求 (26)6.2 安装步骤 (27)6.3 调试过程 (28)7. 箱式变压器的维护与保养 (30)7.1 日常维护 (31)7.2 定期检修 (33)7.3 故障处理 (34)8. 箱式变压器的安全事项 (35)8.1 安全操作规程 (36)8.2 防护措施 (38)8.3 紧急情况下处理 (39)9. 箱式变压器的发展趋势 (41)9.1 智能化发展 (42)9.2 节能技术应用 (43)9.3 环保要求 (44)10. 箱式变压器案例分析 (46)10.1 项目概况 (47)10.2 设计考量 (48)10.3 实施结果 (49)11. 箱式变压器常见问题及解决方案 (50)11.1 常见问题识别 (51)11.2 解决方案介绍 (52)11.3 案例研究 (55)12. 箱式变压器国际标准与认证 (56)13. 箱式变压器国内外市场分析 (58)13.1 市场现状 (60)13.2 发展趋势 (61)13.3 竞争格局 (62)1. 箱式变压器的概述箱式变压器,顾名思义,是一种采用箱式结构的变压器。
它以其紧凑、便捷和高效的特性,在电力系统中占据了重要的地位。
高频变压器基础理论知识

15、为什么变压器不能过负荷运行?过负荷运行是指变压器运行时超过了铭牌上规定的电流值。
过负荷分为正常过负荷和事故过负荷两种,前者是指在正常供电情况下,用户用电量增加而引起的,它往往使变压器温度升高,促使变压器绝缘老化,降低使用寿命,所以不允许变压器过负荷运行。
特殊情况下变压器短时间内的过负荷运行,也不能超过额定负荷的30%(冬季),在夏季不得超过15%。
对后者,事故过负荷与允许过的时间要求见下表。
事故过负荷允许时间16、变压器在运行中应该做哪几种测试?为了保证调压器能够正常运行,应经常进行下列几项测试;(1)温度测试。
变压器运行状态是不是正常,温度的高低是很重要的。
规程规定上层油温不得超过850C(即温升550C)。
一般变压器都装有专用温度测定装置。
(2)负荷测定。
为了提高变压器的利用率,减少电能的损失,在变压器运行中,必须测定变压器真正能承担的供电能力。
测定工作通常在每一季节用电蜂屯蚁聚时期进行,用钳形电流表直接测定。
电流值应为变压器额定电流的70~80%,超过时说明过负荷,应立即调整。
(3)电压测定。
规程要求电压变动范围应在额定电压±5%以内。
如果超过这一范围,应采用分接头进行调整,使电压达到规定范围。
一般用电压表分别测量次级线圈端电压和未端用户的端电压。
(4)绝缘电阻测定。
为了使变压器始终处于正常运行状态,必须进行绝缘电阻的测定,以防绝缘老化和发生事故。
测定时应设法使变压器停止运行,利用摇表测定变压器绝缘电阻值,要求所测电阻不低于以前所测值的70%,选用摇表时,低压线圈可采用500伏电压等级的。
17、什么是变压器的极性?在实用中有何作用?变压器极性是用来标志在同一时刻初级绕组的线圈端头与次级绕组的线圈端头彼此电位的相对关系。
因为电动势的大小与方向随时变化,所以在某一时刻,初、次级两线圈必定会出现同时为高电位的两个端头,和同时为低电位的两个端头,这种同时刻为高的对应端叫变压器的同极性端。
高三物理变压器知识点总结

高三物理变压器知识点总结引言:变压器是我们在物理学习中经常接触到的一个重要装置,它对我们的生活和工业生产起着至关重要的作用。
在高三物理学习中,我们学习了关于变压器的相关知识,并通过实验和理论学习深入了解了其原理和应用。
本文将对高三物理学习中涉及的变压器知识点进行总结,旨在帮助学生们回顾和巩固这一重要内容。
一、变压器的基本原理变压器是利用电磁感应原理工作的,它由两个共通磁路的线圈(即主线圈和副线圈)组成。
通过交变电压在主线圈中产生的变化磁场,从而诱导出副线圈中的电流。
根据电磁感应定律,变压器中的电压变换比等于主副线圈匝数的比值。
这一基本原理是理解变压器工作机制的基础。
二、变压器的输入和输出在变压器中,输入电压和输出电压分别对应于主线圈和副线圈中的电压大小。
根据变压器原理,当副线圈匝数大于主线圈匝数时,输出电压将大于输入电压,实现电压升压;反之,当副线圈匝数小于主线圈匝数时,输出电压将小于输入电压,实现电压降压。
这个电压变换比可以通过公式 V2/V1=N2/N1 进行计算。
三、变压器的效率和功率变压器的效率是指输出功率与输入功率之比。
在实际应用中,变压器除了要满足电压变换的要求外,还需要保持尽可能高的效率。
变压器的功率损耗主要包括铜损耗和磁化损耗。
铜损耗是由于主、副线圈中的电流通过线圈的电阻而产生的热量,主要由线圈的材料和截面积决定。
磁化损耗是由于变压器的铁芯中的磁化和去磁化过程中产生的能量损耗,主要与铁芯的材料和频率有关。
四、变压器的应用变压器在电力输送和电子设备中广泛应用。
在电力输送中,变压器将发电厂产生的高压电流转换为输送距离较远时所需的低压电流,从而减小了线路损耗。
在家庭和工业用电中,变压器将电网提供的高电压转换为适合电器使用的低电压,以保障用电安全。
此外,变压器还被用于音频设备、计算机、电视机等电子产品中,用于电源的稳压和隔离等功能。
结论:高三物理学习中关于变压器的知识点虽然简单,但在实际应用中却有着广泛的重要性。
变压器基础知识培训

变压器基础知识培训变压器是电力系统中常见且重要的电气设备,承担着改变电压、输配电、节能减排等重要任务。
为了更好地了解和应用变压器,下面将对变压器的基础知识进行培训。
一、什么是变压器变压器是一种通过电磁感应原理,将交流电能从一个电路传输到另一个电路的静态电气设备。
它由两个或多个线圈(一般为铜线绕制)和铁芯组成,其中一个线圈为输入侧,另一个线圈为输出侧。
通过变压器,可以实现电压的升高或降低。
二、变压器的工作原理变压器的工作原理基于电磁感应现象。
当输入端通入交流电流时,通过线圈产生的磁场会在铁芯中形成磁通。
磁通的变化又会诱导出输出线圈中的电动势,进而产生输出电流。
变压器工作时,输入和输出的电能通过铁芯以电磁能量的形式进行传递。
三、变压器的结构变压器的主要组成部分包括铁芯、线圈和外壳。
铁芯通常由层叠的硅钢片组成,其目的是增加磁阻,从而减小铁芯的功率损耗。
线圈则是由导线绕制而成,一般采用铜线,以减小线圈的电阻和电能损耗。
外壳则是保护变压器内部零部件,并使其具有结构完整性和耐腐蚀性。
四、变压器的类型根据使用场合和用途的不同,变压器可以分为多种类型,包括配电变压器、电力变压器、自耦变压器、隔离变压器等。
配电变压器主要用于城市或工业区的低压电网中,将高压电能转换为低压供给用户;电力变压器通常用于电力系统中的发电厂、变电站等,起到输电、分配和传输电能的作用。
五、变压器的额定容量和参数变压器的额定容量和参数是指变压器设计和制造时的设计工作条件和技术规格。
额定容量表示变压器设计能够正常运行的最大容量,一般以千伏安(KVA)为单位。
额定电压则是指输入侧和输出侧的额定电压值。
此外,变压器还具有负载损耗、空载损耗、短路阻抗等参数,这些参数直接影响着变压器的运行效率和质量。
六、变压器的保护和维护为了保障变压器的正常运行和延长使用寿命,必须进行相应的保护和维护措施。
主要的保护装置包括过流保护、过压保护、温度保护等,这些装置可以监测变压器的工作状态,并在故障发生时采取相应的措施。
高中变压器知识点总结归纳

高中变压器知识点总结归纳一、变压器的基本原理1. 变压器的基本原理是利用电磁感应的原理,通过交变电流在原线圈中产生交变磁通量,从而诱导出另一线圈中的感应电动势。
这种原理使得变压器能够改变交流电的电压大小。
2. 变压器的工作原理是利用两个线圈通过磁感应耦合,在输入端施加交流电压时,原线圈中产生交变磁场,从而诱导出另一线圈中的感应电动势,使得输出端产生相应的交流电压。
3. 变压器的主要作用是改变交流电的电压大小,可以实现升压、降压或绝缘隔离等功能。
因此,变压器被广泛应用于工业、家用、电力系统等领域。
二、变压器的结构和工作原理1. 变压器的结构一般包括铁芯、原线圈和次线圈三部分。
铁芯用于增加磁通量,从而提高磁感应强度;原线圈用于输入电压,次线圈用于输出电压。
2. 变压器的工作原理是利用交变电流在原线圈中产生交变磁通量,从而诱导出另一线圈中的感应电动势,使得输出端产生相应的交流电压。
这样就实现了电压的变换和传递。
3. 变压器的工作原理是基于电磁感应定律和能量守恒定律的基础上,通过电磁感应耦合的原理将输入电能传递到输出端,实现了电压的升降变换。
三、变压器的类型和应用1. 按用途分类,变压器可以分为电力变压器和工业变压器。
电力变压器用于电力系统中的升压、降压和分接等功能,而工业变压器用于电动机驱动、焊接、充电等工业领域。
2. 按结构分类,变压器可以分为壳型变压器和干式变压器。
壳型变压器是常见的箱体结构,内部填充着绝缘油,适用于户外安装;而干式变压器则不需要填充绝缘油,适用于室内安装。
3. 在实际应用中,变压器被广泛应用于工业、家用、电力系统等领域,用于升压、降压、绝缘隔离等功能。
其主要作用是实现了电能的传递和变换,保障了电力系统的正常运行。
四、变压器的参数和性能1. 变压器的参数包括额定功率、额定电压、额定电流、变比、短路阻抗等。
这些参数是变压器设计和选型的重要参考依据,也是变压器性能的关键指标。
2. 变压器的性能表现为效率、损耗、稳定性等方面。
变压器的基础知识

3.额定电压:变压器长时间运行所能承受的工作电压。 4.额定电流:变压器在额定容量下,允许长期通过的工作电流。 5.空载损耗:变压器在二次开路、一次侧施加额定电压时,变压器铁芯所产
生的有功损耗。
6.负载损耗:将变压器的二次绕组短路,流经一次绕组的电流为额定电流时, 变压器绕组所消耗的有功功率。
变压器的基础知识
变压器(Transformer)
• 为什么要使用变压器,变压器是用在哪里的? • 为什么电网分为很多电压等级? • 为什么使用交流电才能变压? • 为什么要变压?怎么变? • 『变压』的原理为何?主要用到的定律是什么? • 变压器的构造是什么?
。。。。。。
目录
主要内容
变压器的历史 变压器的原理 变压器的分类 变压器的结构 变压器检修的基本知识
相数(D单相;S三相)
冷却方式(J-油浸自冷,亦可 不标;G-干式空气自冷;G-干 式浇注绝缘;F-油浸风冷;S油浸水冷)
特殊使用环境代号(一般不 标;TH-湿热;TA-干热)
高压绕组的额定电压等级(kV) 额定容量(kVA) 设计序号 调压方铜线不标;L-铝线)
变压器的历史
1831年,法拉第感应定律
N
d dt
感应电动势 磁通量变化
法拉第 Faraday(1791~1867)
史上最早的变压器
法拉第环(第一个变压器)
1831年8月29日,法拉第利用 一个直径6寸的铁环,外面绕着 二个铜线圈,其中一个线圈的 一端接到伏特电池,另一个线 圈则接到电流计。当电池一通 电流,电流计上也马上出现短 暂反方向的电流。这个著名的 实验就是史上第一个变压器。
高中物理变压器知识点

高中物理变压器知识点在高中物理中,变压器是一个非常重要的知识点。
它在电能的传输和转换中起着关键作用,对于理解电磁学和实际生活中的电力应用具有重要意义。
首先,我们来了解一下变压器的基本构造。
变压器主要由两个相互绝缘且绕在同一个铁芯上的线圈组成,这两个线圈分别称为初级线圈(也叫原线圈)和次级线圈(也叫副线圈)。
铁芯的作用是增强线圈之间的磁耦合,提高能量传输效率。
变压器的工作原理基于电磁感应现象。
当初级线圈中通有交变电流时,它会产生一个交变的磁场。
这个交变磁场会穿过铁芯,并在次级线圈中产生感应电动势。
如果次级线圈是闭合的,就会有感应电流产生。
变压器的基本规律是电压与匝数成正比,电流与匝数成反比。
也就是说,初级线圈和次级线圈的电压之比等于它们的匝数之比,即\(U_1/U_2 = N_1/N_2\);初级线圈和次级线圈的电流之比等于它们匝数的反比,即\(I_1/I_2 = N_2/N_1\)。
这里要注意的是,变压器只能改变交流电压和电流,不能改变直流电压和电流。
这是因为直流电流不会产生交变的磁场,也就无法在次级线圈中产生感应电动势。
在实际应用中,变压器有多种类型。
常见的有升压变压器和降压变压器。
升压变压器用于将较低的电压升高,比如在电力输送中,发电厂发出的电压通常较低,需要通过升压变压器将电压升高,以减少电能在传输过程中的损耗。
降压变压器则用于将较高的电压降低,以适应各种电器设备的工作电压需求,比如我们家庭用电就是通过降压变压器将高压电降低为 220 伏。
变压器的效率也是一个重要的概念。
变压器的效率等于输出功率与输入功率的比值,通常情况下,理想变压器的效率可以认为是 100%,但实际变压器由于存在铁芯损耗、铜损等,效率会低于 100%。
在解题时,我们经常会遇到关于变压器的计算问题。
比如,已知初级线圈的电压、匝数和次级线圈的匝数,求次级线圈的电压;或者已知初级线圈的电流、匝数和次级线圈的匝数,求次级线圈的电流。
变压器基础知识

并在铁芯中产生与U1同频率的交变主磁通 m ,主磁通
同时链绕原、副绕组,根据电磁感应定律,会在原、
副绕组中产生感应电势E1、E2,副边在E2的作用下产 生负载电流 I 2 ,向负载输出电能。、变压器的作用
升高电压把电能送到用电地区,降低电压为各级用户 使用,满足用电需要。 在电力系统传送电能的过程中,必然会产生电压和功 率两部分损耗,在输送同一功率时电压损耗与电压成 反比,功率损耗与电压的平方成反比。利用变压器升 压,减少送电损失。
1.温度和温升
变压器运行时各部件的温度是不同的,绕组温度最高,铁芯次 之,变压器油的温度最低。为了便于监视变压器各部件的温 度,规定以上层油温为允许温度。
变压器的允许温度主要决定于绕组的绝缘材料。由于我国大部 分采用的是A级绝缘材料(浸渍处理过的有机材料,如纸、棉 纱、木材等)。其允许最高温度为105℃,由于绕组的平均温 度一般比油温高10 ℃,同时防止油质劣化,所以规定变压器 上层油温最高不超过95 ℃。变压器的温度与周围环境温度的 差称为温升。我国规定周围环境最高温度为40 ℃。在周围环 境为40 ℃时,绕组允许温升为65 ℃ ,而上层油温则为55 ℃ 。所以变压器在温度及温升的允许值内,可保证变压器长期 安全运行。
额定频率fN 指工业用电频率,我国规定为50Hz。
15
2021/6/16
各量之间关系 变压器的额定容量、额定电压、额定电流之间
的关系为: 单相变压器
SNU 1N I1NU 2N I2N (1-5)
三相变压器
SN3 U 1 N I1N3 U 2N I2N (1-6)
16
变压器运行
2021/6/16
10
2021/6/16
主要结构6 高、低压套管 变压器内部的高、低压引线时经绝缘套管引至 油箱外部,它是起着固定引线和对地绝缘的作 用。 套管由带电部分和绝缘部分组成。带电部分包 括导电杆、导电管、铜排。绝缘部分分为外绝 缘和内绝缘。外绝缘为瓷管,内绝缘为变压器 油、附加绝缘和电容性绝缘。
变压器基础知识培训课件

变压器的负载和效率
负载
变压器的负载是指输出功率和额定功率之间的比值, 影响变压器的工作效率和发热等问题。
效率
变压器的效率是指输出功率和输入功率之间的比值, 通常高于90%。影响效率的因素包括工作温度、铁 心和绕组材料等。
变压器的损耗和短路测试
1 损耗
变压器的损耗主要包括铁损和铜损,需要考 虑到输出功率和功率因数等因素。开发低功 耗和节能的变压器是行业的重要趋势。
变压器的核心材料和绕组
核心材料
变压器的核心材料主要是硅钢片,通常采用多层剪裁和涂漆处理,以降低磁通密度、损耗和 噪音。
绕组
变压器的绕组由导线和绝缘材料构成,通常采用铜线或铝线制成。根据功率和电流的不同要 求,可以采用不同的线径和匝数设计。
匝数比
匝数比是指变压器的输入匝数和输出匝数之间的比值,影响变换输出的电压和电流。
检修
针对不同的故障类型和维护 工作,需要进行相应的检修 和修理,以保证变压器的正 常运行和服务时间。
变压器的串联和并联连接
串联连接
串联连接是指将两个或多个变压器按照一定的原则 连接起来,以实现更高的变换比例和输出电压等需 求。
并联连接
并联连接是指将两个或多个变压器按照一定的原则 并列连接,以实现更高的变压器容量和电流等需求。
变压器的原理和结构
1
原理
变压器是基于电磁感应原理工作的,当电流在绕组中变化时,会产生磁场,从而 诱导出电动势。
2
结构
变压器主要包括铁心、绕组、冷却系统、绝缘材料等,并根据功率和电压等特性 进行设计和制造。
3
工作原理
通过输入不同的电压和电流,变压器可以实现变换输出电压和电流的功能,并在 电力输送和电器设备中发挥重要作用。
主变压器基础知识

铁心(单相三柱)
铁心(三相五柱)
电抗器铁心
(单相三柱)
(单相四柱)
二片一叠
二片一叠六级搭接
除了使用高性能的硅钢片之外,改进硅钢片的搭 接结构也能降低空载损耗。最有效的搭接是步进式搭 接。利用这种方式,不仅能减少损耗,还能降低噪音 和铁芯的过热点温度。
ZZDFPZ-340800/500-800 换流变压器拉板、夹件模 型、漏磁、涡流计算
纠结连续式线圈内屏蔽连续式线圈饼式局部全波冲击电压分布计算高压绕组低压绕组绕组漏磁分布计算漏磁通分布图磁场强度分布图器身绝缘是主绝缘是线圈到接地部分铁心和油箱的绝缘主要是端部绝缘的设计线圈对其他线圈的绝缘同相和相间的设计
变压器(电抗器) 基础知识
华能河北清洁能源分公司 涿鹿风电场
变压器 变压器是一种静止的电气设备,它利用电磁感 应作用将一种电压、电流的电能转换成同频率 的另外一种电压、电流的电能。 电抗器 由于其电感而在电路或电力系统中使用的电器。
总装配
总装配
总装配
变压器和电抗器 的结构主要由六大部分组成
变压器铁心设计
铁心是变压器的磁路,由铁心叠片、绝 缘件和铁心结构件等组成。为使不同绕组能 感应出和匝数成正比的电压,需要绕组内有 高导磁率的材料制造的铁心,尽量使全部磁 通在铁心内和两个绕组耦合。铁心又是安装 线圈的骨架,对于变压器的电磁性能、机械 强度和变压器的噪声是极为重要的部件。
变压器线圈
线圈是变压器变换和输送电能的中枢。 要保证变压器长期安全可靠地运行,对变 压器线圈,必须保证以下基本要求: 一、电气强度(长期工作电压、大气过电压、
操作过电压、暂态过电压作用下不损坏。)
二、耐热强度(使用寿命长和热稳定性好) 三、机械强度(短路电动力作用下不损坏) 四、技术性能(重量轻、损耗小、制造简单。)
变压器电感基础知识介绍

变压器电感基础知识介绍变压器是电能的传递装置,它可以通过电磁感应的方式将一种电压转化为另一种电压,是电力系统中非常重要的设备之一、变压器的工作原理基于法拉第电磁感应定律,即在闭合线圈中通过电流时会产生磁场,当磁场发生变化时会在线圈中感应出电流。
变压器主要由两个或更多的线圈组成,通过磁场的耦合来实现电能的传递。
在变压器中,一般有两个线圈,分别称为主线圈和副线圈。
主线圈是供电线圈,副线圈是输出线圈。
这两个线圈通过能够导磁的铁芯连接在一起,使它们的磁场能够彼此感应。
当主线圈中通入交流电时,其产生的磁场通过铁芯传递到副线圈中,从而在副线圈中感应出电流。
由于线圈之间的匝数比不同,根据法拉第电磁感应定律,如果副线圈的匝数比大于主线圈的匝数比,那么输出电压将比输入电压高,称为升压变压器;反之,如果副线圈的匝数比小于主线圈的匝数比,那么输出电压将比输入电压低,称为降压变压器。
在变压器的设计中,核心重要的参数是变比,即主线圈匝数与副线圈匝数的比值。
变比决定了输入和输出的电压之间的关系。
除了变比之外,还有一些其他的参数也需要考虑,比如变压器的功率、效率、温升等。
此外,还要考虑线圈和铁芯的尺寸和材料选择,以及绝缘和散热等问题。
变压器的工作原理可以通过以下步骤来解释:1.主线圈通电产生磁场:当交流电通入主线圈时,其产生的磁场将通过铁芯传递到副线圈中。
2.磁场感应副线圈中产生电流:副线圈中的磁场发生变化,根据法拉第电磁感应定律,在副线圈中就会感应出电流。
3.电流产生电磁场:在副线圈中感应出的电流反过来又产生了磁场。
4.根据变压器的功率平衡原理,主线圈和副线圈中的电流和电压成反比关系。
即电压高的一边电流小,电压低的一边电流大。
5.根据电能守恒原理,输入功率与输出功率相等,即输入电压乘以输入电流等于输出电压乘以输出电流。
6.变压器通过调整线圈之间的匝数比来实现不同电压的输出。
变压器在电力传输和分配中扮演着重要的角色。
在电厂中,变压器用于将发电机产生的高压交流电转化为输电线路所需的较高电压;在输电线路上,变压器用于将高压电流转化为在终端用户处所需的较低电压;在终端用户处,变压器用于将电压进一步降低,以满足不同用电设备的需求。
变压器知识培训资料全

预防性试验
按照规程要求对变压器进行预防 性试验,如绝缘电阻测量、直流 电阻测量、变比测量等,以发现 潜在故障,确保变压器安全可靠
运行。
油品维护
定期检查变压器油品质量,及时 更换劣化油品,保持油品清洁干 燥,防止油品老化影响变压器绝
缘性能。
变压器的故障诊断与排除
常见故障类型
变压器常见故障包括绕组故障、铁芯故障、油质劣化等。这些故障可能导致变压器温升异 常、噪音增大、油品变黑等现象。
电压等级
根据电网的电压等级选择相应的变压器,确保变压器的额 定电压与电网电压相匹配。
效率和损耗
选择高效率、低损耗的变压器,以降低运行成本和节约能 源。
变压器的设计方法
磁芯选择
线圈设计
根据变压器的工作频率、磁通密度和温升 要求,选择合适的磁芯材料和形状。
绝缘设计
确定原边和副边线圈的匝数、线径和绕制 方式,以满足变压器的电压比、电流和阻 抗要求。
并列运行方式
两台或多台变压器并列运行,以提高供电可靠性和容量的方式。并列运 行要求变压器的额定电压、额定频率和阻抗等参数相同,以确保负荷均 匀分配。
变压器的日常维护
定期检查
定期对变压器进行外观检查、油 位检查、油温检查等,确保变压 器处于正常工作状态。同时,检 查变压器周围环境,确保通风良
好,无杂物堆积。
变压器的温升与效率评估
温升测试:在额定负载下,测量变压器 的温升,可以判断变压器的散热性能是
否良好,以及是否存在过热现象。
效率评估:通过比较变压器的输入功率 与输出功率,可以计算出变压器的效率 。高效率的变压器能够降低能源损耗,
提高能源利用效率。
以上是关于变压器性能测试与评估的一 些主要内容。通过这些测试与评估,可 以全面了解变压器的性能状况,确保变 压器在正常运行时具有良好的电气性能
干式变压器的基本知识

干式变压器的基本知识目录一、基础知识 (2)1.1 变压器的基本概念 (3)1.2 干式变压器的特点与应用 (3)二、干式变压器的结构与工作原理 (4)2.1 干式变压器的结构概述 (5)2.2 干式变压器的工作原理 (6)三、干式变压器的设计与制造 (7)3.1 设计考虑因素 (8)3.2 制造工艺与材料选择 (9)四、干式变压器的性能与测试 (11)4.1 性能参数与评估标准 (12)4.2 常见测试方法与设备 (14)五、干式变压器的运行与维护 (15)5.1 运行条件与维护建议 (17)5.2 常见故障及处理方法 (18)六、干式变压器的安全与环保 (19)6.1 安全操作规程 (20)6.2 环保要求与措施 (21)七、干式变压器的发展趋势与创新 (23)7.1 新型材料的应用 (24)7.2 智能化发展动向 (25)一、基础知识干式变压器是一种用于改变交流电压或电流的电气设备,它主要由铁芯、线圈和绝缘材料组成。
干式变压器具有结构简单、可靠性高、维护方便等优点,广泛应用于电力系统、工业生产和家用电器等领域。
铁芯:干式变压器的铁芯通常由硅钢片制成,硅钢片具有良好的磁性能,可以有效地吸收和消散铁芯中的涡流,从而减少能量损耗。
铁芯的截面积、形状和叠压方式会影响变压器的性能和损耗。
线圈:线圈是干式变压器的核心部件,它是由导线绕制而成,形成一个闭合的电路。
线圈的匝数、截面积和绕制方式会影响变压器的电压比、功率密度和效率。
绝缘材料:干式变压器的绝缘材料通常采用环氧树脂、聚酰亚胺等高性能绝缘材料,具有良好的耐热性、耐压性和耐磨性。
绝缘材料的厚度、绝缘等级和冷却系统的设计会影响变压器的安全性能和使用寿命。
油浸式变压器与干式变压器的区别:油浸式变压器是一种通过浸渍矿物油来实现绝缘和冷却的变压器,其结构复杂,但散热性能较好。
与干式变压器相比,油浸式变压器在低压、短路电流和过载能力方面具有优势,但在环保、安全和维护方面存在一定的局限性。
干式变压器基础知识

《干式变压器基础知识》同学们,今天咱们来了解一下干式变压器。
啥是干式变压器呢?简单来说,它就是一种能把电压变高或者变低的设备。
比如说,咱们家里用的电,电压是220 伏,可是工厂里有些机器需要的电压可不是220 伏,这时候就得靠干式变压器来帮忙啦。
干式变压器和咱们常见的那种油浸式变压器不太一样。
它没有油,所以更安全,也更干净。
我给你们讲个事儿。
有个工厂,之前用的是油浸式变压器,结果有一天不小心漏油了,弄得满地都是,可麻烦啦。
后来换成了干式变压器,就再也没有这种烦恼了。
干式变压器的结构也不复杂。
它有铁芯,就像咱们吃的夹心饼干中间的那部分,还有绕组,就是绕在铁芯上的那些电线。
同学们,是不是对干式变压器有了点初步的认识啦?《干式变压器基础知识》同学们,咱们接着来讲干式变压器。
干式变压器工作的时候可安静啦,不像有些机器会轰隆隆地响。
它的散热也有自己的办法。
有的是靠空气自然冷却,就像咱们热了吹吹自然风一样;还有的是靠风扇吹风来散热。
有一次,我去一个配电室参观,看到了一个大大的干式变压器,它安安静静地工作着,一点声音都没有,可神奇啦。
干式变压器的优点可多啦。
它防火性能好,万一发生火灾,也不会像油浸式变压器那样容易引起大事故。
而且维护起来也比较简单,不用像油浸式变压器那样经常检查油的情况。
同学们,是不是觉得干式变压器挺厉害的?《干式变压器基础知识》同学们,咱们再来说说干式变压器。
干式变压器的应用可广泛啦!医院里、商场里、学校里都能看到它的身影。
比如说医院,要是没有干式变压器稳定地提供合适的电压,那些医疗设备可就没法正常工作啦。
还有学校,教室里的灯、电脑,都得靠干式变压器来保障供电。
我记得有一回,我们小区停电了,后来发现是干式变压器出了点小毛病。
维修师傅很快就来修好了,咱们又能正常用电啦。
同学们,通过这些例子,是不是对干式变压器的作用更清楚啦?。
接地变压器基础知识讲解

❖小电流接地方式
• 6~35kV系统一般采用小电流接地方式; • 采用中性点不接地运行方式,以提高供电的可
靠性; • 采用消弧线圈接地运行方式,当发生单相接地
时,用消弧线圈的电感电流来平衡接地点的电 容电流,避免形成弧光接地过电压。
• 采用中性点经电阻接地的运行方式中,电阻值 一般较小,当系统单相接地时,控制流过接地 点的电流,电流在30~600A之间,通过接地电 流来启动零序保护动作,切除故障线路。
封堵严密; • 查小电阻设备清洁,各支撑架及绝无过热、放电痕迹缘支柱完好可用; • 查电缆终端头无变形,相间及对地距离符合规定;
• 查保护测控装置,无异常和告警信号; • 查刀闸实际位置与远程监控显示一致,接触良好; • 夜间运行查各接头处有无发红,发热,有无闪络放电; • 雷雨、大风天气及事故跳闸后应安排特殊巡视,随时关注设备运行状
束后应尽快投入; 5、接地变开关投入应先于主变低压侧开关投入; 6、接地变外壳必须有良好的保护接地;
接地变开关35X1及接地变回路运行转检修:
a)查接地变开关35X1储能、控制、计量及交流空开在“合位”; b)接地变开关35X1 “远方/就地”把手在“远方”位置; c)五防闭锁操作允许; d)分开接地变开关35X1; e)解锁地变开关35X1五防锁; f)摇接地变开关35X1至“试验”位; g)取下接地变开关35X1二次插头; h)拉接地变开关35X1至检修位; i)解锁35X1D地刀五防锁; g)合上35X1D地刀; k)查35X1D地刀在合位。
中性点经电阻接地按其接地电阻的阻值可分为:
●小电阻接地
小电阻接地阻值小于10欧,电流大于600安以上。主要用于接有大量高 压电机的电网。接地电流很大,跳闸几率保护很高。当电流太大时主变 压器差动保护易误动作,这样切断各侧电源扩大事故。所以一般不采用 小阻值接地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器原理、质量等基础知识
作者:未知 文章来源:未知 点击数: 669 更新时间:2008-2-14
变压器的基本原理
变压器是利用线圈互感特性构成的一种元器件,几乎在所有的电子产品中都要用到。它原理简单,但根
据不同的使用场合(不同的用途),变压器的绕制工艺会有所不同。变压器的功能主要有:电压变换;阻
抗变换;隔离;稳压(磁饱和变压器)等。它是由一个初级线圈(线圈圈数n1)及一个次级线圈(线圈圈
数n2)环绕著一个核心。常用的铁心形状一般有E型和C型。
E1是初级电压,次级电压E2是 E2 = E1×(n2/n1)
上图是变压器的原理简体图,当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并
产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U
2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压 U1方向相反而幅度相近,
从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损
耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。
如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相
抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级
电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被
ф2 所抵消的那部分磁通,以保持铁心里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变
压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈数而
改变次级电压,但是不能改变允许负载消耗的功率。
下图是各种变压器的电路符号,从变压器的电路符号可以看出变压器的线圈结构。
图(a)所示变压器共有两组线圈,即1~2为一次线圈(又称为初级线圈,线圈又称为绕组),3~4
位二次线圈(又称为次级线圈)。电路符号中垂直的实线表示这一变压器有铁心。
图(b)所示变压器有两组次级线圈,即3~4为一组,5~6为另外一组。另外电路符号中有实线的同
时还有一条虚线,它表示变压器的初级和次级线圈之间设有一个屏蔽层,在使用中这一屏蔽层的一端要接
线路中的地线(决不能两端同时接地),屏蔽层起抗干扰作用。这种变压器多为电源变压器。
图(c)所示变压器在初级和次级线圈的一端画有一个小黑点,这是“同名端”的标记。
图(d)所示的变压器没有中间实线,表示这种变压器没有铁心,有时用一条虚线来表示变压器用的是
磁芯(此时电路符号中是没有实线的),一般是高频或是中频变压器,这是过去的表示方式,现在规定当
变压器有铁心或是磁芯时均用一条实线表示。
图(e)所示的变压器,它的次级线圈有抽头,即4脚是次级线圈3~5的抽头。关于抽头有两种情况:
一是中心抽头,即当3~4之间的匝数等于4~5之间的匝数时成为中心抽头;二是非中心抽头,此时3~4、
4~5之间的匝数不等。
图(f)所示的变压器,它的初级线圈中有一个抽头2。
图(g)所示的变压器,它只有一个线圈2是抽头,这是一个自耦变压器。若2~3之间为初级,1~3
之间就为次级线圈此时它就是一个升压器。当1~3之间为初级线圈2~3之间为次级线圈,这就是一个降
压器。
变压器的损耗
当变压器的初级绕组通电后,线圈所产生的磁通在铁心流动,因为铁心本身也是导体,在垂直于磁力线
的平面上就会感应电势,这个电势在铁心的断面上形成闭合回路并产生电流,好象一个旋涡所以称为“涡
流”。这个“涡流”使变压器的损耗增加,并且使变压器的铁心发热变压器的温升增加。由“涡流”所产
生的损耗我们称为“铁损”。
另外要绕制变压器需要用大量的铜线,这些铜导线存在着电阻,电流流过时这电阻会消耗一定的功率,
这部分损耗往往变成热量而消耗,我们称这种损耗为“铜损”。所以变压器的温升主要由铁损和铜损产生
的。
由于变压器存在着铁损与铜损,所以它的输出功率永远小于输入功率,为此我们引入了一个效率的参数
来对此进行描述,η=输出功率/输入功率。
变压器的材料
要绕制一个变压器我们必须对与变压器有关的材料要有一定的认识,为此这里我就介绍一下这方面的知
识。
1、铁心材料
变压器使用的铁心材料主要有铁片、低硅片,高硅片,钢片中加入硅能降低钢片的导电性,增加电阻率,
它可减少涡流,使其损耗减少。我们通常称加了硅的钢片为硅钢片,变压器的质量同所用硅钢片的质量有
很大关系,硅钢片的质量通常用磁通密度B来表示,一般黑铁片的B值为6000-8000、低硅片为9000-1
1000,高硅片为12000-16000,
2、绕制材料
漆包线,沙包线,丝包线是绕制变压器通常用的材料,最常用的是漆包线。对于导线的要求,是导电性
能好,绝缘漆层有足够耐热性能,并且要有一定的耐腐蚀能力。一般情况下最好用Q2型号的高强度的聚
脂漆包线。
3、绝缘材料:
绕制变压器时,线圈框架层间的隔离、绕阻间的隔离,均要使用绝缘材料,一般的变压器框架材料可用
酚醛纸板制作,层间可用聚脂薄膜或电话纸作隔离,绕阻间可用黄腊布作隔离。
4、浸渍材料
变压器绕制好后,还要过最后一道工序,就是浸渍绝缘漆,它能增强变压器的机械强度、提高绝缘性能、
延长使用寿命,一般情况下,可采用甲酚清漆作为浸渍材料。
多绕组变压器同名端的判别
在使用多绕组变压器时,常常需要弄清各绕组引出线的同名端或异名端,才能正确地将线圈并联或串联
使用。
按上图所示电路,任找一组绕组线圈接上1.5~3V电池,然后将其余各绕组线圈抽头分别接在直流毫伏
表或直流毫安表的正负接线柱上。接通电源的瞬间,表的指针会很快摆动一下,如果指针向正方向偏转,
则接电池正极的线头与接电表正接线柱的线头为同名端;如果指针反向偏转,则接电池正极的线头与接电
表负接线柱的线头为同名端。在测试时应注意以下两点:
若变压器的升压绕组(既匝数较多的绕组)接电池,电表应选用最小量程,使指针摆动幅度较大,以利
于观察;若变压器的降压绕组(即匝数较少的绕组)接电池,电表应选用较大量程,以免损坏电表。
接通电源瞬间,指针会向某一个方向偏转,但断开电源时,由于自感作用,指针将向相反方向倒转。如
果接通和断开电源的间隔时间太短,很可能只看到断开时指针的偏转方向,而把测量结果搞错。所以接通
电源后要等几秒钟后再断开电源,也可以多测几次,以保证测量的准确。
电源变压器质量的简单判别法
电源变压器除检查电压准确度和绝缘性能之外,还要知道它的效率、负载率、发热量等。下面介绍一种
通过测定两个参素数来判别电源变压器质量的简单判别法。
1.空载电流的测定
变压器的空载电流是指初级接额定电压,次级完全空载测得的初级电流。这个电流与进线电压的乘积则
为空载损耗,也就是指变压器的铁芯损耗。它是铁芯在交流磁场中涡流损耗和磁滞损耗之和。因而,变压
器的空载电流越小,表明铁芯的质量越好,且安培匝数设计非常合理。这种情况下,一般认为空载电流相
似于铁损耗,空载电流的大小,也就反映铁损的大小。小于10W的变压器空载电流约 7~15mA;100W
的变压器,空载电流约30~60mA之间,都认为正常。铁损较大的变压器,发热量必然大,如果是因安培
匝数设计不合理,其空载电流大增,结果造成温升增大,其寿命也不会长。一般环形变压器的空载电流应
低于普通插片式变压器的空载电流。
2.铜损的测定
变压器的铜损是指初、次级导线的直流电阻造成的损耗。因此测定铜损只需将变压器加上额定电流即可
测出I2R。测试方法如下:首先将变压器的次级线圈两端直接短接(有几组要短路几组),再将变压器初级
串入交流电流表,再与0~250V的交流调压器相接,并接入市电。调节调压器由0V整至使电流表读数为
变压器的额定电流(如200VA的变压器,额定电流为0.9A),用万用表测出此时变压器初级的电压,将
此电压乘上变压器的额定电流既为“铜损”(测量铜损时间要短,不然会损坏变压器)。由于次级的短路,
变压器初级上的电压必然很低。这样,铁芯的磁通量极小,铁损也极小,可以忽略。故测出的I2R是很精
确的。在这项测试中损耗越小,漆包线的电阻值也越小,这种变压器的负载率也必然大。
在正常情况下,铁损和铜损之和对500W的变压器应小于45W。随着变压器的容量减小,其损耗相应
增大,因为小型变压器的铜损是大于铁损的。
从以上测定可知,变压器的开路损耗加上短路损耗越小,则变压器的质量越好,工作时温升也越低,并
且有很好的负载率。这样在很短时间内,就能知道变压器的性能好坏。
相关名词解释
1、电磁感应,当环链着某一导体的磁通发生变化时,导体内就出现电动势,这种现象叫电磁感应。
2、自感,当闭合回路中的电流发生变化时,则由这电流所产生的穿过回路本身磁通也发生变化,因此在回
路中也将感应电动势,这现象称为自感现象,这种感应电动势叫自感电动势。
3、互感,如果有两只线圈互相靠近,则其中第一只线圈中电流所产生的磁通有一部分与第二只线圈相环链。
当第一线圈中电流发生变化时,则其与第二只线圈环链的磁通也发生变化,在第二只线圈中产生感应电动
势。这种现象叫做互感现象。
4、电感,自感与互感的统称。
5、感抗,交流电流过具有电感的电路时,电感有阻碍交流电流过的作用,这种作用叫做感抗,以Lx表示,
Lx=2πfL。