最新8+电磁感应++习题解答汇总

最新8+电磁感应++习题解答汇总
最新8+电磁感应++习题解答汇总

8+电磁感应++习题解

第八章电磁感应电磁场

8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()

(A)线圈中无感应电流

(B)线圈中感应电流为顺时针方向

(C)线圈中感应电流为逆时针方向

(D)线圈中感应电流方向无法确定

分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).

8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()

(A)铜环中有感应电流,木环中无感应电流

(B)铜环中有感应电流,木环中有感应电流

(C)铜环中感应电动势大,木环中感应电动势小

仅供学习与交流,如有侵权请联系网站删除谢谢2

仅供学习与交流,如有侵权请联系网站删除 谢谢3

(D ) 铜环中感应电动势小,木环中感应电动势大

分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,

但在木环中不会形成电流.因而正确答案为(A ).

8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且

t

i t i d d d d 2

1<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε<

(D )2112M M = ,1221εε<

分析与解 教材中已经证明M21 =M12 ,电磁感应定律

t i M εd d 12121=;t

i

M εd d 21212=.因而正确答案为(D ).

8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( )

(A ) 位移电流的实质是变化的电场

(B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理

分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向

仅供学习与交流,如有侵权请联系网站删除 谢谢4

运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).

8 -5 下列概念正确的是( ) (A ) 感应电场是保守场

(B ) 感应电场的电场线是一组闭合曲线

(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).

8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ?=,求在s 100.12-?=t 时,线圈中的感应电动势.

分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律

通常写成t

ψ

t ΦN ξd d d d -

=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势

()()t t

Φ

N

ξπ100cos 51.2d d =-= 当s 100.12-?=t 时,V 51.2=ξ.

8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等

流向相反的电流,且电流均以t

I

d d 的变化率增长.若有一边长为d

的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.

仅供学习与交流,如有侵权请联系网站删除 谢谢5

分析 本题仍可用法拉第电磁感应定律t

Φ

ξd d -

=来求解.由于回路处在非均匀磁场中,磁通量就需用??=S

ΦS B d 来计算(其中B

为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和). 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式

t

l

M

E M d d -=求解. 解1 穿过面元dS 的磁通量为

()x d x

I

μx d d x I μΦd π2d π2d d d d 0021-+=

?+?=?=S B S B S B

因此穿过线圈的磁通量为

()4

3ln π2d π2d π2d 020

20Id μx x Id μx d x Id μΦΦd d d

d =-+==??

?

再由法拉第电磁感应定律,有

仅供学习与交流,如有侵权请联系网站删除 谢谢6

t

I

d μt ΦE d d 43ln π2d d 0??? ??=-

= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为

4

3

ln π20dI μΦ=

线圈与两长直导线间的互感为

4

3ln π20d μI ΦM ==

当电流以

t

l

d d 变化时,线圈中的互感电动势为 t

I d μt I M

E d d 43ln π2d d 0??? ??=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感

应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS

,1d =?=?S B ,它表现为变量I 和ξ的二元

函数,将Φ代入t

Φ

E d d -= 即可求解,求解时应按复合函数求导,注意,其中

v =t

ξ

d d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.

8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=?.问此均匀磁场的磁感强度B 的值为多少?

仅供学习与交流,如有侵权请联系网站删除 谢谢7

分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱. 解 在线圈转过90°角时,通过线圈平面磁通量的变化量为

NBS NBS ΦΦΦ=-=-=0Δ12

因此,流过导体截面的电量为i

i R R NBS

R R Φq +=+=Δ 则 ()T 050.0=+=

NS

R R q B i 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导

线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.

仅供学习与交流,如有侵权请联系网站删除 谢谢8

分析

虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.

解 (1) 在始、末状态,通过线圈的磁链分别为

1011π2r IS μN S NB ψ=

=,2

022π2r IS

μN S NB ψ== 则线圈中的平均感应电动势为

V 1011.111πΔ2ΔΔ8210-?=???

?

??-==r r t IS μN t ΦE 电动势的指向为顺时针方向.

(2) 通过线圈导线横截面的感应电荷为

t

Φ

E d d -

= 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于

磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?

仅供学习与交流,如有侵权请联系网站删除 谢谢9

分析 本题及后面几题中的电动势均为动生电动势,除仍可由

t

Φ

E d d -

=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ??=?l

E v 求解.

在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ??=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向. 解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或 端点P 距 形导轨左侧距离为x ,则

B R Rx Φ??

?

??+=2π212

B R t

x

RB t ΦE v 2d d 2d d -=-=-

= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号

表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高. 解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则

()θR θB l θB E o d cos d cos 90sin d d v v ==??=l B v

B R θθBR E v v 2d cos d E π/2

π/2

===??-

由矢量(v ×B )的指向可知,端点P 的电势较高.

仅供学习与交流,如有侵权请联系网站删除 谢谢10

解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应

定律t

Φ

E d d -

=可知,E =0 又因 E =E OP +E PO 即 E OP =-E PO =2R v B

由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.

8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.

分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电

仅供学习与交流,如有侵权请联系网站删除 谢谢11

动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果.

解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则

()()r L lB ωl lB ωE L-r

r AB

AB 22

1

d d --=-=??=??

-l B v

因此棒两端的电势差为

()r L lB ωE U AB AB 22

1

--==

当L >2r 时,端点A 处的电势较高

解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中

221r ωB E OA =

,()22

1r L B ωE OB -= 则

()r L BL ωE E E OB OA AB 22

1

--=-=

8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.

仅供学习与交流,如有侵权请联系网站删除 谢谢12

分析 如前所述,本题既可以用法拉第电磁感应定律t

Φ

E d d -

= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ??=?l

E v 来计算.由于对

称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.

解1 由上分析,得

()l B d ??=?

OP

OP E v

l αB l

o d cos 90sin ?=v

()()

l θB θωl

o d 90cos sin ?-=l

()?==L θL B ωl l θB ω02

2sin 2

1d sin

由矢量B ?v 的方向可知端点P 的电势较高.

仅供学习与交流,如有侵权请联系网站删除 谢谢13

解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿

过回路的磁通量Φ为零,则回路的总电动势

QO PQ OP E E E t

Φ

E ++==-

=0d d 显然,E QO =0,所以

()2

2

1PQ B ωE E E QO PQ OP ==-=

由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与

导体棒QP 等效.后者是垂直切割的情况.

8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=?v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高?

分析 本题可用两种方法求解.(1) 用公式()l B d ??=?l

E v 求

解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁

仅供学习与交流,如有侵权请联系网站删除 谢谢14

感强度x

I

μB π20=

.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式??=S

ΦS B d 求得穿过该回路的磁通量,再代

入公式t

Φ

E d d -=,即可求得回路的电动势,亦即本题杆中的电动势.

解1 根据分析,杆中的感应电动势为

()V 1084.311ln 2π

d 2πd d 50m

1.1m 1.00-?-=-=-==??=??

v

v v I μx x μxl E AB

AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高. 解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为

x y x

I

μΦd 2πd d 0=

?=S B 穿过回路的磁通量为

11ln 2π

d 2πd 0m

1.1m 1.00??

-===S

Iy

μx y x I μΦΦ 回路的电动势为

V 1084.32π

d d 11ln 2πd d 500-?-=-=-=-

=Iy

μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以

V 1084.35-?-==E E AB

式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动

势方向应由B 指向A ,故点A 电势较高.

仅供学习与交流,如有侵权请联系网站删除 谢谢15

8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.

分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足

()0l B =??d v ],因而线框中的总电动势为

()()()()hg

ef hg

ef

gh

ef

E E E -=??-??=??+??=????l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.

2.用公式t Φ

E d d -=求解,式中Φ是线框运动至任意位置处时,穿

过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有

v =t

ξ

d d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.

解1 根据分析,线框中的电动势为

仅供学习与交流,如有侵权请联系网站删除 谢谢16

hg ef E E E -=

()()????-??=hg

ef

l B l B d d v v

()??+-=2201000d 2πd 2πl l l l d I μl d I μv

v ()

1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .

解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为

()()ξ

l ξξx Il μdx ξx Il μΦl 1

200

20ln π2π21++=+=?

相应电动势为

()()

11

20π2d d l ξξl l I μt ΦξE +=-

=v 令ξ=d ,得线框在图示位置处的电动势为

()

11

20π2l d d l l I μE +=

v

由E >0 可知,线框中电动势方向为顺时针方向.

*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:

(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.

仅供学习与交流,如有侵权请联系网站删除 谢谢17

分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即()A A F F =v .根据牛顿运动定律,此时线框的运动微分方程为()t

v

v d d m

F mg A =-,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.

解 (1) 根据分析,在1t t ≤时间内,线框为自由落体运动,于是

()11t t gt ≤=v 其中1t t =时,gh 2101==v v

2010高中物理易错题分析集锦——11电磁感应

第11单元电磁感应 [内容和方法] 本单元内容包括电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 本单元涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极? 【错解分析】错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【正确解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB中电流的方向是由B流向A,故电源的下端为正极。 【小结】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例2长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[ ]

高中物理第二章 电磁感应与电磁场单元测试题及解析

第二章电磁感应与电磁场章末综合检测 (时间:90分钟;满分100分) 一、单项选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项正确) 1.下列过程中一定能产生感应电流的是( ) A.导体和磁场做相对运动 B.导体一部分在磁场中做切割磁感线运动 C.闭合导体静止不动,磁场相对导体运动 D.闭合导体内磁通量发生变化 2.关于磁通量的概念,下列说法中正确的是( ) A.磁感应强度越大,穿过闭合回路的磁通量也越大 B.磁感应强度越大,线圈面积越大,穿过闭合回路的磁通量也越大 C.穿过线圈的磁通量为零时,磁感应强度不一定为零 D.磁通量发生变化时,磁感应强度一定发生变化 3.如图2-3,半径为R的圆形线圈和矩形线圈abcd在同一平面内,且在矩形线圈内有变化的磁场,则( ) 图2-3 A.圆形线圈有感应电流,矩形线圈无感应电流 B.圆形线圈无感应电流,矩形线圈有感应电流 C.圆形线圈和矩形线圈都有感应电流 D.圆形线圈和矩形线圈都无感应电流 4.以下叙述不正确的是( ) A.任何电磁波在真空中的传播速度都等于光速 B.电磁波是横波 C.电磁波可以脱离“波源”而独自存在 D.任何变化的磁场都可以产生电磁波 5.德国《世界报》曾报道过个别西方发达国家正在研制电磁脉冲波武器——电磁炸弹.若一枚原始脉冲波功率10 kW、频率5千兆赫的电磁炸弹在不到100 m的高空爆炸,它将使方圆400 m2~500 m2地面范围内电场达到每米数千伏,使得电网设备、通信设施和计算机中的硬盘与软盘均遭到破坏.电磁炸弹有如此破坏力的主要原因是( ) A.电磁脉冲引起的电磁感应现象 B.电磁脉冲产生的动能 C.电磁脉冲产生的高温 D.电磁脉冲产生的强光 6.在图2-4中,理想变压器的原副线圈的匝数比为n1∶n2=2∶1,A、B为完全相同的灯泡,电源电压为U,则B灯两端的电压有( ) 图2-4 A.U/2 B.2U

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

习题9电磁感应与电磁场

习题9 9-1在磁感应强度B 为0.4T 的均匀磁场中放置一圆形回路,回路平面与B 垂直,回路的面积与时间的关系为:S=5t 2+3(cm 2),求t=2s 时回路中感应电动势的大小? 解:根据法拉第电磁感应定律得 dt d m Φ- =εdt dS B =Bt 10= V 4108-?=ε 9-2 如题9-2图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环感应电动势的大小和方向及MN 两端的电压U M -U N . 题9-2 解: 作辅助线MN ,则在MeNM 回路中,沿v 方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ? +-<+-= =b a b a MN b a b a Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向, 大小为 b a b a Iv -+ln 20πμ M 点电势高于N 点电势,即 b a b a Iv U U N M -+= -ln 20πμ

题9-3 9-3 如题9-3图所示,在两平行载流的无限长直导线的平面有一矩形线圈.两导线中的电流 方向相反、大小相等,且电流以d I d t 的变化率增大,求: (1)任一时刻线圈所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1) ]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I a b b a d d m +-+= -= ?? ++μμμΦ (2) t I b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε 题9-4 9-4 如题9-4图所示,长直导线通以电流I =5 A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06 m ,宽a =0.04 m ,线圈以速度v =0.03 m/s 垂直于直线平移远离.求:d =0.05 m 时线圈中感应电动势的大小和方向. 解: AB 、CD 运动速度v 方向与磁力线平行,不产生感应电动势.

大物B课后题08-第八章 电磁感应 电磁场

习题 8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。 解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为 02m i d B dS ldx x μφπ=?= 通过矩形面积CDEF 的总磁通量为 0000ln ln sin 222b m a i il I l b b ldx t x a a μμμφωπππ===? 由法拉第电磁感应定律有 00ln cos 2m d I l b t dt a φμωεωπ=- =- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt ,球小 线圈中感应的电动势。 解 无限长直螺线管内部的磁场为 0B nI μ= 通过N 匝圆形小线圈的磁通量为 2 0m NBS N nI r φμπ== 由法拉第电磁感应定律有 20m d dI N n r dt dt φεμπ=- =- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。 解 通过小线圈的磁通量为 0m BS niS φμ== 由法拉第电磁感应定律有 000cos m d di nS nSi t dt dt φεμμωω=- =-=- 8-9 如图所示,矩形线圈ABCD 放在1 6.010B T -=?的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=?,长为0.20m 的AB 边可左右滑动。若令AB 边以速率 15.0v m s -=?向右运动,试求线圈中感应电动势的大小及感应电流的方向。 解 利用动生电动势公式

电磁感应典型例题和练习进步

电磁感应 课标导航 课程内容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章内容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析

知识:安培力的大小与方向 例1. (09年上海物理)13.如图,金属棒ab置于水平 放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B, 磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef 内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 答案:收缩,变小 点评:深刻领会楞次定律的内涵 热点关注 知识:电磁感应中的感应再感应问题 例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒 PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动. 则PQ所做的运动可能是 A.向右匀速运动 B.向右加速运动 C.向左加速运动 D.向左减速运动

电磁感应电磁场习题

第十三章 电磁感应 电磁场习题 (一) 教材外习题 电磁感应习题 一、选择题: 1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将 (A )加速铜板中磁场的增加 (B )减缓铜板中磁场的增加 (C )对磁场不起作用 (D )使铜板中磁场反向 ( ) 2.在如图所示的装置中,当把原来静止的条形磁铁从螺线管中按图示情况抽出时, (A )螺线管线圈中感生电流方向如A 点处箭头所示。 (B )螺线管右端感应呈S 极。 (C )线框EFGH 从图下方粗箭头方向看去将逆时针旋转。 (D )线框EFGH 从图下方粗箭头方向看去将顺时针旋转。 ( ) 3.在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A )以情况Ⅰ中为最大 (B )以情况Ⅱ中为最大 (C )以情况Ⅲ中为最大 (D )在情况Ⅰ和Ⅱ中相同 ( ) 4.如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中 出来,到无场空间中。不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对

时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正) 5.如图,一矩形线框(其长边与磁场边界平行)以匀速v 自左侧无场区进入均匀磁场又穿出,进入右侧无场区,试问图(A )—(E )中哪一图象能最合适地表示线框中电流i 随时间t 的变化关系?(不计线框自感) ( ) 6.在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa '和bb ',当线圈aa '和bb '如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是 (A )M 1 = M 2 ≠ 0 (B )M 1 = M 2 = 0 (C )M 1 ≠ M 2,M 2=0 (D )M 1≠M 2,M 2≠0 ( ) 7.真空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如图。已知导线中的电流强度为I ,则在两导线正中间某点P 处的磁能密度为 (A )200)2(1a I πμμ (B )200)2(21 a I πμμ (C )200)2(21 a I πμμ (D )0 ( )

电磁感应综合问题(解析版)

构建知识网络: 考情分析: 楞次定律、法拉第电磁感应定律是电磁学部分的重点,也是高考的重要考点。高考常以选择题的形式考查电磁感应中的图像问题和能量转化问题,以计算题形式考查导体棒、导线框在磁场中的运动、电路知识的相关应用、牛顿运动定律和能量守恒定律在导体运动过程中的应用等。备考时我们需要重点关注,特别是导体棒的运动过程分析和能量转化分析。 重点知识梳理: 一、感应电流 1.产生条件???? ? 闭合电路的部分导体在磁场内做切割磁感线运动 穿过闭合电路的磁通量发生变化 2.方向判断? ???? 右手定则:常用于切割类 楞次定律:常用于闭合电路磁通量变化类 3.“阻碍”的表现???? ? 阻碍磁通量的变化增反减同阻碍物体间的相对运动来拒去留 阻碍原电流的变化自感现象 二、电动势大小的计算

三、电磁感应问题中安培力、电荷量、热量的计算 1.导体切割磁感线运动,导体棒中有感应电流,受安培力作用,根据E =Blv ,I =E R ,F =BIl ,可得F =B 2l 2v /R . 2.闭合电路中磁通量发生变化产生感应电动势,电荷量的计算方法是根据E =ΔΦΔt ,I =E R ,q = I Δt 则q =ΔΦ/R ,若线圈匝数为n ,则q =nΔΦ/R . 3.电磁感应电路中产生的焦耳热,当电路中电流恒定时,可以用焦耳定律计算,当电路中电流发生变化时,则应用功能关系或能量守恒定律计算. 四、自感现象与涡流 自感电动势与导体中的电流变化率成正比,比例系数称为导体的自感系数L 。线圈的自感系数L 与线圈的形状、长短、匝数等因数有关系。线圈的横截面积越大,匝数越多,它的自感系数就越大。带有铁芯的线圈其自感系数比没有铁芯的大得多。 【名师提醒】 典型例题剖析: 考点一:楞次定律和法拉第电磁感应定律 【典型例题1】 (2016·浙江高考)如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( ) A .两线圈内产生顺时针方向的感应电流 B .a 、b 线圈中感应电动势之比为9∶1 C .a 、b 线圈中感应电流之比为3∶4

电磁感应习题解答电磁场习题解答

第十三章 电磁感应 一 选择题 3.如图所示,一匀强磁场B 垂直纸面向内,长为L 的导线ab 可以无摩擦地在导轨上滑动,除电阻R 外,其它部分电阻不计,当ab 以匀速v 向右运动时,则外力的大小是: R L B R L B R L B R BL L B 222222222 E. D. 2 C. B. A.v v v v v 解:导线ab 的感应电动势v BL =ε,当 ab 以匀速v 向右运动时,导线ab 受到的外力与安培力是一对平衡力,所以R L B L R B F F v 22===ε 安外。 所以选(D ) 4.一根长度L 的铜棒在均匀磁场B 中以匀角速度ω旋转着,B 的方向垂直铜棒转动的平面,如图,设t = 0时,铜棒与Ob 成θ角,则在任一时刻t 这根铜棒两端之间的感应电动势是:( ) A. )cos(2θωω+t B L B. t B L ωωcos 2 12 C. )cos(22θωω+t B L D. B L 2ω E. B L 22 1ω 解:???= ==??=L L BL l l B l B )00221d d d ωωεv l B v ( 所以选(E ) 6.半径为R 的圆线圈处于均匀磁场B 中,B 垂直于线圈平面向上。如果磁感应强度为B =3 t 2+2 t +1,则线圈中的感应电场为:( ) A . 2π(3 t + 1)R 2 ,顺时针方向; B. 2π(3 t + 1)R 2 ,逆时针方向; C . (3 t + 1)R ,顺时针方向; D . (3 t + 1)R ,逆时针方向; 解:由??? ???-=?S B l E d d i t ,则感应电场的大小满足 选择题4图 选择题3图 v

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的 ??B t 叫磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时 , 且导线与磁感线互相垂直(l B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+== 222ω, 故2 21l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。 公式三:ω···S B n E m =——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁

电磁感应综合练习题1

高二物理(理班)电磁感应的八种典型案例 【案例1】感应电动势的计算 (1)导体棒平动切割磁感线产生的感应电动势 练习1.如图所示,导轨与电流表相连,导轨的宽度为d,处于向里的大小为B的匀强磁场中,一根导线沿着导轨以速度v向右运动,求导线上产生的感应电动势. (2)导体棒转动产生的感应电动势 练习2.若导体棒半径为r,处于匀强磁场B中,以角速度ω匀速转动,则导线产生的感应电动势的大小是多少? (3)磁场变化产生的感生电动势 练习3.正方形线框边长为L、质量为m、电阻为R,线框的上半部 处于匀强磁场中,磁场的磁感应强度按B=kt的规律均匀增强,细 线能承受的最大拉力为T=2mg,从t=0起经多少时间绳被拉断? 【案例2】感应电流大小计算问题 练习4.由两个同种材料,同样粗细的导线制成圆环a、b已知其半径之比为2:1,在B中充满了匀强磁场,当匀强磁场随着时间均匀变化时,圆环a、b的感应电流之比为多少?

【案例3】阻碍“磁通量的变化” 练习5.判定下列各种情况下灯泡中是否有感应电流,若有则写明在ab 处感应电流的方向 (1)导体棒匀速向右运动 ( (2)导体棒匀加速向右运动 ( (3 )导体棒匀减速向右运动 ( (4)导体棒匀减速向左运动 ( 练习6. (1)当线圈a 中有电流,电流方向为逆时针且大小均匀增加时,线圈b 中的感应电流方向应为( )。 (2)若线圈b 中有电流,电流方向为逆时针且大小均匀增加时,线 圈a 中的感应电流方向应为( )。 【案例4】阻碍导体的相对运动——“跟着走” 练习7.线圈A 闭合,线圈B 开口,当条形磁铁插入线圈的过程中,线圈A 、 B 如何运动? 【案例5】电磁感应的能量问题 练习8.如图所示,导体棒向右匀速运动切割磁感线,已知匀 强磁场为B ,轨道宽度为L ,切割速度为v ,外电阻为R ,导体棒的电阻为R ’,求:安培力及t 时间内所做的功。

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场 () ()2 2 003 3 2 2 2 22IR IR B x R x R x μμ= ≈ >>+ 3 2 202x r IR BS πμφ= = v x r IR dt dx x r IR dt d 4 22042202332πμπμφ ε=--=-= 9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ? 的方向垂直于金属架 COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ? 与 MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ? 不随时间改变,框架内的感应电动势i ε. 解:12m B S B xy Φ=?=?,θtg x y ?=,vt x = 22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N 9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。 解:当线圈ABC 向右平移时,AB 和AC 边中会产 生动生电动势。当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02() I B a d μπ= + AC 中产生的动生电动势大小为: x r I R x v C D O x M θ B ? v ?

完整版电磁感应综合典型例题

电磁感应综合典型例题 【例11电阻为R的矩形线框abed,边长ab=L, ad=h,质量为m 自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁 场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线 框中产生的焦耳热是 _________ ?(不考虑空气阻力) 【分析】线框通过磁场的过程中,动能不变。根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热?所以,线框通过磁场过程中产生的焦耳热为 Q=W=mg- 2h=2mgh 【解答1 2mgh

【说明】本题也可以直接从焦耳热公式Q=l2Rt进行推算: 设线框以恒定速度v通过磁场,运动时间 从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感 线产生的感应电流的大小为 cd边进入磁场时的电流从d到c, cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上, 大小恒为 据匀速下落的条件,有 因线框通过磁场的时间,也就是线框中产生电流的时间,所以据 焦耳定律,联立(I )、(2)、(3)三式,即得线框中产生的焦耳热 为

Q=2mgh 两种解法相比较,由于用能的转化和守恒的观点,只需从全过程 考虑,不需涉及电流的产生等过程,计算更为简捷. 【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1 Q的矩形线圈,从离匀强磁场上边缘高h i=5m处由静止自由下落.进 入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运 动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s,求: (1)匀强磁场的磁感强度B; (2)磁场区域的高度h2;

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案 一、法拉第电磁感应定律 1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。导线的电阻不计,求0至t1时间内 (1)通过电阻R1上的电流大小及方向。 (2)通过电阻R1上的电荷量q。 【答案】(1) 2 02 3 n B r Rt π 电流由b向a通过R1(2) 2 021 3 n B r t Rt π 【解析】【详解】 (1)由法拉第电磁感应定律得感应电动势为 2 202 2 n B r B E n n r t t t π π ?Φ? === ?? 由闭合电路的欧姆定律,得通过R1的电流大小为 2 02 33 n B r E I R Rt π == 由楞次定律知该电流由b向a通过R1。 (2)由 q I t =得在0至t1时间内通过R1的电量为: 2 021 1 3 n B r t q It Rt π == 2.光滑平行的金属导轨MN和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP间接有阻值R=2.0Ω的电阻,其它电阻不计,质量 m=2.0kg的金属杆ab垂直导轨放置,如图(a)所示.用恒力F沿导轨平面向上拉金属杆ab,由静止开始运动,v?t图象如图(b)所示.g=10m/s2,导轨足够长.求: (1)恒力F的大小; (2)金属杆速度为2.0m/s时的加速度大小; (3)根据v?t图象估算在前0.8s内电阻上产生的热量.

高中物理电磁感应经典例题总结

1.如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 答案:收缩,变小 解析:由于金属棒ab 在恒力F 的作用下向右运动,则abcd 回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 2.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。则此过程 ( BD ) A.杆的速度最大值为 B.流过电阻R 的电量为 C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量 D.恒力F 做的功与安倍力做的功之和大于杆动能的变化量 解析:当杆达到最大速度v m 时,022=+- -r R v d B mg F m μ得()()22d B r R mg F v m +-=μ,A 错;由公式 () ()r R BdL r R S B r R q +=+= += ??Φ ,B 对;在棒从开始到达到最大速度的过程中由动能定理有: K f F E W W W ?=++安,其中mg W f μ-=,Q W -=安,恒力F 做的功与摩擦力做的功之和等于杆动能的变 化量与回路产生的焦耳热之和,C 错;恒力F 做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D 对。 3.(09·浙江·17)如图所示,在磁感应强度大小为B 、方向竖直向上的匀强磁场中,有一质量为m 、阻值为R 的闭合矩形金属线框abcd 用绝缘轻质细杆悬挂在O 点,并可绕O 点摆动。金属线框从右侧某一位置静止开始释放,在摆动到左侧最

电磁感应综合应用例题

电磁感应综合应用例题 图9-2-10 1.如图9-2-10所示,在水平面内固定着U形光滑金属导轨,轨道间距为50 cm,金属导体棒ab质量为0.1 kg,电阻为0.2 Ω,横放在导轨上,电阻R的阻值是0.8 Ω(导轨其余部分电阻不计).现加上竖直向下的磁感应强度为0.2 T的匀强磁场.用水平向右的恒力F=0.1 N拉动ab,使其从静止开始运动,则().A.导体棒ab开始运动后,电阻R中的电流方向是从P流向M B.导体棒ab运动的最大速度为10 m/s C.导体棒ab开始运动后,a、b两点的电势差逐渐增加到1 V后保持不变D.导体棒ab开始运动后任一时刻,F的功率总等于导体棒ab和电阻R的发热功率之和

图9-2-14 2.如图9-2-14所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2. (1)求框架开始运动时ab速度v的大小; (2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.

图9-2-13 4.如图9-2-13所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0. 5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)(). A.2.5 m/s 1 W B.5 m/s 1 W C.7.5 m/s9 W D.15 m/s9 W 5.如图1所示,MN、PQ为足够长的平行金属导轨,间距L=0.50 m,导轨平面与水平面 间夹角θ=37°,N、Q间连接一个电阻R=5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0 T.将一根质量为m=0.050 kg的金属棒放在导轨的ab位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd处时,其速度大小开始保持不变,位置cd与ab之间的距离s=2.0 m.已知g=10 m/s2,sin 37°=0.60,cos 37°=0.80.求: 图1 (1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd处的速度大小; (3)金属棒由位置ab运动到cd的过程中,电阻R产生的热量.

习题9 电磁感应与电磁场

习题9 9-1在磁感应强度B 为0、4T 的均匀磁场中放置一圆形回路,回路平面与B 垂直,回路的面积与时间的关系为:S =5t 2+3(cm 2),求t=2s 时回路中感应电动势的大小? 解:根据法拉第电磁感应定律得 dt d m Φ- =εdt dS B =Bt 10= V 4108-?=ε 9-2 如题9-2图所示,载有电流I 的长直导线附近,放一导体半圆环Me N与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a 、设半圆环以速度v平行导线平移.求半圆环内感应电动势的大小与方向及MN 两端的电压U M -UN 、 题9-2 解: 作辅助线MN ,则在MeNM 回路中,沿v 方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ?+-<+-= =b a b a MN b a b a Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向, 大小为 b a b a Iv -+ln 20πμ M 点电势高于N 点电势,即 b a b a Iv U U N M -+= -ln 20πμ 题9-3

9-3 如题9-3图所示,在两平行载流的无限长直导线的平面内有一矩形线圈、两导线中的电流方向相反、大小相等,且电流以错误!的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势、 解: 以向外磁通为正则 (1) ]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I a b b a d d m +-+= -= ?? ++μμμΦ (2) t I b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε 题9-4 9-4 如题9-4图所示,长直导线通以电流I=5 A,在其右方放一长方形线圈,两者共面、线圈长b=0.06 m,宽a =0.04 m,线圈以速度v =0.03 m /s 垂直于直线平移远离、求:d =0.05 m时线圈中感应电动势的大小与方向、 解: AB 、CD 运动速度v 方向与磁力线平行,不产生感应电动势. DA 产生电动势 ?==??=A D I vb vBb l B v d 2d )(01πμε BC 产生电动势 ) (π2d )(02d a I vb l B v C B +-=??=? με ∴回路中总感应电动势 8021106.1)11 (π2-?=+-= +=a d d Ibv μεεε V 方向沿顺时针、 9-5 长度为l 的金属杆ab 以速率v 在导电轨道a bcd上平行移动、已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题9-5图所示),B的大小为B=kt (k 为正常数)、设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小与方向. 题9-5图 解: ?==?=?=2 22 12160cos d klvt lv kt Blvt S B m Φ ∴ klvt t m -=-=d d Φε 即沿abcd 方向顺时针方向.

电磁感应典型例题

典型例题——电磁感应与电路、电场相结合 1.如图所示,螺线管的导线的两端与两平行金属板相接,一个带负电的通草球用丝线悬挂在 两金属板间,并处于静止状态,若条形磁铁突然插入线圈时,通草球的运动情况是( ) A 、向左摆动 B 、向右摆动 C 、保持静止 D 、无法确定 解:当磁铁插入时,穿过线圈的磁通量向左且增加,线圈产生感应电动势,因此线圈是一个产生感应电动势的电路,相当于一个电源,其等效电路图如图,因此A 板带正电,B 板带负电,故小球受电场力向左 答案:A 3.如图所示,匀强磁场B=,金属棒AB 长0.4m ,与框架宽度相同,电阻为R=1/3Ω,框架电阻不计,电阻R 1=2Ω,R 2=1Ω当金属棒以5m/s 的速度匀速向左运动时,求: (1)流过金属棒的感应电流多大 (2)若图中电容器C 为μF,则充电量多少(1),(2)4×10-8C 解:(1)金属棒AB 以5m/s 的速度匀速向左运动时,切割磁感线,产生的感应电动势为Blv E =,得V V E 2.054.01.0=??=, 由串并联知识可得Ω=3 2外R ,Ω=1总R , 所以电流 A I 2.0= (2)电容器C 并联在外电路上, V U 3 4 .0= 外 由公式 N

C CU Q 3 4 .0103.06? ?==-C 8104-?= 4.(2003上海)粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。 现使线框以同样大小的速度沿四个不同方向平移出磁场,如图100-1所示,则在移出过程中线框的一边a 、b 两点间电势差绝对值最大的是( ) 解:沿四个不同方向移出线框的感应电动势都是Blv E =,而a 、b 两点在电路中的位置不同,其等效电路如图100-2所示,显然图B’的Uab 最大,选B 。 5.(2004年东北三校联合考试)粗细均匀的电阻丝围成如图12-8所示的线框abcd e (ab =bc )置于正方形有界匀强磁场中,磁场方向垂直于线框平面.现使线框以同样大小的速度匀速地沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则在通过图示位置时,线框ab 边两端点间的电势差绝对值最大的是

ch9+电磁感应和电磁场+习题及答案Word版

第9章 电稳感应和电磁场 习题及答案 1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化: 23(65)10t t Wb -Φ=++?。求2t s =时,回路中感应电动势的大小和方向。 解:310)62(-?+-=Φ -=t dt d ε 当s t 2=时,V 01.0-=ε 由楞次定律知,感应电动势方向为逆时针方向 2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。已知导轨处于均匀磁场B 中, B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。 设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。 解:任意时刻通过通过回路面积的磁通量为 202 1 60cos t kl t Bl S d B m υυ==?=Φ 导线回路中感应电动势为 t kl t m υε-=Φ- =d d 方向沿abcda 方向。 3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。求: (1)穿过正方形线框的磁通量; (2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。 解:(1)通过正方形线框的磁通量为 ??=?=Φa S Badx S d B 0 ?+=a dx x ak 0)1()2 1 1(2a k a += (2)当t k k 0=时,通过正方形线框的磁通量为 )2 1 1(02a t k a + =Φ 正方形线框中感应电动势的大小为 dt d Φ= ε)2 1 1(02a k a += 正方形线框线框中电流大小为 )2 11(02a R k a R I +==ε ,方向:顺时针方向 4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。设线圈的长为b ,宽为a ; 0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ 垂直离开导线。求任一时刻线圈中的感 应电动势的大小。 解:建立图示坐标系,长直导线在右边产生的磁感应强度大小为 x I B πμ20= t 时刻通过线圈平面的磁通量为 ???=ΦS S d B bdx x I a t t ?+=υυπμ20 t a t I b υυπμ+=ln 20 I A B C D b a υ t υ O x

相关文档
最新文档