数学在经济生活中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学在经济生活中的应用
例1
设:生产x个产品的边际成本C=100+2x,其固定成本为C(0)=1000元,产品单价规定为500元。
假设生产出的产品能完全销售,问生产量为多少时利润最大?并求最大利润
解:总成本函数为
C(x)=∫x0(100+2t)dt+C(0)=100x+x 2+1000
总收益函数为R(x)=500x
总利润L(x)=R(x)-C(x)=400x-x2-1000,L’=400-2x,令L’=0,得x=200,因为L’’(200)<0。
所以,生产量为200单位时,利润最大。
最大利润为L(200)=400×200-2002-1000=390009(元)
例2
某企业每月生产Q(吨)产品的总成本C(千元)是产量Q的函数,C(Q)=Q
2-10Q+20。
如果每吨产品销售价格2万元,求每月生产10吨、15吨、20吨时的边际利润。
解:每月生产Q吨产品的总收入函数为:
R(Q)=20Q
L(Q)=R(Q)-C(Q)=20Q-(Q2-1Q+20)
=-Q2+30Q-20
L’(Q)=(-Q2+30Q-20)’=-2Q+30
则每月生产10吨、15吨、20吨的边际利润分别为
L’(10)=-2×10+30=10(千元/吨);
L’(15)=-2×15+30=0(千元/吨);
L’(20)=-2×20+30=-10(千元/吨);
以上结果表明:当月产量为10吨时,再增产1吨,利润将增加1万元;当月产量为15吨时,再增产1吨,利润则不会增加;当月产量为20吨时,再增产1吨,利润反而减少1万元。
例3
设生产某产品的固定成本为60000元,变动成本为每件20元,价格函数p=60-Q1000(Q为销售量),假设供销平衡,问产量为多少时,利润最大?最大利润是多少?
解:产品的总成本函数C(Q)=60000+20Q
收益函数R(Q)=pQ=(60-Q1000)Q=60Q-Q21000
则利润函数L(Q)=R(Q)-C(Q)=-Q21000+40Q-60000
L’(Q)=-1500Q+40,令L’(Q)=0得Q=20000
∵L’’(Q)=-1500<0∴Q=2000时L最大,L(2000)=340000元
所以生产20000个产品时利润最大,最大利润为340000元。
例4
X银行提供每年支付一次,复利为年利率8%的银行帐户,Y银行提供每年支付四次,复利为年利率8%的帐户,它们之间有何差异呢?
解两种情况中8%都是年利率,一年支付一次,复利8%表示在每年末都要加上当前余额的8%,这相当于当前余额乘以1.08.如果存入100元,则余额A为
一年后:A=100(1.08),两年后:A=100(1.08)2,…,t年后:A=100(1.08)t.
而一年支付四次,复利8%表示每年要加四次(即每三个月一次)利息,每次要加上当前余额的8%/4=2%。
因此,如果同样存入100元,则在年末,已计入四次复利,该帐户将拥有100(1.02)4元,所以余额B为
一年后:B=100(1.02)4,二年后:B=(1.02)4×2,…,t年后:B=(1.02)4t。
注意这里的8%不是每三个月的利率,年利率被分为四个2%的支付额,在上面两种复利方式下,计算一年后的总余额显示
一年一次复利:A=100(1.08)=108.00,一年四次复利:B=100(1.02)4=108.24.因此,随着年份的延续,由于利息赚利息,每年四次复利可赚更多的钱.所以,付复利的次数越频繁可赚取的钱越多(尽管差别不是很大).
例5
你买的彩票中奖1百万,你要在两种兑奖方式中进行选择,一种为分四年每年支
付250000元的支付方式,从现在开始支付;另一种为一次支付总额920000元的
一次付清方式,也就是现在支付,假设银行利率为6%,以连续复利方式计息,又假设不交税,那么你选择哪种兑奖方式?
解:我们选择时考虑的是要使现在价值(即现值)最大,那么设分四年每年支付250000元的支付方式的现总值为P,
则
P=250000=250000e 06
.0
+250000e
2
06
.0x
+250000e
3
06
.0x
=250000+235411+221730+
208818=915989<920000
因此,最好是选择现在一次付清920000元这种兑奖方式例6:
设银行存款现值P 和将来值B ,年利率为r .则t 年后的本利和即将来值 B=(1+r )t
若一年分n 次计算复利,则每期利率为三,一年后的本利和即将来值为 B=P(1+n
r )n 而t 年后的本利和即将来值为 B=P(1+n
r )tn 当∞→n 时,则t 年后的本利和即将来值为 B=lim(x->∞)P(1+
n r )tn =pe t 从而现值p 和将来值B 之间的关系为 B= pe t
现值P 为1,利息r 为100%,t=1,则得 B= e
例7:某种产品的总成本C (万元)与产量q (万件)之间的函数关系式(即总成本函数)
为
C=C(q)=100+4q-0.2q2+0.01q3
求生产水平为q=10(万件)时的平均成本和边际成本,并从降低成本角度看,继续提高产
量是否合适?
解: 当q=10时的总成本为
C(10)=100+4×10-0.2×102+0.01×103=130(万元)
所以平均成本(单位成本)为C(10)÷10=130÷10=13(元/件)
边际成本MC=C′(q)=4-0.4q+0.03q2
MC│q=10=4-0.4×10+0.03×102=3(元/件)
因此在生产水平为10万件时,每增加一个产品总成本增加3元,远低于当前的单位成本,
从降低成本角度看,应该继续提高产量。
例8:
某公司总利润L (万元)与日产量q (吨)之间的函数关系式(即利润函数)为
1500.005q-2qL(q)L2−==。
试求每天生产150吨,200吨,350吨时的边际利润,并说明经济
含义。
解:边际利润 ML=L(q)=2-0.01q
q
ML =2-0.01×150=0.5 q
ML =2-0.01 ×200=0
q ML =2-0.01×350=-1.5 从上面的结果表明,当日产量在150吨时,每天增加1吨产量可增加总利润0.5万元;当日
产量在200吨时,再增加产量,总利润已经不会增加;而当日产量在350吨时,每天产量再
增加1吨反而使总利润减少1.5万元,由此可见,该公司应该把日产量定在200吨,此时的总利润最大为:L=2×200-0.005 ×200²-150=50(万元)
从上例可以发现,公司获利最大的时候,边际利润为零。
例9
设供给函数Q=f(P)= -12+4P+2P2,求当P=3 时的供给价格弹性。
解由于供给价格弹性
10
解ES=P·f ′(P) =P4=2p/-12+4p+p²所以当P=3 时ES=
3
由上可知供给函数在点P 的供给价格弹性的经济意义是在价格为P 时如果价格提高或降低1供给由Q起增加或减少的百分数。
供给价格弹性反映了当价格变动时供给量变动对价格变动的灵敏程度.
例10
设某商品的需求函数为Q=e-p5,求(1)需求弹性函数;(2)P=3,P=5,P=6时的需求弹性。
解:(1)η(p)=-f’(p)pf(p)=-(-15)e-p5.pe-p5=p5;
(2)η(3)=35=0.6;η(5)=55=1;η(6)=65=1.2η(3)=0.6<1,说明当P=3时,价格上涨1%,需求只减少0.6%,需求变动的幅度小于价格变动的幅度。
η(5)=1,说明当P=5时,价格上涨1%,需求也减少1%,价格与需求变动的幅度相同。