63一次函数的图象(1)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3 一次函数的图象

学习目标:

知识与技能:

了解一次函数的图象是一条直线,能熟练作出一次函数的图象过程与方法:

经历探索一次函数图象的作图过程,初步了解作函数图象需通过列表、描点、连线的一般步骤

情感态度与价值观:

经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力,在探究活动中发展学生的合作意识和探究能力.

学习重点:熟练地作一次函数的图象及其性质

学习难点:作函数图象的一般步骤

教学方法:交流探究法

教学准备:多媒体课件

教学过程:

一、创设情境:

一天,小明以80米/分的速度去上学,离家5分钟后,小明的父亲发现小明的语文书未带,立即以120米/分的速度去追小明,请问小明离家的距离S(米)与小明父亲出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?S=80t+400(t

右面的图象能表示上面问题中的S与t的关系吗?

我们说,上面的图象是函数S=80t+400(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象。

二、探究新知:

什么是函数的图象?

把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).

例1 请作出一次函数y=2x+1的图象.

:

x …-2 -1 0 1 2 …

y=2x+1 …-3 -1 1 3 5 …

描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.

连线:把这些点依次连结起来,得到y=2x+1的图象.

由例1我们发现:作一个函数的图象需要三个步骤:

列表,描点,连线.

做一做:

(1)作出一次函数y=-2x+5的图象.

(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-2x+5.

请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.议一议:

(1)满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?

(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?

(3)一次函数y=kx+b的图象有什么特点?

由上面的讨论我们知道:一次函数的代数表达式与图象是一一对应的,即满足一次函数的代数表达式的x,y所对应的点(x,y)都在一次函数的图象上;一次函数的图象上的点(x,y)都满足一次函数的代数表达式.一次函数y=kx+b的图象是一条直线,以后可以称一次函数y=kx+b的图象为直线y=kx+b.

议一议:

既然我们得出一次函数y=kx+b的图象是一条直线.那么在画一次函数图象时有没有什么简单的方法呢?

因为“两点确定一条直线”,所以画一次函数图象时可以只描出两个点就可以了.

三、应用迁移:

例2 作出y=-x+2的图象.

解:列表

过点(0,2)和(2,0)作直线,则这条直线就是y=-x-2的图象.

四、课堂练习:

1、在同一直角坐标系中分别作出y=1

x与y= 3x+9的图象.

2

由上面的图象,你发现了什么?

2、如果y+3与x-2成正比例,且x=1时,y=1.

(1)写出y与x之间的函数关系式;

(2)画出函数的图象;

(3)求当x=0时,y的值和y=0时,x的值.

五、课堂小结:

内容:本节课我们通过对一次函数图象的研究,掌握了以下内容:(1)函数与图象之间是一一对应的关系;

(2)正比例函数的图象是一条经过原点的直线,一次函数y=kx+b 的图象是一条经过(0,b)的直线.

(3)作一次函数图象时,只取两个点,就能很快作出.

六、布置作业:

习题6.3 1,2,3.

七、板书设计:

相关文档
最新文档