专题4 解析几何

合集下载

解析几何知识点总结

解析几何知识点总结

解析几何知识点总结解析几何是数学中的一个分支,它研究几何图形在坐标系中的性质和变化规律。

在解析几何中,我们使用坐标系表示各种几何图形,通过运用代数的方法来研究它们的性质和关系。

本文将对解析几何的核心知识点进行总结,包括直线、圆、曲线以及相应的性质和公式。

直线是解析几何中最基本的图形之一。

在平面直角坐标系中,一条直线可以通过两点确定。

若给出直线上两点的坐标为(x₁, y₁)和(x₂, y₂),则可以得到直线的斜率 k 为:k = (y₂ - y₁) / (x₂ - x₁)斜率表示了直线与 x 轴的夹角和斜率的大小关系。

若直线垂直于 x 轴,则斜率不存在;若直线平行于 x 轴,则斜率为零。

直线的方程可以用点斜式、斜截式和一般式等多种方式表示。

点斜式的形式为:y - y₁ = k(x - x₁)斜截式的形式为:y = kx + b一般式的形式为:Ax + By + C = 0其中 A、B、C 为常数。

圆是解析几何中的另一个重要概念。

在平面直角坐标系中,圆的方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r 为半径。

通过圆的方程,我们可以得到圆上任意一点(x,y)满足的条件。

解析几何还涉及到曲线的研究。

常见的曲线包括抛物线、椭圆和双曲线等。

以抛物线为例,它的一般方程为:y = ax² + bx + c其中 a、b、c 为常数。

根据 a 的正负和 a 的绝对值大小,可以确定抛物线的开口方向和形状。

在解析几何中,还有一些重要的性质和公式需要掌握。

例如,两条直线的位置关系可以通过它们的斜率来判断。

如果两条直线的斜率相等,则它们平行;如果两条直线的斜率互为倒数,则它们垂直。

此外,解析几何还涉及到点、线、圆之间的距离计算。

点(x₁, y₁)和点(x₂, y₂)之间的距离可以通过以下公式计算:d = √[(x₂ - x₁)² + (y₂ - y₁)²]同样地,点(x₁, y₁)到直线 Ax + By + C = 0 的距离可以通过以下公式计算:d = |Ax₁ + By₁ + C| / √(A² + B²)通过掌握以上基本原理和公式,我们可以进一步应用解析几何的知识,解决实际问题。

[中学联盟]辽宁省沈阳市第二十一中学高三数学专题复习总结学案:专题四-解析几何.doc

[中学联盟]辽宁省沈阳市第二十一中学高三数学专题复习总结学案:专题四-解析几何.doc

高考命题趋势纵观每年高考全国卷和有关省市自主命题卷,关于解析几何的命题有如下几个显著特点: 1 •高考题型:解析几何的试题一般是选择题、填空题、解答题都会出现。

2•难易程度:考查解析几何的选择题、填空题为基础题或中档题,解答题一般会综合考查, 以中等偏难试题为主。

3•高考热点:解析几何的热点仍然是圆锥曲线的性质,直线和圆锥曲线的位置关系以及轨 迹问题,仍然以考査方程思想及用韦达定理处理弦长和弦中点为重点。

坐标法使平面向量 与平面解析几何自然地联系并有机结合起来。

相关交汇试题应运而生,涉及圆锥曲线参数 的取值范围问题也是命题亮点复习备考方略1. 加强直线和圆锥曲线的基础知识,初步掌握了解决直线与圆锥曲线有关问题的基本技能 和基本方法。

2. 由于直线与圆锥曲线是高考考查的重点内容,选择、填空题灵活多变,思维能力要求 较高,解答题背景新颖、综合性强,代数推理能力要求高,因此有必要对直线与圆锥曲线 的重点内容、高考的热点问题作深入的研究。

3. 在第一轮复习的基础上,再通过纵向深入,横向联系,进一步掌握解决直线与圆锥曲 线问题的思想和方法,提高我们分析问题和解决问题的能力。

【内容解读】点与直线的位置关系有:点在直线上、直线外两种位置关系,点在直线外时, 经常考查点到直线的距离问题;点与圆的位置关系有:点在圆外、圆上、圆外三种;直线 与圆的位置关系有:直线与圆相离、相切、相交三点,经常用圆心到直线之间的距离与圆 的半径比较来确定位置位置关系;圆与圆的位置关系有:两圆外离、外切、相交、内切、 内含五种,一般用两点之间的距离公式求两圆之间的距离,再与两圆的半径之和或差比较。

【命题规律】本节内容一般以选择题或填空题为主,难度不大,属容易题1. 若圆” + / —2①一 4g = 0的圆心到直线x-y-^-a = 0的距离为乎,则a 的值为()2. 若直线y = x + b 与曲线y = 3-yj4x-x 2有公共点,则b 的取值范围是()A.[l-2V2,l + 2>/2]B.[ 1-72,3]考点一:点、直线. 第一讲: 直线和圆的位置关系问题A. 一2或2B.号或書C. 2 或0D. 一2或0C.卜1,1 + 2血] DJ1-2V2 ,3]3.圆Ox: 和圆ft: A/-4.F =0的位置关系是( (A) 相离 (B)相交 (C)外切 考点二:直线、圆的方程问题【内容解读】直线方程的解析式有点斜式、斜截式、两点式、•截距式、一般式五种形式, 各有特点,根据具体问题,选择不同的解析式来方便求解。

专题4解析几何ppt课件

专题4解析几何ppt课件

因此“-3<m<5”是“方程 x 2 + =y 21表示椭圆”的必要不充分条
5m m 3
件.
【答案】B
名师诊断
专案突破
对点集训
决胜高考
5.(2012年淮南五校联考)椭圆 x 2 + y 2 =1的离心率为 4 ,则k的值为
9 4k
5
()
(A)-21.
(B)21.
(C)-1 9 或21.
25
(D)1 9 或21.
(3)抛物线:开口向右时y2=2px(p>0);开口向左时y2=-2px(p>0);开口向 上时x2=2py(p>0);开口向下时x2=-2py(p>0).
3.圆锥曲线的几何性质:范围、顶点、对称中心与对称轴、离心率 、渐近线、准线等.
4.直线与圆锥曲线的位置关系:利用直线方程与圆锥曲线方程联立 方程组,由方程组解的个数来确定直线与圆锥曲线的位置关系.
名师诊断
专案突破
对点集训
决胜高考
6.易忽视焦点位置对双曲线方程的影响,双曲线的渐近线方程表示 形式与焦点位置有关.
7.(1)易将椭圆标准方程中参数a、b、c的关系与双曲线标准方程中 三者关系相混淆;
(2)涉及用点斜式设过一点的直线方程时,一定要优先考虑斜率是否 存在,有时需要分类讨论;
(3)列方程组求解直线与圆锥曲线关系问题时,不少学生一方面怕算, 另一方面不会用设而不求法或其他方式简化运算.
名师诊断
专案突破
对点集训
决胜高考
(1)平行⇔A1B2-A2B1=0且B1C2-B2C1≠0; (2)相交⇔A1B2-A2B1≠0; (3)重合⇔A1B2-A2B1=0且B1C2-B2C1=0. 特殊地,直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直⇔A1A2+B1B2 =0. 5.距离公式:

(浙江专用)高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线中的定点、定值、最值与范围问题学案-

(浙江专用)高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线中的定点、定值、最值与范围问题学案-

第3讲 圆锥曲线中的定点、定值、最值与范围问题高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求.真 题 感 悟(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.解 (1)因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.考 点 整 合1.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.2.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐标,这个切点就是距离取得最值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系.(3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.热点一 定点与定值问题 [考法1] 定点的探究与证明【例1-1】 (2018·杭州调研)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.(1)解 由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又由题意知(2+c )2+12=10,解得c =1, 故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k2.①∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7.由Δ>0,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2), 直线过定点(2,0),与已知矛盾. 当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27, 直线过定点⎝ ⎛⎭⎪⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0. 探究提高 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[考法2] 定值的探究与证明【例1-2】 (2018·金丽衢联考)已知O 为坐标原点,直线l :x =my +b 与抛物线E :y 2=2px (p >0)相交于A ,B 两点. (1)当b =2p 时,求OA →·OB →;(2)当p =12且b =3时,设点C 的坐标为(-3,0),记直线CA ,CB 的斜率分别为k 1,k 2,证明:1k 21+1k 22-2m 2为定值.解 设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y 2=2px ,x =my +b ,消元得y 2-2mpy -2pb =0,所以y 1+y 2=2mp ,y 1y 2=-2pb .(1)当b =2p 时,y 1y 2=-4p 2,x 1x 2=(y 1y 2)24p2=4p 2, 所以OA →·OB →=x 1x 2+y 1y 2=4p 2-4p 2=0.(2)证明 当p =12且b =3时,y 1+y 2=m ,y 1y 2=-3.因为k 1=y 1x 1+3=y 1my 1+6,k 2=y 2x 2+3=y 2my 2+6, 所以1k 1=m +6y 1,1k 2=m +6y 2.因此1k 21+1k 22-2m 2=⎝ ⎛⎭⎪⎫m +6y 12+⎝ ⎛⎭⎪⎫m +6y 22-2m 2=2m 2+12m ⎝ ⎛⎭⎪⎫1y 1+1y 2+36⎝ ⎛⎭⎪⎫1y 21+1y 22-2m 2=12m ×y 1+y 2y 1y 2+36×(y 1+y 2)2-2y 1y 2y 21y 22=12m ×-m 3+36×m 2+69=24,即1k 21+1k 22-2m 2为定值.探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练1-1】 (2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1),过点⎝ ⎛⎭⎪⎫0,12作直线l与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解 把P (1,1)代入y 2=2px ,得p =12,所以抛物线C 的方程为y 2=x ,焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14. (2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2-4×4k 2=16(1-2k ), 由题可知有两交点,所以判别式大于零,所以k <12.则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k 2k2x 2=0.所以y 1+y 2x 1x 2=2x 1.故A 为线段BM 的中点. 【训练1-2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3.∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 0=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值.热点二 最值与范围问题[考法1] 求线段长度、面积(比值)的最值【例2-1】 (2018·湖州调研)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 分别相交于P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 的中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y 得,k 2x 2-(8k +4)x +16=0(1<k <2).设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k 2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k2 =2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6.(2)由于S 1S 2=|PA ||PB |=x 1x 2,由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2=⎝ ⎛⎭⎪⎫1k +22-2∈⎝ ⎛⎭⎪⎫174,7, 由S 1S 2+S 2S 1>174得,4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0, 解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14.由S 1S 2+S 2S 1<7得,⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0, 解得7-352<S 1S 2<7+352,又S 1S 2<1,所以7-352<S 1S 2<1. 综上,7-352<S 1S 2<14,即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 探究提高 (1)处理求最值的式子常用两种方式:①转化为函数图象的最值;②转化为能利用基本不等式求最值的形式.(2)若得到的函数式是分式形式,函数式的分子次数不低于分母时,可利用分离法求最值;若分子次数低于分母,则可分子、分母同除分子,利用基本不等式求最值(注意出现复杂的式子时可用换元法).【训练2-1】 (2018·温州质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且过点⎝⎛⎭⎪⎫1,63.(1)求椭圆C 的方程;(2)设与圆O :x 2+y 2=34相切的直线l 交椭圆C 与A ,B 两点,求△OAB 面积的最大值,及取得最大值时直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧1a 2+23b2=1,c a =63,a 2=b 2+c 2,解得a 2=3,b 2=1,∴x 23+y 2=1.(2)①当k 不存在时,直线为x =±32,代入x 23+y 2=1,得y =±32, ∴S △OAB =12×3×32=34;②当k 存在时,设直线为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +m ,消y 得(1+3k 2)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km1+3k2,x 1x 2=3m 2-31+3k2,直线l 与圆O 相切d =r 4m 2=3(1+k 2), ∴|AB |=1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-12(m 2-1)1+3k 2=3·1+10k 2+9k41+6k 2+9k 4=3·1+4k21+6k 2+9k4 =3×1+41k 2+9k 2+6≤2.当且仅当1k 2=9k 2,即k =±33时等号成立,∴S △OAB =12|AB |×r ≤12×2×32=32,∴△OAB 面积的最大值为32, ∴m =±34⎝ ⎛⎭⎪⎫1+13=±1, 此时直线方程为y =±33x ±1. [考法2] 求几何量、某个参数的取值范围【例2-2】 已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 解 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk2, 故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk2. 由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t. 由2|AM |=|AN |得23+tk 2=k3k 2+t , 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 因此k 的取值范围是(32,2).探究提高 解决范围问题的常用方法:(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. (3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.【训练2-2】 (2018·台州调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2. 设直线FM 的斜率为k (k >0),F (-c ,0), 则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由|FM |=(c +c )2+⎝ ⎛⎭⎪⎫233c -02=433, 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t (x +1),x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x23(x +1)2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x, 即y =mx (x ≠0),与椭圆方程联立, 整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是 ⎝⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决; (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.一、选择题1.F 1,F 2是椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上运动,则PF 1→·PF 2→的最大值是( )A.-2B.1C.2D.4解析 设P (x ,y ),依题意得点F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2,注意到-2≤34x 2-2≤1,因此PF 1→·PF 2→的最大值是1.答案 B2.(2018·镇海中学二模)若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A.2B.12C.14D.18解析 根据题意,设P 到准线的距离为d ,则有|PF |=d .抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18.答案 D3.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)解析 (1)当焦点在x 轴上,依题意得 0<m <3,且3m ≥tan ∠AMB 2= 3.∴0<m <3且m ≤1,则0<m ≤1. (2)当焦点在y 轴上,依题意m >3,且m3≥tan ∠AMB2=3,∴m ≥9,综上,m 的取值范围是(0,1]∪[9,+∞). 答案 A4.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=( ) A.3B.5C.6D.10解析 因y 2=8x ,则p =4,焦点为F (2,0),准线l :x =-2.如图,M 为FN 中点, 故易知线段BM 为梯形AFNC 的中位线, ∵|CN |=2,|AF |=4, ∴|MB |=3,又由定义|MB |=|MF |, 且|MN |=|MF |,∴|NF |=|NM |+|MF |=2|MB |=6. 答案 C5.(2018·北京西城区调研)过抛物线y 2=43x 的焦点的直线l 与双曲线C :x 22-y 2=1的两个交点分别为(x 1,y 1),(x 2,y 2),若x 1·x 2>0,则直线l 的斜率k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,12B.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫-22,22D.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ 解析 易知双曲线两渐近线为y =±22x ,抛物线的焦点为双曲线的右焦点,当k >22或k <-22时,l 与双曲线的右支有两个交点,满足x 1x 2>0. 答案 D6.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A ,B ,则直线AB 恒过的点的坐标为( ) A.(0,1)B.(0,2)C.(2,0)D.(1,0)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2,又点Q (t ,-2)的坐标适合这两个方程, 代入得-2=12x 1t -y 1,-2=12x 2t -y 2,这说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过点(0,2).答案 B 二、填空题7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.解析 双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x -2)2+y 2=2,其圆心为(2,0),半径为 2. 因为直线bx ±ay =0和圆(x -2)2+y 2=2相交, 所以|2b |a 2+b2<2,整理得b 2<a 2.从而c 2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 答案 (1,2)8.(2018·金华质检)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________,椭圆的离心率为________.解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中垂直于长轴的弦最短,即2b 2a=3,可求得b 2=3,即b=3,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=1-34=12.答案3 129.已知抛物线C :x 2=8y 的焦点为F ,动点Q 在C 上,圆Q 的半径为1,过点F 的直线与圆Q 切于点P ,则FP →·FQ →的最小值为________,此时圆Q 的方程为________. 解析 如图,在Rt △QPF 中,FP →·FQ →=|FP →||FQ →|cos ∠PFQ =|FP →||FQ →||PF →||FQ →|=|FP →|2= |FQ →|2-1.由抛物线的定义知:|FQ →|=d (d 为点Q 到准线的距离),易知,抛物线的顶点到准线的距离最短,∴|FQ →|min =2, ∴FP →·FQ →的最小值为3. 此时圆Q 的方程为x 2+y 2=1. 答案 3 x 2+y 2=110.(2018·温州模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴、y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0). 则|AC |+|BD |=y 1+x 2=y 1+y 224.又y 1y 2=-p 2=-4,∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x (x <0),则g ′(x )=x 3+82x2,从而g (x )在(-∞,-2)递减,在(-2,0)递增.∴当x =-2时,|AC |+|BD |取最小值为3. 答案 311.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c ,0), 则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得: c 2-34a 2+b24=0,①又因为b 2=a 2-c 2,代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a=23=63. 答案 63三、解答题12.(2018·北京海淀区调研)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0. 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.13.(2018·杭州调研)已知F 是抛物线T :y 2=2px (p >0)的焦点,点P ()1,m 是抛物线上一点,且|PF |=2,直线l 过定点(4,0),与抛物线T 交于A ,B 两点,点P 在直线l 上的射影是Q .(1)求m ,p 的值;(2)若m >0,且|PQ |2=|QA |·|QB |,求直线l 的方程. 解 (1)由|PF |=2得,1+p2=2,所以p =2,将x =1,y =m 代入y 2=2px 得,m =±2.(2)因为m >0,故由(1)知点P (1,2),抛物线T :y 2=4x .设直线l 的方程是x =ny +4,由⎩⎪⎨⎪⎧x =ny +4,y 2=4x 得,y 2-4ny -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4n ,y 1·y 2=-16. 因为|PQ |2=|QA |·|QB |,所以PA ⊥PB , 所以PA →·PB →=0,且1≠2n +4,所以(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=0,且n ≠-32.由(ny 1+3)(ny 2+3)+(y 1-2)(y 2-2)=0得, (n 2+1)y 1y 2+(3n -2)(y 1+y 2)+13=0,-16(n 2+1)+(3n -2)·4n +13=0,4n 2+8n +3=0,解得,n =-32(舍去)或n =-12,所以直线l 的方程是:x =-12y +4,即2x +y -8=0.14.(2018·绍兴模拟)如图,已知函数y 2=x 图象上三点C ,D ,E ,直线CD 经过点(1,0),直线CE 经过点(2,0).(1)若|CD |=10,求直线CD 的方程; (2)当△CDE 的面积最小时,求点C 的横坐标. 解 设C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 直线CD 的方程为:x =my +1.由⎩⎪⎨⎪⎧x =my +1,y 2=x 得:y 2-my -1=0,从而⎩⎪⎨⎪⎧y 1y 2=-1,y 1+y 2=m . (1)由题意,得|CD |=1+m 2×m 2+4=10,得m =±1, 故所求直线方程为x =±y +1,即x ±y -1=0.(2)由(1)知y 2=-1y 1,同理可得y 3=-2y 1,E ⎝ ⎛⎭⎪⎫4y 21,-2y 1,并不妨设y 1>0,则E 到直线CD 的距离为d =⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2,S △CDE =121+m 2×m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2=12m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-1,而m =y 1+y 2=y 1-1y 1,所以S △CDE =12y 21+1y 21+2×⎪⎪⎪⎪⎪⎪2y 21+1=12⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫y 1+1y 1×⎝ ⎛⎭⎪⎫2y 21+1,得S △CDE =12⎝ ⎛⎭⎪⎫y 1+3y 1+2y 31.考虑函数f (x )=x +3x +2x3,令f ′(x )=1-3x 2-6x 4=x 4-3x 2-6x 4=0,得x 2=3+332时f (x )有最小值, 即x 1=y 21=3+332时,△CDE 的面积最小, 也即△CDE 的面积最小时,点C 的横坐标为3+332. 15.(2018·湖州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴长为2.直线l :y =kx +m 与椭圆C 交于M ,N 两点,又l 与直线y =12x ,y =-12x 分别交于A ,B 两点,其中点A 在第一象限,点B 在第二象限,且△OAB 的面积为2(O 为坐标原点).(1)求椭圆C 的方程;(2)求OM →·ON →的取值范围.解 (1)由于b =1且离心率e =22, ∴c a =a 2-1a =22,则a 2=2, 因此椭圆的方程为x 22+y 2=1. (2)联立直线l 与直线y =12x ,可得点A ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k , 联立直线l 与直线y =-12x ,可得点B ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k , 又点A 在第一象限,点B 在第二象限,∴⎩⎪⎨⎪⎧2m 1-2k >0,-2m 1+2k <0⎩⎪⎨⎪⎧m (1-2k )>0,m (1+2k )>0, 化为m 2(1-4k 2)>0,而m 2≥0,∴1-4k 2>0.又|AB |=⎝ ⎛⎭⎪⎫2m 1-2k +2m 1+2k 2+⎝ ⎛⎭⎪⎫m 1-2k -m 1+2k 2=4|m |1-4k 21+k 2, 原点O 到直线l 的距离为|m |1+k 2,即△OAB 底边AB 上的高为|m |1+k 2, ∴S △OAB =124|m |1+k 21-4k 2·|m |1+k 2=2m 21-4k2=2,∴m 2=1-4k 2.设M (x 1,y 1),N (x 2,y 2),将直线l 代入椭圆方程,整理可得: (1+2k 2)x 2+4kmx +2m 2-2=0,∴x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2, Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=48k 2>0,则k 2>0,∴y 1·y 2=(kx 1+m )(kx 2+m )=m 2-2k 21+2k 2, ∴OM →·ON →=x 1x 2+y 1y 2=2m 2-21+2k 2+m 2-2k 21+2k 2=81+2k 2-7. ∵0<k 2<14,∴1+2k 2∈⎝ ⎛⎭⎪⎫1,32, ∴81+2k 2∈⎝ ⎛⎭⎪⎫163,8,∴OM →·ON →∈⎝ ⎛⎭⎪⎫-53,1. 故OM →·ON →的取值范围为⎝ ⎛⎭⎪⎫-53,1.。

微专题4解析几何初步中几个易错问题(pdf版,无答案)-江苏省启东中学高一数学“空中课堂”学案

微专题4解析几何初步中几个易错问题(pdf版,无答案)-江苏省启东中学高一数学“空中课堂”学案

微专题4解析几何初步中几个易错问题
一、斜率与倾斜角之间范围互化致误
例1、(1)直线l经过A(2,1),B(1,m2)(m∈R)两点,则直线l的倾斜角的取值范围为.
(2)直线x cosα+3y+2=0的倾斜角的范围是.
例2、求过点(-4,0),倾斜角的正弦值为10
10的直线方程.
二、求直线的方程时漏解致误
(1)用截距式设方程,漏掉过原点的情形
例3、过点P(2,3)且在两坐标轴上截距相等的直线方程为.
(2)用点斜式设直线方程,忘记讨论斜率不存在情形
例4、(1)直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为________.
(2)经过点P(2,4)的圆(x-1)2+(y-1)2=1的切线方程为________.
(3)过点M(4,-8)作直线l与圆C:x2+y2-4x+2y-3=0的割线交圆于A、B两点,若|AB|=4,求直线l的方程.
二、“两直线平行”与“斜率相等”等价吗?
例5、(1)已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0平行,求a的值.。

专题4 阿基米德三角形

专题4 阿基米德三角形

专题4 阿基米德三角形专题3 阿基米德三角形 微点1 阿基米德三角形 【微点综述】在近几年全国各地高考的解析几何试题中可以发现许多试题涉及到与一个特殊的三角形——由抛物线的弦及过弦的端点的两条切线所围成的三角形有关的问题,这个三角形常被称为阿基米德三角形. 阿基米德三角形包含了直线与圆锥曲线相交、相切两种位置关系,聚焦了轨迹方程、定值、定点、弦长、面积等解析几何的核心问题,“坐标法”的解题思想和数形结合方法的优势体现得淋漓尽致,能很好的提升学生解决圆锥曲线问题的能力,落实逻辑推理、数学抽象、数学运算等核心素养.鉴于此,微点研究阿基米德三角形。

一、预备知识——抛物线上一点的切线方程(1)过抛物线()220y px p =>上一点()00,M x y 的切线方程为:()00y y p x x =+;(2)过抛物线()220y px p =−>上一点()00,M x y 的切线方程为:()00y y p x x =−+;(3)过抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00x x p y y =+; (4)过抛物线()220x py p =−>上一点()00,M x y 的切线方程为:()00x x p y y =−+.下面仅以情形(3)为例给出证明,同理可证其余三种情形。

证法1:设抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00y y k x x −=−,代入22x py =,整理得2002220x pkx py pkx −−+=,由0x ∆=,得()222000044220,220,p k py pkx pk x k y +−=∴−+=抛物线上一点处的切线唯一,∴ 关于k 的一元二次方程200220pk x k y −+=有两个相等的实数根,0,x k p∴=∴所求的切线方程为()000x y y x x p−=−,即2000x x x py py =+−,又2002x py =,∴过抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00x x p y y =+。

解析几何知识点总结

解析几何知识点总结

解析几何知识点总结一、直线1、直线的倾斜角直线倾斜角的范围是0, π)。

当直线与 x 轴平行时,倾斜角为 0;当直线与 x 轴垂直时,倾斜角为π/2 。

2、直线的斜率经过两点 P₁(x₁, y₁),P₂(x₂, y₂)(x₁≠x₂)的直线的斜率 k =(y₂ y₁)/(x₂ x₁)。

当直线的倾斜角α≠π/2 时,直线的斜率 k =tanα 。

3、直线的方程(1)点斜式:y y₁= k(x x₁) ,其中(x₁, y₁) 是直线上的一点,k 是直线的斜率。

(2)斜截式:y = kx + b ,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁) ,其中(x₁, y₁),(x₂, y₂) 是直线上的两点。

(4)截距式:x/a + y/b = 1 ,其中 a 是直线在 x 轴上的截距,b是直线在 y 轴上的截距。

(5)一般式:Ax + By + C = 0 (A、B 不同时为 0)。

4、两条直线的位置关系(1)平行:若两条直线的斜率都存在,分别为 k₁,k₂,则 k₁=k₂;若两条直线的一般式方程分别为 A₁x + B₁y + C₁= 0 ,A₂x+ B₂y + C₂= 0 ,则 A₁B₂ A₂B₁= 0 且 A₁C₂ A₂C₁ ≠ 0 。

(2)垂直:若两条直线的斜率都存在,分别为 k₁,k₂,则k₁k₂=-1 ;若两条直线的一般式方程分别为 A₁x + B₁y + C₁=0 ,A₂x + B₂y + C₂= 0 ,则 A₁A₂+ B₁B₂= 0 。

5、点到直线的距离点 P(x₀, y₀) 到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²) 。

6、两条平行线间的距离两条平行线 Ax + By + C₁= 0 ,Ax + By + C₂= 0 (C₁≠C₂)间的距离 d =|C₁ C₂| /√(A²+ B²) 。

专题精品课件4--解析几何解答题的解法

专题精品课件4--解析几何解答题的解法
(4)交轨法:动点是两条动曲线的交点构成的,由x,y满足的两个动曲线方程中 消去参数,可得所求方程.故交轨法也属参数法.
解析几何解答题的解法
应试策略
2.熟练掌握直线、圆及圆锥曲线的基本知识
(1)直线和圆 ①直线的倾斜角及其斜率确定了直线的方向.需要注意的是:(ⅰ)倾斜角α的范围是: 0≤α<π;(ⅱ)所有的直线必有倾斜角,但未必有斜率. ②直线方程的四种特殊形式,每一种形式都有各自成立的条件,应在不同的题设条 件下灵活使用.如截距式不能表示平行于x轴,y轴以及过原点的直线,在求直线方程时尤其 是要注意斜率不存在的情况. ③讨论点与圆、直线与圆、圆与圆的位置关系时,一般可从代数特征(方程组解的个 数)或几何特征(点或直线到圆心的距离与两圆的圆心距与半径的关系)去考虑,其中几何 特征较为简捷、实用.
解析几何解答题的解法
试题特点
2007年高考各地的19套试卷中,每套都有1道解答题,椭圆的有10道,双曲线的有
2道,抛物线的5道,直线与圆的有2道,涉及到圆锥曲线中的最值问题、轨迹问题、中
点弦问题、存在性问题的探讨,以及定点定值问题的探讨等.
在2008年高考的解析几何试题中,像有关面积的问题是高考的热点问题,但在2007年 及以前主要是讨论三角形的面积,而近两年有多处出现了讨论四边形面积的问题,如2007年 全国卷一理科第21题;2008年北京卷理科第19题等等.以后还会讨论多边形的问题.
解析几何解答题的解法
应试策略
②椭圆的标准方程有两种形式,决定于焦点所在的坐标轴.焦点
是F(±c,0)时,标准方程为 x2
y
2
=1(a>b>0);焦点是F(0,±c)
时,标准方程为y 2
x2
a2 b2

2022年高考数学二轮考点复习专题四 解析几何第2课时 圆锥曲线中的定点、定值问题

2022年高考数学二轮考点复习专题四   解析几何第2课时  圆锥曲线中的定点、定值问题

圆锥曲线中的定值问题 【典例 2】(16 分)(2021·新高考Ⅰ卷)在平面直角坐标系 xOy 中,已知点 F1(- 17 , 0),F2( 17 ,0),点 M 满足|MF1|-|MF2|=2,记 M 的轨迹为 C. (1)求 C 的方程; (2)设点 T 在直线 x=21 上,过 T 的两条直线分别交 C 于 A,B 两点和 P,Q 两点,且 |TA|·|TB|=|TP|·|TQ|,求直线 AB 的斜率与直线 PQ 的斜率之和.
=(n2+1k212)-(116+k21 ) ,……10 分
设 PQ:y-n=k2x-12 , 同理|TP|·|TQ|=(n2+1k222)-(116+k22 ) ,
因为|TA|·|TB|=|TP|·|TQ|,
所以k112+-k1216
=k122+-k2216
,1+k21
17 -16
=1+k22
17 -16
所以 Δ=(4kt)2-8(2k2+1)(t2-2)=8[2(2k2+1)-t2]>0.设 A(x1,y1),B(x2,y2),
则 x1+x2=-2k42+kt 1
2(t2-2) ,x1x2= 2k2+1

所以 y1+y2=k(x1+x2)+2t=2k22+t 1 .
因为四边形 OAPB 是平行四边形, 所以O→P =O→A +O→B =(x1+x2,y1+y2)=(-2k42k+t 1 ,2k22+t 1 ),则 P(-2k42k+t 1 ,
第2课时 圆锥曲线中的定点、定值问题
圆锥曲线中的定点问题 【典例 1】(2021·滨州一模)已知点 A(0,-1),B(0,1),动点 P 满足|P→B ||A→B |=P→A ·B→A . 记点 P 的轨迹为曲线 C. (1)求 C 的方程; (2)设 D 为直线 y=-2 上的动点,过 D 作 C 的两条切线,切点分别是 E,F.证明:直 线 EF 过定点.

高考数学(理)之平面向量 专题04 平面向量在平面几何、三角函数、解析几何中的应用(解析版)

高考数学(理)之平面向量 专题04  平面向量在平面几何、三角函数、解析几何中的应用(解析版)

平面向量04 平面向量在平面几何、三角函数、解析几何中的应用一、具本目标: 一)向量的应用1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题. 二)考点解读与备考:1.近几年常以考查向量的共线、数量积、夹角、模为主,基本稳定为选择题或填空题,难度较低;2.常与平面几何、三角函数、解析几何等相结合,以工具的形式进行考查,常用向量的知识入手.力学方面应用的考查较少.3.备考重点:(1) 理解有关概念是基础,掌握线性运算、坐标运算的方法是关键;(2)解答与平面几何、三角函数、解析几何等交汇问题时,应注意运用数形结合的数学思想,将共线、垂直等问题,通过建立平面直角坐标系,利用坐标运算解题.4.难点:向量与函数、三角函数、解析几何的综合问题.以向量形式为条件,综合考查了函数、三角、数列、曲线等问题.要充分应用向量的公式及相关性质,会用向量的几何意义解决问题,有时运用向量的坐标运算更能方便运算. 二、知识概述:常见的向量法解决简单的平面几何问题: 1.垂直问题:(1)对非零向量a r 与b r ,a b ⊥⇔r r.(2)若非零向量1122(,),(,),a x y b x y a b ==⊥⇔r r r r.2.平行问题:(1)向量a r 与非零向量b r共线,当且仅当存在唯一一个实数λ,使得 .(2)设1122(,),(,)a x y b x y ==r r是平面向量,则向量a r 与非零向量b r 共线⇔ .【考点讲解】3.求角问题:(1)设,a b r r是两个非零向量,夹角记为α,则cos α= .(2)若1122(,),(,)a x y b x y ==r r是平面向量,则cos α= .4.距离(长度)问题:(1)设(,)a x y =r,则22a a ==r r ,即a =r .(2)若1122(,),(,)A x y B x y ,且a AB =r u u u r ,则AB AB ==u u u r.【答案】1.1212(1)0,(2)0.a b x x y y ⋅=+=r r2.(1)a b λ=r r,(2)12210x y x y -=3.(1)a b a b ⋅⋅r r r r.4.(1)22x y +【优秀题型展示】 1. 在平面几何中的应用:已知ABC D 中,(2,1),(3,2),(3,1)A B C ---,BC 边上的高为AD ,求点D 和向量AD u u u r的坐标.【解析】设点D 坐标(x ,y ),由AD 是BC 边上的高可得⊥,且B 、D 、C 共线,∴⎪⎩⎪⎨⎧=⋅//0∴⎩⎨⎧=+---+=--⋅+-0)1)(3()2)(3(0)3,6()1,2(y x y x y x ∴⎩⎨⎧=+---+=+---0)1)(3()2)(3(0)1(3)2(6y x y x y x ∴⎩⎨⎧=+-=-+012032y x y x解得⎩⎨⎧==11y x ∴点D 坐标为(1,1),AD =(-1,2). 【答案】AD =(-1,2)【变式】已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r,则顶点D 的坐标为 ( ) A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),【解析】设22(,),(3,1)(1,2)(4,3),(,2),,37222x x D x y BC AD x y y y 祆==镲镲镲=---==-\\眄镲-==镲镲铑u u u r u u u rQ , 【答案】A【变式】已知正方形OABC 的边长为1,点D E 、分别为AB BC 、的中点,求cos DOE ∠的值.【解析】以OA OC 、为坐标轴建立直角坐标系,如图所示.由已知条件,可得114.225⋅==∴∠=⋅u u u r u u u ru u u r u u u r u u u r u u u r (1,),(,1),cos =OD OE OD OE DOE OD OE2.在三角函数中的应用:已知向量3(sin ,)4a x =r ,(cos ,1)b x =-r .设函数()2()f x a b b =+⋅r r r ,已知在ABC ∆中,内角A B C 、、的对边分别为a bc 、、,若a =2b =,sin B =()4cos(2)6f x A π++([0,]3x π∈)的取值范围.【解析】 由正弦定理得或 . 因为,所以4A π=.因为+.所以, ,, 所以. 【答案】()⎥⎦⎤⎢⎣⎡--∈⎪⎭⎫ ⎝⎛++212,12362cos 4πA x f sin ,sin sin 24a b A A A B π===可得所以43π=A a b >()2())4f x a b b x π=+⋅=+r r r 32()⎪⎭⎫⎝⎛++62cos 4πA x f =)4x π+12-0,3x π⎡⎤∈⎢⎥⎣⎦Q 112,4412x πππ⎡⎤∴+∈⎢⎥⎣⎦()21262cos 4123-≤⎪⎭⎫ ⎝⎛++≤-πA x f3.在解析几何中的应用:(1)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为________.【解析】如图所示,以OA 、OB 为边作平行四边形OACB , 则由|OA →+OB →|=|OA →-OB →|得, 平行四边形OACB 是矩形,OA →⊥OB →.由图象得,直线y =-x +a 在y 轴上的截距为±2.【答案】±2(2)椭圆的焦点为F F ,点P 为其上的动点,当∠F P F 为钝角时,点P 横坐标的取值范围是 .【解析】法一:F 1(-,0)F 2(,0),设P (3cos ,2sin ).为钝角,.∴=9cos 2-5+4sin 2=5 cos 2-1<0.解得: ∴点P 横坐标的取值范围是(). 14922=+y x ,121255θθ21PF F ∠Θ123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-u u u r u u u u r(θθθ55cos 55<<-θ553,553-ODC BA【答案】() 法二:F 1(-,0)F 2(,0),设P (x,y ).为钝角,∴ ()()125,5,PF PF x y x y •=--⋅-u u u r u u u u r225x y =+-=25109x -<. 解得:353555x -<<.∴点P 横坐标的取值范围是(). 【答案】() 2. 在物理学中的应用:如图所示,用两条成120º的等长的绳子悬挂一个灯具,已知灯具的重量为10N ,则每根绳子的拉力是 .]【解析】 ∵绳子的拉力是一样的(对称) ,∴OA =OB ,∴四边形OADB 为菱形 .∵∠AOB =120º ,∴∠AOD =60º .又OA =OB =AD , ∴三角形OAD 为等边三角形 ,∴OD =OA . 又根据力的平衡得OD =OC =10 , ∴OA =10 ,∴OA =OB =10 . ∴每根绳子的拉力大小是10N. 【答案】10N553,553-5521PF F ∠Θ553,553-553,553-【真题分析】1.【2017年高考全国II 卷理数】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .2-B .32-C .43- D .1-【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-u u u r ,(1,)PB x y =---u u u r,(1,)PC x y =--u u u r ,所以(2,2)PB PC x y +=--u u u r u u u r ,22()22)22(PA PB PC x y y x y ⋅+=-=+-u u u r u u u r u u u r233)222-≥-,当(0,2P 时,所求的最小值为32-,故选B . 【答案】B2.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =u u u r ,则AE BF ⋅u u u r u u u r的最小值为___________.【解析】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=u u u r;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-u u u r u u u r ,;∴2AE BF ab ⋅=-+u u u r u u u r; 当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-u u u r u u u r;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅u u u r u u u r 的最小值为﹣3,同理求出b =a +2时,AE BF ⋅u u u r u u u r的最小值为﹣3.故答案为:﹣3.【答案】-33.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为___________.【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u r u u u r ,由0AB CD ⋅=u u u r u u u r 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【答案】34.【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b ,所以|2|+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为【答案】5.【2017年高考江苏卷】如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC uuu r 的模分别为1,1,2,OA u u u r 与OCuuu r的夹角为α,且tan α=7,OB uuu r 与OC uuu r 的夹角为45°.若OC mOA nOB =+u u u r u u u r u u u r(,)m n ∈R ,则m n +=___________.【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩0210n m +=-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【答案】36.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【解析】设向量,a b 的夹角为θ,则-==a b+==a b ++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是【答案】4,7. 【2016·江苏卷】如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4, BF →·CF →=-1,则BE →·CE →的值是________.【解析】 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点,则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b ,AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝⎛⎭⎫-23a +13b ·⎝⎛⎭⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b ,CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝⎛⎭⎫-56a +16b ·⎝⎛⎭⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.【答案】 788.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【解析】(1)因为co ()s ,sin x x =a,(3,=b ,a ∥b,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-.又[]0πx ∈,,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3; 当π6x +=π,即5π6x =时,()f x取到最小值-【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x取到最小值-.1.已知数列{}n a 为等差数列,且满足32015BA a OB a OC =+u u u r u u u r u u u r ,若()AB AC R λλ=∈u u u r u u u r,点O 为直线BC 外一点,则12017a a +=( )A. 0B. 1C. 2D. 4【解析】∵32015BA a OB a OC =+u u u r u u u r u u u r , ∴32015OA OB a OB a OC -=+u u u r u u u r u u u r u u u r, 即()320151OA a OB a OC =++u u u r u u u r u u u r , 又∵()AB AC R λλ=∈u u u r u u u r,∴3201511a a ++=, ∴12017320150a a a a +=+=. 【答案】A2.直角ABC V 中, AD 为斜边BC 边的高,若1AC =u u u r , 3AB =u u u r,则CD AB ⋅=u u u r u u u r ( )【模拟考场】A .910 B . 310 C . 310- D . 910-【解析】依题意BC =22,AC AC CD CB CD CB =⋅==103cos ==BC AB B,所以有9cos 310CD AB CD AB B ⋅=⋅⋅==u u u r u u u r u u u r u u u r . 【答案】A3.已知正三角形ABC 的边长为,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BMuuu r 的最大值是( ) A.B. C. D.【解析】本题考点是向量与平面图形的综合应用.由题意可设D 为三角形的内心,以D 为原点,直线DA 为x 轴建立平面直角坐标系,由已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒u u u r u u u r u u u r. 则()((2,0,1,,1,.A B C --设(),,P x y 由已知1AP =u u u r ,得()2221x y -+=,又11,,,,,22x x PM MC M BM ⎛⎛-+=∴∴= ⎝⎭⎝⎭u u u u r u u u u r u u u u r()(22214x y BM -++∴=u u u u r ,它表示圆()2221x y -+=上点().x y 与点(1,--距离平方的14,()22max149144BM⎫∴==⎪⎭u u u u r ,故选B.【答案】B4.已知曲线C :x =直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r,则m 的取值范围为 .【解析】本题考点是向量线性运算与解析几何中点与直线的位置关系的应用.由0AP AQ +=u u u r u u u r r知A 是PQ的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.3244344943637+433237+【答案】[2,3]5.在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD u u u r=1,则OA OB OD ++u u u r u u u r u u u r 的最大值是_________.【解析】本题的考点是参数方程中的坐标表示, 圆的定义与 三角函数的值域.由题意可知C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos sin D D x y θθ=+⎧⎨=⎩(θ为参数且[)0,2θπ∈),所以设D 的坐标为()[)()3cos ,sin 0,2θθθπ+∈, 则OA OB OD ++=u u u r u u u r u uu r=因为2cos θθ+=所以OA OB OD ++的最大值为1==+故填1【答案】1+6.在△ABC 中,∠ABC =120°,BA =2,BC =3,D ,E 是线段AC 的三等分点,则BD →·BE →的值为________. 【解析】 由题意得BD →·BE →=(BA →+AD →)·(BC →+CE →)=⎝⎛⎭⎫BA →+13AC →·⎝⎛⎭⎫BC →+13CA → =⎣⎡⎦⎤BA →+13(BC →-BA →)·⎣⎡⎦⎤BC →+13(BA →-BC →)=⎝⎛⎭⎫13BC →+23BA →·⎝⎛⎭⎫23BC →+13BA → =29BC →2+59BC →·BA →+29BA →2=29×9+59×2×3×cos 120°+29×4=119. 【答案】1197.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF . 若AE →·AF →=1,则λ的值为________. 【解析】法一、 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫BC →+1λAB →=⎝⎛⎭⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝⎛⎭⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.法二、 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0),D (3,0).由BC =3BE ,DC =λDF .可求点E ,F 的坐标分别为E ⎝⎛⎭⎫-233,-13,F ⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ, ∴AE →·AF →=⎝⎛⎭⎫-233,-43·⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ-1=-2⎝⎛⎭⎫1-1λ+43⎝⎛⎭⎫1+1λ=1,解得λ=2. 【答案】28.在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.【解析】AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.【答案】3119.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =__________;y =__________.【解析】MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.【答案】 12 -1610.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.【解析】法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →,∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918.法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝⎛⎭⎫32,32,D ⎝⎛⎭⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝⎛⎭⎫2-12λ,32λ,F ⎝⎛⎭⎫12+19λ,32,λ>0,所以AE →·AF →=⎝⎛⎭⎫2-12λ⎝⎛⎭⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0, 当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.【答案】291811.已知矩形ABCD 的边AB =2,AD =1.点P ,Q 分别在边BC ,CD 上,且∠P AQ =π4,则AP →·AQ →的最小值为________.【解析】法一(坐标法) 以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则A (0,0),B (2,0),D (0,1).设∠P AB =θ,则AP →=(2,2tan θ),AQ →=⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1,0≤tan θ≤12. 因为AP →·AQ →=(2,2tan θ)·⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1=2tan ⎝⎛⎭⎫π4-θ+2tan θ=2(1-tan θ)1+tan θ+2tan θ=41+tan θ+2tan θ-2=41+tan θ+2(tan θ+1)-4≥42-4,当且仅当tan θ=2-1时,“=”成立,所以AP →·AQ →的最小值为42-4.法二(基底法) 设BP =x ,DQ =y ,由已知得,tan ∠P AB =x2,tan ∠QAD =y ,由已知得∠P AB +∠QAD =π4,所以tan ∠P AB +tan ∠QAD 1-tan ∠P AB tan ∠QAD =1,所以x +2y 2=1-xy2,x +2y =2-xy ≥2x ·2y ,解得0<xy ≤6-42,当且仅当x =2y 时,“=”成立.AP →·AQ →=22·(4+x 2)(1+y 2)=22·(xy )2+(x +2y )2-4xy +4=22·(xy )2+(2-xy )2-4xy +4=(xy )2-4xy +4=2-xy ≥42-4. 【答案】 42-412.设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =________.【解析】 ∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3.【答案】 ±313.在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP →=AB →+λAC →,且BP →·CP →=1,则实数λ的值为________.【解析】 由AB =1,AC =2,∠A =60°,得BC 2=AB 2+AC 2-2AB ·AC ·cos A =3,即BC = 3.又AC 2=AB 2+BC 2,所以∠B =90°.以点A 为坐标原点,AB →,BC →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则B (1,0),C (1,3).由AP →=AB →+λAC →,得P (1+λ,3λ),则BP →·CP →=(λ,3λ)·(λ,3λ-3)=λ2+3λ(λ-1)=1,即4λ2-3λ-1=0,解得λ=-14或λ=1.【答案】 -14或114.证明:同一平面内,互成120°的三个大小相等的共点力的合力为零.【证明】如图,用r a ,r b ,r c 表示这3个共点力,且r a ,r b ,rc 互成120°,模相等,按照向量的加法运算法则,有:r a +r b +r c = r a +(r b +r c )=r a +u u u rOD .又由三角形的知识知:三角形OBD 为等边三角形, 故r a 与u u u r OD 共线且模相等,所以:u u u r OD = -r a ,即有:r a +r b +r c =0r .15.在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈u u u r u u u r u u u r.(1)若23m n ==,求||OP u u u r ;(2)用,x y 表示m n -,并求m n -的最大值.【解析】(1)(1,1),(2,3),(3,2)A B C Q (1,2)AB ∴=u u u r ,(2,1)AC =u u u r.Q OP mAB nAC =+u u u r u u u r u u u r ,又23m n ==.22(2,2)33OP AB AC ∴=+=u u u r u u u r u u u r,|OP ∴u u u r(2)OP mAB nAC =+u u u r u u u r u u u rQ (,)(2,2)x y m n m n ∴=++即22x m ny m n=+⎧⎨=+⎩,两式相减得:m n y x -=-.令y x t -=,由图可知,当直线y x t =+过点(2,3)B 时,t 取得最大值1,故m n -的最大值为1.【答案】(1)(2)m n y x -=-,1.16.如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB →+nAD →(m ,n 均为正实数),求1m +1n的最小值.【解析】 如图,建立平面直角坐标系,得A (0,0),B (4,0),D (0,4),C (1,4),则AB →=(4,0),AD →=(0,4).设AP →=(x ,y ),则BC 所在直线为4x +3y =16. 由AP →=mAB →+nAD →,即(x ,y )=m (4,0)+n (0,4),得x =4m ,y =4n (m ,n >0), 所以16m +12n =16,即m +34n =1,那么1m +1n =⎝⎛⎭⎫1m +1n ⎝⎛⎭⎫m +34n =74+3n 4m +m n ≥74+23n 4m ·m n =74+3=7+434(当且仅当3n 2=4m 2时取等号). 17.已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎫0,π2,且m ⊥n . (1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎫0,π2,求角β的值. 【解析】 (1)由m ⊥n ,得2cos α-sin α=0,sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1, 又α∈⎝⎛⎭⎫0,π2,则cos α=55,cos 2α=2cos 2α-1=-35. (2)由α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,得α-β∈⎝⎛⎭⎫-π2,π2.因为sin(α-β)=1010,所以cos(α-β)=31010,而sin α=1-cos 2α=255, 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22.因为β∈⎝⎛⎭⎫0,π2,所以β=π4.。

专题-解析几何知识点汇总(全)

专题-解析几何知识点汇总(全)

点斜式 截距式 斜截式
y y0 k(x x0 ) x y 1 mn y kx b
(u, v)
(b,a) (1, k) (m, n) (1, k)
(v,u)
(a, b) (k ,1) (n, m) (k ,1)
v
/
/
u
a
/
/
b
k
/
/
n
mn
m
k
/
b
一般式
Ax By C 0
(B, A)
已知 l1 的法向量为 n1 (a1, b1) , l2 的法向量为 n2 (a2 , b2 ) ,则
① l1 l2 n1 n2k1 , l2 的斜率为 k2 ,则 l1 l2 k1 k2 1;
② l1 与 l2 相交 n1与n2不平行 a1b2 a2b1 ;

cos n1 n2
n1 n2
a1a2 b1b2
或 cos d1 d2 , [0, ] ;
a12 b12 a22 b22
d1 d2
2
(2)若 l1 、 l2 的斜率分别为 k1 、 k2 ,且 l1 到 l2 的角为1 , l2 到 l1 的角为 2 ,则
tan
k1 k2 1 k1k2
D 0
Dx、Dy不全为零

自强不息 厚德载物
4、两条相交直线 l1 : a1x b1 y c1 0 和 l2 : a2 x b2 y c2 0 的夹角 :
(1)若 l1 、 l2 的法向量分别为 n1 (a1, b2 ) 、 n2 (a2 , b2 ) ,且 l1 、 l2 的方向向量分别为 d1 、 d2 ,
取值范围: [0, ) ;
(2)直线的斜率:

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结解析几何是数学中的一个重要分支,它是几何和代数的结合,通过代数方法研究几何问题。

在高中数学学习中,解析几何是一个重要的知识点,它涉及到直线、圆、曲线等图形的性质和相关定理。

下面将对高中数学解析几何的知识点进行总结。

一、直线的方程。

1.点斜式方程。

点斜式方程是解析几何中直线的一种常见方程形式,它的形式为y-y₁=k(x-x₁),其中(x₁,y₁)为直线上的一点,k为直线的斜率。

利用点斜式方程,可以方便地确定直线的位置和性质。

2.一般式方程。

一般式方程是直线的另一种常见方程形式,它的形式为Ax+By+C=0,其中A、B、C为常数且A和B不同时为0。

一般式方程可以直接得到直线的斜率和截距,方便进行直线的分析和运算。

二、圆的方程。

1.标准方程。

圆的标准方程是(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

通过标准方程,可以直接得到圆的圆心和半径,方便进行圆的性质和位置分析。

2.一般方程。

圆的一般方程是x²+y²+Dx+Ey+F=0,其中D、E、F为常数。

一般方程可以通过配方和化简得到圆的标准方程,也可以直接得到圆的圆心坐标和半径长度。

三、曲线的方程。

1.抛物线的方程。

抛物线的一般方程为y=ax²+bx+c,其中a、b、c为常数且a≠0。

抛物线是解析几何中的重要曲线,通过抛物线的方程可以确定抛物线的开口方向、顶点坐标等重要性质。

2.椭圆的方程。

椭圆的一般方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标,a、b分别为椭圆在x轴和y轴上的半轴长度。

椭圆是解析几何中的另一种重要曲线,通过椭圆的方程可以确定椭圆的中心、长短轴长度等重要性质。

综上所述,高中数学解析几何知识点总结包括直线的方程、圆的方程和曲线的方程。

通过对这些知识点的学习和掌握,可以帮助学生更好地理解和运用解析几何知识,提高数学解题能力。

解析几何知识点总结

解析几何知识点总结

解析几何知识点总结1. 引言解析几何,又称为解析几何学,是数学的一个分支,它研究点、线、面等几何图形的性质和相互关系,并将其用坐标系统的方法来描述和研究。

本文将对解析几何的重要知识点进行总结,包括直线方程、曲线方程、向量、平面方程等内容。

2. 直线方程2.1 点斜式方程直线的点斜式方程用于表示直线上的点以及直线的斜率。

点斜式方程的一般形式为:y - y1= m(x - x1)其中,(x1, y1)是直线上的已知点的坐标,m是直线的斜率。

2.2 一般式方程直线的一般式方程是一条直线的代数表示,一般形式如下:Ax + By + C = 0其中,A、B、C为常数,A和B不能同时为0。

2.3 斜截式方程直线的斜截式方程常用于表示直线与y轴的截距和斜率关系。

斜截式方程的一般形式如下:y = mx + c其中,m为直线的斜率,c为直线与y轴的截距。

3. 曲线方程3.1 二次曲线方程二次曲线是指解析平面上的点坐标满足一个二次方程的图形。

常见的二次曲线方程有抛物线、椭圆、双曲线等。

以抛物线为例,其一般方程形式为:y = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。

3.2 圆方程圆是一个平面上距离某一给定点的距离恒定的点的集合。

圆的方程有多种表达形式,常见的是标准方程和一般方程。

标准方程表示如下:(x - h)^2 + (y - k)^2 = r^2其中,(h, k)为圆心的坐标,r为圆的半径。

4. 向量4.1 向量的基本概念向量是空间中的一个几何对象,它具有大小和方向。

向量通常用一个箭头来表示,箭头的起点为向量的起点,箭头所指的方向为向量的方向,箭头的长度表示向量的大小。

4.2 向量的加减法向量的加法和减法可以通过向量的坐标表示进行计算。

对于二维向量,其加法和减法的运算规则如下:向量A + 向量B = (A_x + B_x, A_y + B_y)向量A - 向量B = (A_x - B_x, A_y - B_y)其中,(A_x, A_y)和(B_x, B_y)分别为向量A和向量B的坐标表示。

文科高考数学重难点04 解析几何(解析版)

文科高考数学重难点04  解析几何(解析版)

重难点04 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1,0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.方法点睛:求解椭圆或双曲线的离心率的方法如下:a c(1)定义法:通过已知条件列出方程组,求得、的值,根据离心率的定义求解离心率e的值;a c e(2)齐次式法:由已知条件得出关于、的齐次方程,然后转化为关于的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题一、单选题1.(2020·贵州贵阳一中高三月考(文))已知圆C :(x +3)2+(y +4)2=4上一动点B ,则点B 到直线l :3x +4y +5=0的距离的最小值为()A .6B .4C .2D.【答案】C【分析】因为圆心到直线的距离,Cl 4d ==所以最小值为,422-=故选:C .2.(2020·河南开封市·高三一模(文))已知双曲线的离心率与椭圆221(0)x y m m -=>的离心率互为倒数,则该双曲线的渐近线方程为( )2213x y m m +=A .B .C .D.y =y x =y x =y =【答案】B【分析】双曲线的离心率为221(0)x y m m -=>e =在椭圆中,由于,则,所以焦点在轴上2213x y m m +=0m >30m m >>y 所以椭圆的离心率为2213x y m m +=e =解得:1=2m =所以双曲线的渐近线方程为:2212x y -=y x =±故选:B3.(2020·四川成都市·高三一模(文))已知平行于轴的一条直线与双曲线x 相交于,两点,,(为坐标原()222210,0x y a b a b -=>>P Q 4PQ a=π3PQO ∠=O点),则该双曲线的离心率为().A BC D【答案】D【分析】如图,由题可知,是等边三角形,POQ △,,4PQ a =()2,P a ∴将点P 代入双曲线可得,可得,22224121a a a b -=224b a =离心率.∴c e a ===故选:D.4.(2020·河南周口市·高三月考(文))已知直线:与圆:l 340x y m -+=C 有公共点,则实数的取值范围为( )226430x y x y +-+-=m A .B .C .D .()3,37[]37,3-[]3,4[]4,4-【答案】B 【分析】因为圆的标准方程为,C ()()223216x y -++=所以,半径,()3,2C -4r =所以点到直线C :340l x y m -+=根据题意可知,解得.1745m+≤373m -≤≤故选:B5.(2020·全国福建省漳州市教师进修学校高三三模(文))已知直线:210l kx y k --+=与椭圆交于A 、B 两点,与圆交于C 、D22122:1(0)x y C a b a b +=>>222:(2)(1)1C x y -+-=两点.若存在,使得,则椭圆的离心率的取值范围是( )[2,1]k ∈--AC DB =1CA .B .C .D .10,2⎛⎤ ⎥⎝⎦1,12⎡⎫⎪⎢⎣⎭⎛ ⎝⎫⎪⎪⎭【答案】C【分析】直线,即为,可得直线恒过定点,:210l kx y k --+=(2)10k x y -+-=(2,1)圆的圆心为,半径为1,且,为直径的端点,222:(2)(1)1C x y -+-=(2,1)C D 由,可得的中点为,AC DB =AB (2,1)设,,,,1(A x 1)y 2(B x 2)y 则,,2211221x y a b +=2222221x y a b +=两式相减可得,1212121222()()()()0x x x x y y y y a b +-+-+=由.,124x x +=122y y +=可得,由,即有,2122122y y b k x x a -==--21k -- (2)2112b a……则椭圆的离心率.(0c e a ==故选:C6.(2020·全国高三其他模拟(文))已知,为的两个顶点,点()1,0A ()3,0B ABC :C在抛物线上,且到焦点的距离为13,则的面积为( )24x y =ABC :A .12B .13C .14D .15【答案】A【分析】解:因为点在抛物线上,设,C 24x y =()00,C x y 抛物线的准线方程为,24x y =1y =-根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离.由,得,0113y +=012y =所以.()01131121222ABC S AB y =⨯⋅=⨯-⨯=△故选:A7.(2020·四川成都市·高三一模(文))已知抛物线的焦点为,过的直线24x y =F F l 与抛物线相交于,两点,.若,则( ).A B 70,2P ⎛-⎫ ⎪⎝⎭PB AB ⊥AF =A .B .C .D .322523【答案】D【分析】由题意可知,,设,,()0,1F 211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭则,,2227,42x PB x ⎛⎫=+ ⎪⎝⎭ 222,14x BF x ⎛⎫=-- ⎪⎝⎭ 因为,且,,三点共线,则由可得,PB AB ⊥A B F 0AB PB ⋅= 0BF PB ⋅=所以,即,222222710424x x x ⎛⎫⎛⎫-++-= ⎪⎪⎝⎭⎝⎭422226560x x+-=解得或(舍),所以.222x =2228x =-2x =设直线的方程为,与抛物线方程联立,AB 1y kx =+得,消去得,则,所以.214y kx x y =+⎧⎨=⎩y 2440x kx --=124x x =-1x =±则.21124x y ==所以.12213y F pA =+==+故选:D.8.(2020·四川高三一模(文))已知直线与双曲线:y kx =C ()222210,0x y a b a b -=>>相交于不同的两点,,为双曲线的左焦点,且满足,(A B F C 3AF BF=OA b=为坐标原点),则双曲线的离心率为()O C AB C .2D【答案】B【分析】设是右焦点,则,,即,F 'BF AF '=3AF BF=3AF AF '=又,∴,,而,∴22AF AF AF a''-==AF a'=3AF a=,OA b OF c'==,OA AF '⊥由得,AOF AOF π'∠+∠=cos cos 0AOFAOF '∠+∠=∴,整理得.222902b c a b bc c +-+===ce a 故选:B .9.(2020·河南新乡市·高三一模(文))已知双曲线的左、()2222:10,0x y C a b a b -=>>右焦点分别为、,过原点的右支于点,若1F 2F O C A ,则双曲线的离心率为( )1223F AF π∠=AB 1C D【答案】D 【分析】推导出,可计算出,利用余弦定理求得112F OA F AF :::1F A =2AF =,进而可得出该双曲线的离心率为,即可得解.1212F F e AF AF =-【详解】题可知,,,123F OA π∠=121AF O F AF ∠=∠ 112F OA F AF ∠=∠112F OA F AF ∴:△△,所以,可得.11112F O F AF A F F =1F A =在中,由余弦定理可得,12F AF :22212121222cos3F F AF AF AF AF π=+-⋅即,解得.2220AF c +=2AF=双曲线的离心率为.1212F F e AF AF ===-故选:D.【点睛】10.(2020·全国高三专题练习(文))已知圆,则在轴和轴上22:(2)2C x y ++=x y 的截距相等且与圆相切的直线有几条( )C A .1条B .2条C .3条D .4条【答案】C【分析】若直线不过原点,其斜率为,设其方程为,1-y x m =-+则,解得或,d 0m =4-当时,直线过原点;0m =若过原点,把代入,()0,0()2200242++=>即原点在圆外,所以过原点有2条切线,综上,一共有3条,故选:C .二、解答题11.(2020·四川成都市·高三一模(文))已知椭圆的离心率()2222:10x y C a b a b +=>>,且直线与圆相切.1x ya b +=222x y +=(1)求椭圆的方程;C(2)设直线与椭圆相交于不同的两点﹐,为线段的中点,为坐标原l C A B M AB O 点,射线与椭圆相交于点,且,求的面积.OM C P OP OM=ABO :【答案】(1);(2.22163x y +=【分析】(1,∴(为半焦距).c a=c∵直线与圆.1x ya b +=222x y +==又∵,∴,.222c b a +=26a =23b =∴椭圆的方程为.C 22163x y +=(2)(ⅰ)当直线的斜率不存在时,l 设直线的方程为.l (x nn =<<∵,∴.OP OM==225n =∴.ABOS ==△(ⅱ)当直线的斜率存在时,设直线,l ():0l y kx m m =+≠,.()11,A x y ()22,B x y 由,消去,得.22163y kx mx y =+⎧⎪⎨+=⎪⎩y ()222214260k x kmx m +++-=∴,即.()()()2222221682138630k m k m k m ∆=-+-=-+>22630k m -+>∴,.122421kmx x k +=-+21222621m x x k -=+∴线段的中点.AB 222,2121kmm M k k ⎛⎫- ⎪++⎝⎭当时,∵,∴.0k =OP OM==215m =∴.ABOS =△当时,射线所在的直线方程为.0k ≠OM 12y x k =-由,消去,得,.2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩y 2221221P k x k =+22321Py k =+∴M POMy OPy ===∴.经检验满足成立.22521m k =+0∆>设点到直线的距离为,则.O ld d =∴212ABOS x =-===△综上,.ABO :12.(2020·云南高三其他模拟(文))已知椭圆的左右焦点分2222:1(0)x y C a b a b +=>>别为,离心率为,椭圆上的点到点的距离之和等于4.12,F F 12C 31,2M ⎛⎫ ⎪⎝⎭12,F F (1)求椭圆的标准方程;C(2)是否存在过点的直线与椭圆相交于不同的两点,,满足()2,1P l C A B 若存在,求出直线的方程;若不存在,请说明理由.2PA PB PM ⋅= l 【答案】(1);(2)存在直线满足条件,其方程为.22143x y +=l 12y x =【分析】解:(1)由题意得,所以.2221224c a a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩21a c b ⎧=⎪=⎨⎪=⎩故椭圆的标准方程为.C 22143x y +=(2)若存在满足条件的直线,则直线的斜率存在,设其方程为.l l (2)1y k x =-+代入椭圆的方程得.C 222(34)8(21)161680k x k k x k k +--+--=设,两点的坐标分别为,,A B ()11,x y ()22,x y 所以.所以,222[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>12k >-且,.1228(21)34k k x x k -+=+21221616834k k x x k --=+因为,即,2PA PB PM ⋅= 12125(2)(2)(1)(1)4x x y y --+--=所以.2212(2)(2)(1)54x x k PM --+==即.[]2121252()4(1)4x x x x k -+++=所以,222222161688(21)44524(1)3434344k k k k k k k k k ⎡⎤---+-⋅++==⎢⎥+++⎣⎦解得.12k =±又因为,所以.12k >-12k =所以存在直线满足条件,其方程为.l 12y x =13.(2020·广西北海市·高三一模(文))已知抛物线的准线为2:2(0)C x py p =>,焦点为F .1y =-(1)求抛物线C 的方程;(2)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,求的最小值.||||AP BQ ⋅【答案】(1);(2)2.24x y =【分析】(1)因为抛物线的准线为,12py =-=-解得,2p =所以抛物线的方程为.24x y =(2)由已知可判断直线l 的斜率存在,设斜率为k ,由(1)得,则直线l 的方程为.(0,1)F 1y kx =+设,,211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭由消去y ,得,214y kx x y =+⎧⎨=⎩2440x kx --=所以,.124x x k +=124x x =-因为抛物线C 也是函数的图象,且,214y x =12y x '=所以直线PA 的方程为.()2111142x y x x x -=-令,解得,所以,0y =112x x =11,02P x ⎛⎫ ⎪⎝⎭从而||AP =同理得||BQ =所以,||||AP BQ ⋅==,=,==当时,取得最小值2.0k =||||AP BQ ⋅14.(2020·广东东莞市·高三其他模拟(文))在平面直角坐标系中,已知两定点xOy,,动点满足.()2,2A -()0,2B P PAPB=(1)求动点的轨迹的方程;P C (2)轨迹上有两点,,它们关于直线:对称,且满足C E F l 40kx y +-=,求的面积.4OE OF ⋅=OEF ∆【答案】(1)动点的轨迹是圆,其方程为(2)P ()()22228x y -+-=【分析】(1)设动点的坐标为,则.P (),xyPAPB==整理得,故动点的轨迹是圆,且方程为.()()22228x y -+-=P ()()22228x y -+-=(2)由(1)知动点的轨迹是圆心为,半径的圆,圆上两点,关P ()2,2C R =E F 于直线对称,由垂径定理可得圆心在直线:上,代入并求得l ()2,2l 40kx y +-=1k =,故直线的方程为.l 40x y +-=易知垂直于直线,且.OC l OC R=设的中点为,则EF M ()()OE OF OM ME OM MF⋅=+⋅+()()OM ME OM ME=+⋅- ,又,.224OM ME =-= 22222OM OC CM R CM =+=+ 222ME R CM =-∴,,∴,.224CM = CM =ME==2FE ME == 易知,故到的距离等于,∴OC FE :O FE CM 12OEF S ∆=⨯=15.(2020·全国高三专题练习)在平面直角坐标系中,已知椭圆xOy 的长轴长为6,且经过点,为左顶点,为下顶点,椭22221(0)x y a b a b +=>>3(2Q A B 圆上的点在第一象限,交轴于点,交轴于点.P PA y C PB x D (1)求椭圆的标准方程(2)若,求线段的长20OB OC +=PA (3)试问:四边形的面积是否为定值?若是,求出该定值,若不是,请说明理由ABCD 【答案】(1);(2;(3)是定值,6.22194x y +=【分析】(1)解:由题意得,解得.26a =3a =把点的坐标代入椭圆C 的方程,得Q 22221x y a b +=229314ab +=由于,解得3a =2b =所以所求的椭圆的标准方程为.22194x y +=(2)解:因为,则得,即,20OB OC += 1(0,1)2OC OB =-=(0,1)C 又因为,所以直线的方程为.(3,0)A -AP 1(3)3y x =+由解得(舍去)或,即得221(3)3194y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩30x y =-⎧⎨=⎩27152415x y ⎧=⎪⎪⎨⎪=⎪⎩2724,1515P ⎛⎫ ⎪⎝⎭所以||AP ==即线段AP (3)由题意知,直线的斜率存在,可设直线.PB 2:23PB y kx k ⎛⎫=-> ⎪⎝⎭令,得,0y =2,0D k ⎛⎫⎪⎝⎭由得,解得(舍去)或222194y kx x y =-⎧⎪⎨+=⎪⎩()2249360k x kx +-=0x =23649kx k =+所以,即2218849k y k -=+22236188,4949k k P k k ⎛⎫- ⎪++⎝⎭于是直线的方程为,即AP 22218849(3)36314k k y x k k -+=⨯+++2(32)(3)3(32)k y x k -=++令,得,即,0x =2(32)32k y k -=+2(32)0,32k C k -⎛⎫ ⎪+⎝⎭所以四边形的面积等于ABDC 1||||2AD BC ⨯⨯122(32)13212326232232k k k k k k k -+⎛⎫⎛⎫=+⋅+=⋅⋅= ⎪ ⎪++⎝⎭⎝⎭即四边形的面积为定值.ABDC 16.(2020·江西南昌市·南昌二中高三其他模拟(文))已知抛物线的()220y px p =->焦点为,轴上方的点在抛物线上,且,直线与抛物线交于,F x ()2,M m -52MF =l A 两点(点,与不重合),设直线,的斜率分别为,.B A B M MA MB 1k 2k (Ⅰ)求抛物线的方程;(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.122k k +=-l 【答案】(Ⅰ);22y x =-(Ⅱ)见解析.(Ⅰ)由抛物线的定义可以,5(2)22p MF =--=,抛物线的方程为.1p ∴=22y x =-(Ⅱ)由(Ⅰ)可知,点的坐标为M (2,2)-当直线斜率不存在时,此时重合,舍去. l ,A B 当直线斜率存在时,设直线的方程为l l y kx b=+设,将直线与抛物线联立得:()()1122,,,A x y B x y l 2222(22)02y kx bk x kb x b y x=+⎧+++=⎨=-⎩212122222,kb b x x x x k k --+==①又,12121222222y y k k x x --+=+=-++即,()()()()()()1221122222222kx b x kx b x x x +-+++-+=-++,()()()()12121212121222248248kx x k x x b x x x x b x x x x ++++-++-=--+-,()1212(2+2)(2+2)40k x x k b x x b ++++=将①代入得,222(1)0b b k b ---+=即(1)(22)0b b k +--=得或1b =-22b k =+当时,直线为,此时直线恒过;1b =-l 1y kx =-(0,1)-当时,直线为,此时直线恒过(舍去)22b k =+l 22(2)2y kx k k x =++=++(2,2)-所以直线恒过定点.l (0,1)-。

解析几何例题

解析几何例题

解析几何例题
摘要:
1.解析几何的概述
2.解析几何的例题
3.解析几何的解题技巧
4.解析几何的实际应用
正文:
一、解析几何的概述
解析几何是数学中一个重要的分支,主要研究直线、圆、曲线等几何图形的性质和相互关系。

解析几何将几何问题转化为代数问题,利用代数方法求解几何问题。

解析几何的发展和建立,为数学的发展和应用奠定了基础。

二、解析几何的例题
例题1:已知圆心为(2,3),半径为5 的圆,求与直线x-2y+3=0 相切的点的坐标。

例题2:已知直线l 的斜率为2,截距为-1,求直线l 与圆(x-
3)^2+(y-4)^2=25 的交点。

三、解析几何的解题技巧
1.圆的标准方程和一般方程的转换
2.直线的一般式、斜截式和截距式的转换
3.解析几何中常用的代数方法:配方法、消元法、韦达定理等
4.解析几何中常用的几何方法:切割线定理、切线长定理、圆的性质等
四、解析几何的实际应用
解析几何在实际生活中的应用非常广泛,例如在建筑设计、机械制造、航空航天等领域都需要解析几何的知识。

解析几何为解决实际问题提供了一种数学方法,有助于提高人们的科学素养和实际操作能力。

专题四 解析几何(3)

专题四 解析几何(3)

专题四 平面解析几何(3)1.【2020年高考全国Ⅲ卷文数】设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为yx ,则C 的离心率为_________.2.【2020年高考天津】已知直线80x -+=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.3.【2020年高考北京】已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.4.【2020年高考浙江】已知直线(0)y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______,b =_______.5.【2018年高考北京卷文数】若双曲线2221(0)4x y a a -=>则a =________________.6.【2020年新高考全国Ⅰ卷】的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.7.【2020年高考江苏】在平面直角坐标系xOy中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是 ▲ .8.【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.9.【2019年高考全国Ⅲ卷文数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.10.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .11.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .12.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.13.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.14.【2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.15.【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足2AP PB =,则当m =___________时,点B 横坐标的绝对值最大.16.【2018年高考北京卷文数】已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.17.【2018年高考江苏卷】在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c,则其离心率的值是________________.18.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________.19.【2018年高考北京卷理数】已知椭圆2222:1(0)x y M a b a b +=>>,双曲线2222:1x y N m n-=.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________________;双曲线N 的离心率为________________.20.【2018年高考全国Ⅲ理数】已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________.21.【2019年高考全国Ⅲ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.22.【2020年高考全国I 卷理数】已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .。

解析几何第四章习题及解答

解析几何第四章习题及解答

解析几何第四章习题及解答第4章二次曲线和二次曲面习题 1.在直角坐标系xOy中,以直线l:4x?3y?12?0为新坐标系的x?轴,取通过A(1,?3)且垂直于l的直线为y?轴,写出点的坐标变换公式,并且求直线l1:3x?2y?5?在新坐标系中的方程。

0解:直线l:4x?3y?12?0的方向是(3,4),与它垂直的方向是?(?4,3),新坐标系的x?轴的坐标向量取为(3443,),y?轴坐标向量取为(?,),与直线5555l:4x?3y?12?0垂直且的直线方程可设为3x?4y?c?0,于过点A(1,?3),得到直线方程是3x?4y?9?0,两直线的交点(?3,0)是新坐标原点,所以点的坐标变换公式:?3?x??5y??4??5?4?5??x? 3?. ?3??y??0?5??直线l1:3x?2y?5?0在新坐标系中的方程:l1:3(35x??45y??3)?2(45x??35y?)?5?0,化简有l1:x??18y??20?0. 2.作直角坐标变换,已知点A(6,?5),B(1,?4)的新坐标分别为(1,?3),(0,2),求点的坐标变换公式。

解:设同定向的点的坐标变换公式是:?x??cosy??sin??sin???x? a?. cosyb?它的向量的坐标变换公式是:?u??cosv??sin??sin???u? . cosv??题意知向量AB?(?5,1)变为A?B??(?1,5),于是有??5??cos1??sin??sin????1? 125得到于是点的坐标变换公.sin??,cos??.1313cos5?式是:?5?x??13y??12??13?12?1 3??xa?,.将点B(1??5??y??b?13??4及)它的像点(0,2)代入得到?37??a??13??,所以点的坐标变换公式是:b??62????13???5?x??13y 121312?135?13?37x?13. ? y??62????13???设反定向的点的坐标变换公式是:?xcosy??sin?sinx?a. cosy??b?它的向量的坐标变换公式是:?ucosv??sin?sinco su??. ?v题意知向量AB?(?5,1)变为A?B??(?1,5),于是有??5cos??1sin?sincos 1?于是点的坐标变换公式s?0.??.得到sin1,co??5?是:?x??0y???1?1??x???a???? .将点B(1?,0??yb?及它的像点(0,2)代入得到4?a??3,所以点的坐标变换公式是:b?4x??0y???1?1??x???3? . 0y?4?3.设新旧坐标系都是右手直角坐标系,点的坐标变换公式为?22x??y??5,?x?22(1)??22x??y??3 ;?y22?xy?3, (2)??y?x?2.?其中,(x,y)与(x?,y?)分别表示同一点的旧坐标与新坐标,求新坐标系的原点的旧坐标,并且求坐标轴旋转的角?。

专题-解析几何知识点汇总(全)

专题-解析几何知识点汇总(全)

直线的方程1、直线的方程:类型直线方程方向向量d法向量n斜率k截距x轴/y轴/两点式x x1y y1x2x1y2y1(x2x1,y2y1)(y2y1,x1x2)y2y1x2x1点方向式点法向式点斜式截距式斜截式x xy yu va(x x) b(y y) 0(u,v)(v, u)vuab//(b, a)(1,k)( m,n)(1,k)(B, A)(a,b)(k, 1)(n,m)(k, 1)(A,B)//y yk(x x)x y1m ny kx bAx By C 0knm//m/nbCBkAB一般式C A注意:(1)点法向式方程和一般式方程可以表示所有的直线;(2)两点式方程和点方向式方程不能表示垂直于x轴或垂直于y轴的直线;(3)点斜式方程和斜截式方程不能表示垂直于x轴的直线;(4)截距式方程不能表示经过原点的直线.2、直线的倾斜角和斜率:(1)直线的倾斜角为平面直角坐标系中直线与x轴正半轴的夹角.取值范围: [0, );(2)直线的斜率:tan , [0,) (, )22k不存在,2;k 0 0k 2 0 0k tan 在[0, )和 k 不存在 = 2(2, )上单调递增.2k 0 2 y 2 y 1(3)若直线过点(x x ,x 1 x 21,y 1),(x 2,y 2),则该直线的斜率k 2 x 1,k R .不存在,x 1 x 23、两条直线的位置关系:已知l 1:a 1x b 1y c 1 0,l 2:a 2x b 2y c 2 0,则(1)系数法:①l 1 l 2 a 1a 2 b 1b 2 0;特别地,若l 1的斜率为k 1,l 2的斜率为k 2,l 1 l 2 k 1 k 2 1;②l 1与l 2相交 a 1b 2 a 2b 1;③l 1与l 2重合 a 1:b 1:c 1 a 2:b 2:c 2;④l 与l a 1:b 1 a 2:b 212平行 a .1:c 1 a 2:c 2或b 1:c 1 b 2:c 2(2)向量法:已知l 的法向量为 n11 (a 1,b 1),l 2的法向量为n 2 (a 2,b 2),则①l l12 n 1 n 20 a 1a 2 b 1b 2 0;特别地,若l 1的斜率为k 1,l 2的斜率为k 2,则l 1 l 2 k 1 k 2 1;②l l1与2相交 n 1与n 2不平行 a 1b 2 a 2b 1;③l 1与l 2平行或重合 n 1与n 2平行 a 1b 2 a 2b 1.(3)行列式法:已知Da 1b 1a ,Db 1xc 12b 2c 2b ,D y a 1c 12a 2c ,则21l 1与l2相交 D 0;②l1与l2重合 D D x D y 0;则③1与2平行 l l D 0.D x、D y 不全为零4、两条相交直线l 1:a 1x b 1y c 1 0和l 2:a 2x b 2y c 2 0的夹角 :(1)若l 1、l 2的法向量分别为n 1 (a 1,b 2)、n 2 (a 2,b 2),且l 1、l 2的方向向量分别为d 1、d 2,则n n 2cos 1n 1 n 2a 1a 2b 1b 2a 12 b 12 a 22 b 22d 1 d 2 或cos, [0,];2d 1 d 2(2)若l 1、l 2的斜率分别为k 1、k 2,且l 1到l 2的角为 1,l 2到l 1的角为 2,则tank k 1k k 2k 1 k 2, [0,);tan 1 2,tan 2 1.1 k 1k 21 k 1k 21 k 1k 225、点到直线的距离公式:(1)点P (x 0,y 0)到直线l :Ax By C 0的距离为dAx 0 By 0 CA B22;(2)直线l 1:Ax By C 1 0与直线l 2:Ax By C 2 0的距离为dC 1 C 2A B22.6、直线l :Ax By C 0同侧/异侧:(1)Ax 0 By 0 C 0(A 0) P (x 0,y 0)在直线l :Ax By C 0(A 0)的右侧;Ax 0 By 0 C 0(A 0) P (x 0,y 0)在直线l :Ax By C 0(A 0)的左侧.(2)点M (x 1,y 1)、N (x 2,y 2)在直线l 同侧 (Ax 1 By 1 C )(Ax 2 By 2 C ) 0;点M (x 1,y 1)、N (x 2,y 2)在直线l 异侧 (Ax 1 By 1 C )(Ax 2 By 2 C ) 0.7、点关于直线的对称问题:点直线P (x 0,y 0)x 轴P (x 0, y 0)y 轴P ( x 0,y 0)y xP (y 0,x 0)y xP ( y 0, x 0)x mP (2m x 0,y 0)y n P (x 0,2n y 0)对称点补充:①点P(x0,y)关于直线y x b的对称的点为P (yb,xb);②点P(x0,y)关于直线y x b的对称的点为P (b y,b x);A(n y) B(m x)③点P(x0,y)关于直线Ax By C 0的对称点P (m,n)满足 m x.n yA B C 022或者P (m,n),其中 8、三线共点问题:三条互不平行的直线l1:a1x b1y c10,直线l2:a2x b2y c20,直线l3:a3x b3y c30共m x0 2AD Ax By C,D 022.A Bn y0 2BDa1点的充要条件是a2b1b2b3c1c20.c3a39、直线系方程:具有某一个共同性质的一簇直线称为直线系.(1)平行直线系:①斜率为k0(常数)的直线系:,例:y 2x b;y kx b(b为参数)②平行于直线A0x By 0的直线系:Ax By C 0(C为参数).(2)过已知点的直线系:①以斜率k作为参数的直线系:y y0 k(x x),直线过定点(x,y);②以斜率k作为参数的直线系:y kx b0,直线过定点(0,b).③过两条直线l1:A1x B1y C10,l2:A2x B2y C20的交点的直线系:A 1x B1y C1(A2x B2y C2) 0( 为参数).注意:对于①②,过定点且平行于y轴或与y轴重合的直线不在直线系内;对于③,其中直线l2不在直线系内.10、定直线上动点与两定点距离和差问题:(1)定直线上动点与两定点距离和:问题已知定直线l上动点P,两个定点A、B,求PA PB的取值范围.取值范围A、B在l的解答步骤同侧 A B,AB, ①作点A关于l的对称点A ;②联结A B,交l于M;③点M为最小值状态点.①联结AB交l于M;②点M为最小值状态点.异侧(2)定直线上动点与两定点距离差:已知定直线l上动点P,两个定点A、B,点A、B到l的距离分别为d1、d2,问题直线AB与直线l的夹角为 ,求PA PB的取值范围.A、B在l的d1与d2的大小关系d1d2取值范围解答步骤①联结AB并延长交l于M;②点M为最大值状态点./①联结BA并延长交l于M;②点M为最小值状态点.①作点A关于l的对称点A ;②联结A B并延长交l于M;③点M为最大值状态点./①作点A关于l的对称点A ;②联结BA 并延长交l于M;2AB cos ,ABAB,ABAB,AB cos同侧d1 d2d 1 d2d 1 d2A B cos ,A BA B,A BA B,AB cos异侧d1d2d1d2点M为最小值状态点.曲线的方程(一)曲线的方程概论1、轴对称的两个曲线:曲线对称轴曲线F(x,y) 0x轴F(x, y) 0y轴y x y x x m y n F( x,y) 0F(y,x) 0F( y, x) 0F(2m x,y) 0F(x,2n y) 0补充:①曲线F (x ,y ) 0关于y x b 对称的曲线方程为F (y b ,x b ) 0;②曲线F (x ,y ) 0关于y x b 对称的曲线方程为F (b y ,b x ) 0.2、中心对称的两个曲线:曲线对称中心曲线F (x ,y ) 03、轴对称的曲线:曲线对称轴条件(m ,n )F (2m x ,2n y ) 0F (x ,y ) 0y x F (y ,x ) F (x ,y )补充:y x F ( y , x ) F (x ,y )x mF (2m x ,y ) F (x ,y )y nF (x ,2n y ) F (x ,y )a b对称。

高中解析几何知识归纳

高中解析几何知识归纳

高中解析几何知识归纳高中解析几何是数学中的一个重要组成部分,主要研究平面和空间中点、线、面之间的相互关系和位置关系。

以下是对高中解析几何知识点的详细介绍:一、平面解析几何1. 点:平面上的点用坐标系表示,有序数对(x, y)表示。

2. 直线:直线的方程一般形式为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。

3. 圆:圆的标准方程为(x - h)²+ (y - k)²= r²,其中(h, k)为圆心坐标,r为半径。

4. 圆锥曲线:包括椭圆、双曲线和抛物线。

-椭圆:椭圆的标准方程为x²/a²+ y²/b²= 1,其中a为半长轴,b为半短轴。

-双曲线:双曲线的标准方程为x²/a²- y²/b²= 1,其中a为实轴半长,b为虚轴半长。

-抛物线:抛物线的标准方程为y²= 4ax或x²= 4ay,其中a为焦点到准线的距离。

二、空间解析几何1. 点:空间中的点用坐标系表示,有序数对(x, y, z)表示。

2. 直线:空间直线的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C不同时为0。

3. 平面:平面的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C 不同时为0。

4. 空间几何体:包括立方体、球、锥体、柱体等。

三、解析几何的基本公式和性质1. 点到直线的距离公式:d = |Ax1 + By1 + C| / √(A²+ B²),其中(x1, y1)为点的坐标。

2. 点到直线的距离性质:点到直线的距离等于点到直线的垂线的长度。

3. 直线与直线的交点公式:解直线方程组,得到交点的坐标。

4. 直线与圆的位置关系:直线与圆相交、相切或相离。

5. 圆与圆的位置关系:圆与圆相交、相切或相离。

【知识梳理】解析几何的20个微专题(附高考数学真题讲析)

【知识梳理】解析几何的20个微专题(附高考数学真题讲析)

【知识梳理】解析几何的20个微专题[1]专题1:直线与方程知识梳理: (1)直线的倾斜角定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为︒0.倾斜角的范围为[)︒︒180,0. (2)直线的斜率:定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即=k αtan .倾斜角是︒90的直线,斜率不存在. (3) 过两点的直线的斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:当21x x ≠时,1212x x y y k --=;当21x x =时,斜率不存在.注:①任何直线都有倾斜角,但不是任何直线都有斜率,倾斜角是︒90的直线的斜率不存在.②斜率随倾斜角的变化规律:③可以用斜率来证明三点共线,即若AC AB k k =,则C B A ,,三点共线. 直线方程的五种形式注意:①求直线方程的方法主要有两种:一是直接法,根据已知条件,选择适当的直线方程的形式,直接写出直线方程;二是待定系数法,先设出直线方程,再根据条件求出待定系数,最后代入求出直线方程.但使用直线方程时,一定要注意限制条件,以免解题过程中丢解.②截距与距离的区别:截距可为一切实数,纵截距是直线与y 轴交点的纵坐标,横截距是直线与x 轴交点的横坐标,而距离是一个非负数.直线与直线位置关系1.两条直线的交点若直线1l :0111=++C y B x A 和2l :0222=++C y B x A 相交,则交点坐标是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的解. 2.两条直线位置关系的判定 (1)利用斜率判定若直线1l 和2l 分别有斜截式方程1l :11b x k y +=和2l :22b x k y +=,则 ①直线1l ∥2l 的等价条件为2121,b b k k ≠=. ②直线1l 与2l 重合的等价条件为2121,b b k k ==.③直线1l 与2l 相交的等价条件为21k k ≠;特别地,1l ⊥2l 的等价条件为121-=⋅k k .若1l 与2l 斜率都不存在,则1l 与2l 平行或重合.若1l 与2l 中的一条斜率不存在而另一条斜率为0,则1l 与2l 垂直.(2)用直线一般式方程的系数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,则 ①直线1l ∥2l 的等价条件为0012211221≠-=-C B C B B A B A 且. ②直线1l 与2l 重合的等价条件为0012211221=-=-C B C B B A B A 且.③直线1l 与2l 相交的等价条件为01221≠-B A B A ;特别地, 1l ⊥2l 的等价条件为02121=+B B A A .注:与0=++CBy Ax 平行的直线方程一般可设为0=++m By Ax 的形式,与0=++C By Ax 垂直的直线方程一般可设为0=+-n Ay Bx 的形式.(3)用两直线联立的方程组的解的个数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,将这两条直线的方程联立,得方程组⎩⎨⎧=++=++00222111C y B x A C y B x A ,若方程组有惟一解,则1l 与2l 相交,此解就是1l ,2l 交点的坐标;若方程组无解,此时1l 与2l 无公共点,则1l ∥2l ;若方程组有无数个解,则1l 与2l 重合.3. 直线系问题(1)设直线1l :0111=++C y B x A 和2l :0222=++C y B x A若1l 与2l 相交,则0)(222111=+++++C y B x A C y B x A λ表示过1l 与2l 的交点的直线系(不包括2l );若1l ∥2l ,则上述形式的方程表示与与2l 平行的直线系.(2)过定点),(00y x 的旋转直线系方程为))((00R k x x k y y ∈-=-(不包括0x x =);斜率为0k 的平行直线系方程为)(0R b b x k y ∈+=.注:直线系是具有某一共同性质的直线的全体,巧妙地使用直线系,可以减少运算量,简化运算过程. 距离公式与对称问题 1.距离公式(1)两点间的距离公式平面上的两点),(),,(222111y x P y x P 间的距离=21P P 212212)()(y y x x -+-.特别地,原点)0,0(O 与任一点),(y x P 的距离=OP 22y x +.若x P P //21轴时,=21P P 21x x -;若y P P //21轴时,=21P P 21y y -. (2)点到直线的距离公式已知点),(000y x P ,直线l :0=++C By Ax ,则点0P 到直线l 的距离=d 2200BA CBy Ax +++.已知点),(000y x P ,直线l :a x =,则点0P 到直线l 的距离=d a x -0. 已知点),(000y x P ,直线l :b y =,则点0P 到直线l 的距离=d b y -0. 注:用此公式求解点到直线距离问题时,直线方程要化成一般式. (3)两条平行直线间的距离公式已知两平行直线1l :0111=++C y B x A 和2l :0222=++C y B x A ,若点),(000y x P 在1l 上,则两平行直线1l 和2l 的距离可转化为),(000y x P 到直线2l 的距离.已知两平行直线1l :01=++C By Ax 和2l :02=++C By Ax ,则两直线1l 和2l 的距离=d 2221BA C C +-.注:用此公式求解两平行直线间的距离时,直线方程要化成一般式,并且y x ,项的系数必须对应相等. 2.对称问题 (1)中心对称 ①点关于点的对称点),(00y x P 关于),(b a A 的对称点为)2,2(001y b x a P --. ②直线关于点的对称在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线的方程,或者求出一个对称点,再利用1l ∥2l ,由点斜式求出直线的方程,或者在所求直线上任取一点),(y x ,求出它关于已知点的对称点的坐标,代入已知直线,即可得到所求直线的方程. (2)轴对称①点关于直线的对称点),(00y x P 关于b kx y +=的对称点为),(111y x P ,则有⎪⎪⎩⎪⎪⎨⎧++⋅=+-=⋅--b x x k y y k x x y y 22101010101,由此可求出11,y x .特别地, 点),(00y x P 关于a x =的对称点为),2(001y x a P -,点),(00y x P 关于b y =的对称点为)2,(001y b x P -. ②直线关于直线的对称此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称直线相交,一是已知直线与对称直线平行. 本章知识结构专题2:圆的标准方程与一般方程知识梳理:⑴.圆的一般方程的概念:当 时,二元二次方程220x y Dx Ey F ++++=叫做圆的一般方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【考向预测】从近三年高考新课标全国卷的试题特点来看,解析几何在高考中的考查基本稳定,命题趋势与理科的差异越来越小,其中2012年文科考题与理科考题设计完全相同,只是题目序号略有不同(仅理科第8题为文科第10题);2013年文科与理科仅有一道小题设计不同.2011年、2012年对直线与圆和三种圆锥曲线均有考查,2011年未考双曲线知识.小题重点考查圆锥曲线的定义与标准方程,求基本量的值;考查圆锥曲线的几何性质,涉及焦点、对称轴、离心率、抛物线准线等知识,尤其是圆锥曲线的离心率每年都考.大题考查以直线与圆锥曲线为载体,和几何图形(如三角形、圆)相结合的综合问题,知识交汇、构题新颖、推理要求高、运算量适中、综合性较强,但难度趋于平稳.预测2014年关于解析几何的命题趋势,仍然是难易结合,考查解析几何基本知识与数学能力,有2个小题,1个大题.小题以考查圆锥曲线的定义、标准方程及几何性质为主,重点考查以三角形等几何图形为背景,求解圆锥曲线中与a、b、c、p有关的问题,如长(实)轴长、短(虚)轴长、焦距、离心率、标准方程、双曲线的渐近线方程及三角形面积计算等.大题主要以椭圆或抛物线为载体,将定义、性质等知识与平面向量、直线、圆巧妙地交汇立意,第一问求曲线(轨迹)的方程,第二问利用图中直线与椭圆或抛物线的关系,构建考查众多知识交汇与重要思想方法的新颖综合题型.【问题引领】1.(2013江西卷)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是.2.(2012新课标全国卷)设F1,F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为().A.B.C.D.3.(2013新课标全国Ⅰ卷)已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为().A.y=±xB.y=±xC.y=±xD.y=±x4.(2013山东卷)抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p等于().A.B.C.D.5.已知a、b为正数,且直线2x-(b-3)y+6=0与直线bx+ay-5=0互相垂直,则2a+3b的最小值为.6.如图,椭圆E:+=1(a>b>0)的离心率e=,椭圆的顶点A、B、C、D围成的菱形ABCD的面积S=4.(1)求椭圆的方程.(2)设直线2x+y=0与椭圆E相交于M、N两点,在椭圆上是否存在点P、Q,使四边形PMQN为菱形?若存在,求PQ的长;若不存在,请说明理由.7.已知点M(-1,0)、N(1,0),动点P(x,y)满足|PM|+|PN|=2.(1)求P的轨迹C的方程.(2)是否存在过点N(1,0)的直线l与曲线C相交于A、B两点,并且曲线C存在点Q,使四边形OAQB为平行四边形?若存在,求出直线l的方程;若不存在,说明理由.【知识整合】一、直线与圆1.直线的倾斜角直线倾斜角的范围是.2.直线的斜率(1)直线倾斜角为α(α≠90°)的直线的斜率k=tan α,倾斜角为90°的直线的斜率不存在;(2)经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为(x1≠x2).3.直线的方程(1)点斜式:y-y0=k(x-x0)(不包括垂直于x轴的直线);(2)斜截式:y=kx+b(不包括垂直于x轴的直线);(3)两点式:=(不包括垂直于坐标轴的直线);(4)截距式:+=1(不包括垂直于坐标轴的直线和过原点的直线);(5)一般式:任何直线均可写成Ax+By+C=0(A、B不同时为0)的形式;(6)设直线方程的一些常用技巧:①与直线l:Ax+By+C=0平行的直线可设为Ax+By+C1=0;②与直线l:Ax+By+C=0垂直的直线可设为.4.两条直线的位置关系直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0的位置关系:(1)平行⇔A1B2-A2B1=0且B1C2-B2C1≠0;(2)相交⇔A1B2-A2B1≠0;特殊地,直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直⇔.(3)重合⇔A1B2-A2B1=0且B1C2-B2C1=0.5.距离公式:(1)点A(x1,y1),B(x2,y2),A、B两点间的距离d=;(2)点P(x0,y0)到直线Ax+By+C=0的距离d= ;(3)两平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0(C1≠C2)间的距离d=.6.圆的方程:(1)圆的标准方程:(x-a)2+(y-b)2=r2;(2)圆的一般方程:x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0).7.直线与圆的位置关系直线l:Ax+By+C=0和圆C:(x-a)2+(y-b)2=r2(r>0)的位置关系的判断:(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔,Δ<0⇔,Δ=0⇔;(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d,则d<r⇔相交,d>r⇔相离,d=r⇔相切.8.圆与圆的位置关系:设两圆圆心分别为O1、O2,半径分别为r1、r2(设r1≠r2),|O1O2|=d.d>r1+r2⇔外离⇔两圆有4条公切线;d=r1+r2⇔外切⇔两圆有3条公切线;|r1-r2|<d<r1+r2⇔相交⇔两圆有2条公切线;d=|r1-r2|⇔内切⇔两圆有1条公切线;0≤d<|r1-r2|⇔内含⇔两圆无公切线.判断两个圆的位置关系也可以通过联立方程组由公共解的个数来解决.二、圆锥曲线1.灵活运用圆锥曲线的定义要重视“括号”内的限制条件:椭圆中,与两个定点F1、F2的距离的和等于常数2a,且此常数2a一定要大于|F1F2|;双曲线中,与两定点F1、F2的距离的差的绝对值等于常数2a,且此常数2a一定要小于|F1F2|,定义中的“绝对值”与2a<|F1F2|不可忽视;抛物线中,到定点的距离等于到定直线的距离,要注意定点不在定直线上.2.圆锥曲线的标准方程(1)椭圆:焦点在x轴上时,+=1(a>b>0);焦点在y轴上时,+=1(a>b>0).(2)双曲线:焦点在x轴上时,-=1(a>0,b>0);焦点在y轴上时,-=1(a>0,b>0).(3)抛物线:开口向右时,y2=2px(p>0);开口向左时,y2=-2px(p>0);开口向上时,x2=2py(p>0);开口向下时,x2=-2py(p>0).3.圆锥曲线的几何性质:范围、顶点、对称中心、对称轴、离心率、渐近线和准线等.4.直线与圆锥曲线的位置关系:利用直线方程与圆锥曲线方程联立方程组,由方程组解的个数来确定直线与圆锥曲线的位置关系.5.弦长公式:若直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别为A、B的横坐标,则|AB|=|x1-x2|,若y1、y2分别为A、B的纵坐标,则|AB|=|y1-y2|.6.圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.特别提醒:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,注意别忘了检验Δ>0.7.常用结论(1)双曲线-=1(a>0,b>0)的渐近线方程为;(2)以y=±x为渐近线的双曲线方程为-=λ(λ为参数,λ≠0);(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为mx2+ny2=1;(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)长为,抛物线的通径长为2p,焦准距为p;(5)通径是所有焦点弦(过焦点的弦)中最短的弦;(6)若抛物线y2=2px(p>0)的焦点弦为AB,A(x1,y1),B(x2,y2),则①|AB|=x1+x2+p,②x1x2= ,y1y2= ;(7)若OA、OB是过抛物线y2=2px(p>0)顶点O的两条互相垂直的弦,则直线AB恒经过定点.8.动点轨迹(或方程)(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;(2)求轨迹方程的常用方法:①直接法,②待定系数法,③定义法,④代入转移法,⑤参数法.【考点聚焦】热点一:两条直线的位置关系此类试题一般以选择题或填空题的形式出现,难度不大,属于基础题,试题主要考查两条直线平行、垂直的判断或求交点坐标,求解过程中要注重对相关知识的灵活应用,同时要注意思维的严谨性.(1)已知过点A(-2,m)和点B(m,4)的直线为l1,直线2x+y-1=0为l2,直线x+ny+1=0为l3.若l1∥l2,l2⊥l3,则实数m+n的值为().A.0B.-2C.-10D.8(2)“k=4”是“直线l1:(k-2)x+(3-k)y+1=0与l2:2(k-2)x-2y+4=0平行”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】(1)先写出直线l1、l2、l3的斜率,再利用l1∥l2求出m的值,利用l2⊥l3求出n的值,进而计算m+n的值.(2)应用两条直线平行的条件,结合充要条件的概念进行判断.【解析】(1)依题意知直线l1的斜率存在,则有l1的斜率为k1=,l2的斜率为k2=-2.∵l1∥l2,∴=-2,得m=-8.又l2⊥l3,∴2×1+1×n=0,得n=-2,∴m+n=-10,选C.(2)若l1∥l2,则2(k-2)(3-k)+2(k-2)=0,解得k=2或k=4.结合充要条件的概念知选A.【答案】(1)C (2)A【归纳拓展】(1)解决与直线方程有关的问题时,一要灵活选择方程形式,二要注意隐含条件.(2)在判断两条直线平行或垂直时,需要考虑两条直线的斜率是否存在.在不重合的直线l1与l2的斜率都存在的情况下才可以应用结论:l1∥l2⇔k1=k2,l1⊥l2⇔k1·k2=-1.变式训练1(1)已知点A(1,-2)、B(m,2),且线段AB的垂直平分线是x+2y-2=0,则实数m的值是().A.-2B.-7C.3D.1(2)已知直线l1:2x-y+a=0(a>0)与直线l2:4x-2y-1=0的距离为,则a= .热点二:直线与圆的位置关系直线与圆主要考查直线与圆的基本知识,如圆的标准方程、圆的一般式方程、直线与圆的位置关系等,试题可能是以选择题、填空题的形式出现,也可能蕴含在解答题中,一般是基础题,难度不大,解题时应注意挖掘圆的几何性质以及数形结合思想的应用.(1)若两条直线l1:3x+4y+a=0与l2:3x+4y+b=0都与圆x2+y2+2x+4y+1=0相切,则|a-b|等于().A.B.2C.10 D.20(2)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是().A.0≤k≤B.k<0或k>C.≤k≤D.k≤0或k>【分析】(1)利用“当两条平行直线与圆相切时,两条平行直线间的距离等于圆的直径”求解,简单快捷.(2)由已知圆的圆心到直线y=kx-2的距离不大于圆的半径与1的和,建立含斜率k的不等式可求解.【解析】(1)∵圆的方程可化为(x+1)2+(y+2)2=4,∴半径r=2.由l1与l2都与圆相切,得=4,∴|a-b|=20,选D.(2)∵圆C的方程为(x-4)2+y2=1,∴圆心为(4,0),半径r=1.依据题意,可得d=≤1+1=2,解得0≤k≤,选A.【答案】(1)D (2)A【归纳拓展】(1)求解直线与圆的位置关系的问题有几何法(即将圆心到直线的距离与圆的半径的大小进行比较)和代数法(即转化为一元二次方程,运用判别式判断)两种方法.经过圆x2+y2=r2上一点M(x0,y0)的圆的切线方程是x0x+y0y=r2.(2)直线与圆的位置关系以及圆与圆的位置关系问题常利用圆的几何性质来解决,这样可简化运算.涉及弦长问题常用弦心距、弦长之半及半径三者间的关系求解.(3)求圆的方程:①利用圆的几何性质求出圆心坐标和半径,进而写出方程.②运用待定系数法,若已知条件与圆的圆心和半径有关,则选用标准方程求解;若已知条件没有明确给出圆的圆心和半径,则选用圆的一般方程求解.变式训练2(1)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为().A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=0(2)已知P是圆x2+y2=1上的动点,则P点到直线l:x+y-2=0的距离的最小值为().A.1B.C.2D.2热点三:圆锥曲线的定义圆锥曲线的定义是这部分内容的基础,常在圆锥曲线的方程与性质中考查,是高考的热点,既可以出现在选择、填空题中,也可以出现在解答题的第一问,难度中等偏易.(1)(2011新课标全国卷)在平面直角坐标xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为.(2)已知F1、F2分别为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|=().A.2B.4C.6D.8(3)(2013全国Ⅰ卷)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为().A.2B.2C.2D.4【分析】(1)由特殊三角形的周长及椭圆定义可求出长半轴长a,再利用离心率求短半轴长b.(2)可利用余弦定理及双曲线的定义,通过整体代入求解.(3)利用抛物线的定义,作直角三角形,计算点P到OF的距离,进而计算三角形面积使问题获解.【解析】(1)设椭圆C的方程为+=1(a>b>0),则△ABF2的周长为|AF2|+|BF2|+|AB|=|AF2|+|BF2|+|AF1|+|BF1|=4a=16,∴a=4.又e=,∴b=2,故椭圆C的方程为+=1.(2)在△F1PF2中,有|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos∠F1PF2=(|PF1|-|PF2|)2+2|PF1|·|PF2|-2|PF1|·|PF2|cos∠F1PF2,又双曲线方程为x2-y2=1,∴2a=2,2c=2,且∠F1PF2=60°,∴(2)2=22+|PF1|·|PF2|,得|PF1|·|PF2|=4,选B.(3)抛物线的焦点坐标为(,0),设点P坐标为(x0,y0),则|PF|=x0+=4,解得x0=3,代入抛物线方程得到y0=±2,S△POF=|OF|·|y0|=××2=2,所以答案为C.【答案】(1)+=1(2)B(3)C【归纳拓展】(1)遇到与到焦点的距离有关的问题时,应先考虑用定义来求解.(2)双曲线的定义中,要注意两点:一是到两定点的距离之差的绝对值(常数)必须小于两定点的距离;二是定义中的“绝对值”去掉,其图形仅为双曲线的一支.(3)抛物线的定义实际上是定点与定直线(定点不在定直线上)的相互转化的数学思想的体现,应用抛物线的定义解题,重视结合图形分析,巧用几何性质,常能起到化繁为简的作用.变式训练3(1)椭圆mx2+ny2=1的离心率为,则等于().A.B. C.或D.或(2)已知F1、F2分别是双曲线-=1(a>0,b>0)的左、右焦点,A和B是以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率为.(3)已知抛物线x2=6y,过焦点F的直线与抛物线交于A、B两点,过A、B分别作x轴的垂线,垂足分别为C、D,则|AC|+|BD|的最小值为.热点四:圆锥曲线方程与性质圆锥曲线的方程与几何性质是解析几何的核心内容,是历年高考的必考点,试题重点考查圆锥曲线的方程与性质等基础知识和处理有关问题的基本技能、基本方法,多以选择、填空题的形式出现,一般是中档题.(1)(2013浙江卷)如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是().A.B.C.D.(2)已知直线l过双曲线C的一个焦点,且与C的对称轴垂直,l与C交于A、B两点,|AB|为C的实轴长的2倍,则C的离心率为().A.B.C.2 D.3(3)(2013江西卷)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线-=1相交于A,B两点,若△ABF为等边三角形,则p= .【分析】(1)利用椭圆与双曲线的关系及直角三角形建立关系式,可求双曲线的实半轴长,再结合椭圆方程求双曲线C2的离心率.(2)先求直线l与双曲线C的交点,得出|AB|的长,进而利用|AB|与实轴长的关系求离心率.(3)由抛物线、双曲线方程写出F、A的坐标,再利用等边三角形的性质得到p的等式求之.也可结合两点间的距离公式,运用两边相等求解,但计算复杂些,容易出错.【解析】(1)设|AF1|=m,|AF2|=n,则有m+n=4,m2+n2=12,∴12+2mn=16,∴mn=2.而(m-n)2=(2a)2=(m+n)2-4mn=16-8=8,∴双曲线方程中的a=,c=,则有e==.(2)设双曲线C的方程为-=1(a>0,b>0),由于直线过双曲线的焦点且与对称轴垂直,∴l的方程为x=c,x=-c,代入-=1,得y2=b2(-1)=,∴y=±,∴|AB|==4a,即=2,故离心率e==.(3)由题意可知A,B两点关于y轴对称,且|AB|=p,∴点A,B的坐标为(-p,-),(p,-),将其代入双曲线可得p=6.【答案】(1)D (2)B (3)6【归纳拓展】(1)求圆锥曲线的方程,一般采用待定系数法,其步骤是:①作判断(判断焦点的位置);②设方程(依据题意设出标准方程);③找关系(根据已知条件列出a、b、c、p的方程或方程组);④得方程(写出所求方程).当椭圆或双曲线的焦点位置不明确时,可以分类讨论,也可设方程为mx2+ny2=1(mn≠0且m、n不同时为负数).(2)圆锥曲线的性质问题,要重视对图形的分析,当涉及顶点、焦点、对称轴及a、b、c、p等基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系,同时注意与其他知识(包括平面几何知识)的结合.(3)求椭圆、双曲线的离心率是高考的高频考点之一,公式有e椭圆==,e双曲线==,依据题中给出的条件设法建立基本量a、b、c的关系式是求离心率的关键.若焦点位置不确定,则要考虑是否有两种可能.(4)对于涉及圆锥曲线中的范围或最值问题时,常用到:椭圆+=1(a>b>0)中的-a≤x≤a,-b≤y≤b及0<e<1;双曲线-=1(a>0,b>0)中的x≤-a或x≥a及e>1;抛物线y2=2px(p>0)中的x≥0这些不等关系求解.变式训练4(1)在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C上的点,若△OFM的外接圆与抛物线C的准线相切,且该圆的面积为9π,则p等于().A.2B.4C.6D.8(2)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为().A.B.2C.4 D.8热点五:曲线(轨迹)与方程从新课标全国卷这几年的试题来看,曲线(轨迹)与方程的考查较为稳定,一般为解答题中的第一问,既有考查用待定系数法求解,也有考查用直接法、定义法等其他方法求曲线轨迹的方程,难度中等.(2013新课标全国Ⅰ卷)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【分析】(1)涉及两圆相外切和相内切的问题,常用定义法求动圆圆心的轨迹方程,但需注意检验,剔除不符合题意的点.(2)①依据题意判断圆的最长半径,接着写出圆的方程;②利用直线与圆相切及圆的几何性质求出切线方程;③联立直线与曲线C的方程,运用弦长公式求出|AB|.需注意直线的倾斜角为90°这一情形.【解析】(1)由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M、N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为+=1(x≠-2).(2)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.所以当圆P的半径最长时,其方程为(x-2)2+y2=4,若l的倾斜角为90°,则l与y轴重合,可得|AB|=2;若l的倾斜角不为90°,由r1≠R知l不平行于x轴,设l与x轴的交点为Q,则=,可求得Q(-4,0),所以可设l:y=k(x+4).由l与圆M相切得=1,解得k=±.当k=时,将y=x+代入+=1,并整理得7x2+8x-8=0,解得x1,2=.所以|AB|=|x2-x1|=.当k=-时,由图形的对称性可知|AB|=.综上,|AB|=2或|AB|=.【归纳拓展】(1)求曲线(轨迹)方程的常用方法有:直接法、待定系数法、定义法、相关点法、参数法、交轨法等,在解题训练中要有意识地归纳积累,依据问题特征合理选用方法,简化运算过程.(2)求曲线(轨迹)方程时,别忘了检验,如遇不符合题意的图形或点,应及时剔除,如本例中的第一问.(3)加强数形结合思想的运用,利用图形特征及几何性质探求曲线(轨迹)方程,思路直观且能避免复杂的推理计算,简化解题过程.变式训练5已知△ABC的两个顶点A、B的坐标分别是(0,-1)、(0,1),且AC、BC所在直线的斜率之积等于m(m≠0).(1)求顶点C的轨迹E的方程,并判断轨迹E为何种圆锥曲线.(2)当m=-时,过点F(1,0)的直线l交曲线E于M、N两点,设点N关于x轴的对称点为Q(M、Q不重合),试问直线MQ与x 轴的交点是不是定点?若是,求出定点;若不是,请说明理由.热点六:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系是高考的重点、热点之一,综合性较高,难度较大,常与圆锥曲线的方程与性质等一起考查.(2013安徽卷)设椭圆E:+=1的焦点在x轴上.(1)若椭圆E的焦距为1,求椭圆E的方程.(2)设F1、F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a 变化时,点P在某定直线上.【分析】(1)依据椭圆E的焦点在x轴上及基本量的关系式求出a2,写出椭圆方程.(2)利用图形中平行、垂直的关系,联立椭圆方程,通过推理转化、消参,得出点P在定直线上.【解析】(1)因为焦距为1,所以2a2-1=,解得a2=.故椭圆E的方程为+=1.(2)设P(x0,y0),F1(-c,0),F2(c,0),其中c=.由题设知x0≠c,则直线F1P的斜率=,直线F2P的斜率=.故直线F2P的方程为y=(x-c).当x=0时,y=,即点Q坐标为(0,).因此,直线F1Q的斜率为=.由于F1P⊥F1Q,所以·=·=-1.化简得=-(2a2-1). ①将①代入椭圆E的方程,由于点P(x0,y0)在第一象限,解得x0=a2,y0=1-a2,即点P在定直线x+y=1上.【归纳拓展】(1)直线与圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点、有两个公共点.可通过代数方法即方程组思想进行研究解决.(2)直线与圆锥曲线有唯一公共点,不等价于直线与圆锥曲线相切.平行于对称轴或与对称轴重合的直线与抛物线相交于一点,平行于渐近线的直线与双曲线只有一个交点,但直线与这些曲线均不相切.直线与圆锥曲线的位置关系一般用Δ>0、Δ=0、Δ<0来判断.(3)直线与圆锥曲线的位置关系,常涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题时,重视判别式和根与系数的关系的应用.(4)当直线与圆锥曲线的相交时,涉及弦长问题,运用“根与系数的关系”设而不求计算弦长(应用弦长公式);涉及弦长的中点,运用“点差法”设而不求,将弦所在直线的斜率与弦的中点坐标联系起来,利用量的关系灵活转化.解决直线与圆锥曲线的位置关系问题,可概括为联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘.变式训练6已知椭圆C:+=1(a>b>0)的右焦点为F(2,0),且过点(2,).直线l过点F且交椭圆C于A、B两点.(1)求椭圆C的方程;(2)若线段AB的垂直平分线与x轴的交点为M(,0),求直线l的方程.热点七:解析几何的综合问题解析几何综合问题既有自身相关知识的综合,如三种圆锥曲线的交汇,直线与圆锥曲线的位置关系,又常与向量、三角形及其面积、不等式、函数与方程等综合.一方面考查相关基础知识,另一方面考查综合运用相关知识分析和解决问题的能力,同时考查函数与方程、数形结合、分类讨论、化归转化的思想方法.解析几何综合问题是近年高考的必考题型,且久考不衰,常考常新.(2013江西卷)椭圆C:+=1(a>b>0)的离心率e=,a+b=3.(1)求椭圆C的方程.(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2m-k为定值.【分析】(1)依据条件等式求出a、b的值,再写出椭圆C的方程.(2)先写出直线AD、BP的方程,然后通过求交点M、N的坐标,写出MN的斜率证得结论.【解析】(1)因为e==,所以a=c,b=c,代入a+b=3得,c=,a=2,b=1.故椭圆C的方程为+y2=1.(2)(法一)因为B(2,0),P不为椭圆顶点,则直线BP的方程为y=k(x-2)(k≠0,k≠±),①将①代入+y2=1,解得P(,-).直线AD的方程为y=x+1. ②①与②联立解得M(,).由D(0,1),P(,-),N(x,0)三点共线知=,解得N(,0).所以MN的斜率为m===,则2m-k=-k=(定值).(法二)设P(x0,y0)(x0≠0,±2),则k=,直线AD的方程为y=(x+2),直线BP的方程为y=(x-2),直线DP的方程为y-1=x,令y=0,由于y0≠1可得N(,0),联立解得M(,),因此MN的斜率为m====,所以2m-k=-====(定值).【归纳拓展】解析几何的综合问题主要体现为圆锥曲线的综合问题:(1)定点与定值问题的处理方式一般有两种:一是从特殊点或特殊位置入手,求出这个定点(值),再说明这个定点(值)与变量无关;二是直接推理计算,并在计算过程中消去变量,从而得到定点(值).(2)求最值或范围常见的解法:①几何法.若题目的条件和结论能明显体现几何特征及意义,可考虑利用图形性质来解决.②代数法.若题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求最值或范围.(3)在利用代数法求最值或范围问题的常用途径:①运用判别式构造不等关系;②利用题设不等式建立不等关系;③挖掘隐含不等关系建立不等式;④通过已知的参数范围,求新参数的范围,但需建立两个参数的等量关系;⑤数形结合构建不等关系;⑥求目标函数的值域.变式训练7已知椭圆+=1(a>b>0)的离心率为.(1)若原点到直线x+y-b=0的距离为,求椭圆的方程.(2)设过椭圆的右焦点F且倾斜角为45°的直线和椭圆交于A、B两点.(ⅰ)当|AB|=时,求b的值;(ⅱ)对于椭圆上任一点M,若=λ+μ,求实数λ、μ满足的关系式.热点八:探索性问题圆锥曲线中的探索性问题是近年高考命题的热点,主要以解答题的形式出现,这类考题形式多样,解法灵活,考查的知识众多,能力要求高(尤其是运算能力),难度较大.椭圆+=1(a>b>0)的右焦点为F(1,0),M为椭圆的上顶点,O为坐标原点,且△OMF是等腰直角三角形.(1)求椭圆的方程.(2)是否存在直线l交椭圆于P、Q两点,且使F为△PQM的垂心(垂心:三角形三条高的交点)?若存在,求出直线l的方程;若不存在,请说明理由.【分析】(1)利用特殊三角形条件及半焦距c=1,求a、b的值,写出椭圆的方程;(2)先假设存在符合题意的直线l,在假设条件下,设出直线方程,与椭圆方程联立后,运用根与系数关系和设而不求的方法,利用高与底边垂直,其数量积为零的等式关系进行化简转化,通过验证判断符合题意的直线l是否存在.【解析】(1)由△OMF是等腰直角三角形,得b=1,a=b=,故椭圆方程为+y2=1.(2)假设存在直线l交椭圆于P、Q两点,且使F为△PQM的垂心.设P(x1,y1)、Q(x2,y2),∵M(0,1),F(1,0),∴k MF=-1,∴直线l的斜率k=1,∴设直线l的方程为y=x+m,由得3x2+4mx+2m2-2=0,由题意知Δ=16m2-4×3(2m2-2)>0,得m2<3,且x1+x2=-,x1x2=.由题意有·=0,又=(x1,y1-1),=(x2-1,y2),∴(x1,y1-1)·(x2-1,y2)=2x1x2+(m-1)(x1+x2)+m2-m=2×-(m-1)+m2-m=0,解得m=-或m=1.经检验,当m=1时,△PQM不存在,故舍去;当m=-时,所求直线y=x-满足题意.综上,存在直线l,且直线l的方程为3x-3y-4=0.【归纳拓展】(1)在探索性问题的考题中,大多数是存在性问题的探索,求解此类问题常采用“假设反证法”或“假设检验法”,也可先取特殊情况得到结论,再给出一般性的证明.(2)求解探索性问题的一般步骤:①假设结论成立;②从假设出发,结合题中给出的条件,进行推理转化;③若能推出合理结论,经验证符合题意,则肯定假设,即存在结论,若推出矛盾,则否定假设,即不存在结论.变式训练8已知中心在原点,顶点在x轴上,离心率为的双曲线经过点P(6,6).(1)求双曲线的方程;(2)动直线l经过定点G(2,2),与双曲线交于不同的两点M,N,问是否存在直线l,使G平分线段MN?试证明你的结论.限时训练卷(一)一、选择题1.已知直线l1过点A(-1,1)和B(-2,-1),直线l2过点C(1,0)和D(0,a),若l1∥l2,则a的值为().。

相关文档
最新文档