第12章电磁感应2教材

合集下载

202X人教版九年级物理第12章第2节电生磁 课件2

202X人教版九年级物理第12章第2节电生磁 课件2

• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
二 . 螺线管
针对通电螺线管提出你的问题: 通电螺线管的磁场是怎样的?
实验方法:
对比
对 比
分析与论证:
1.通电螺线管的磁场与条形磁体相似; 2.它的两端相当于条形磁体的两极
探究一下
通电螺线管两端的极性如 何判断?
方法: 根据磁极间的相互作用规律判断
N
S
探究小组内探究通电螺线管两端的极性与电流方向有关吗?
第三节 电生磁
一 思考: 同学们我们已经学习了磁体与带电体,那 么磁体与带电体有哪些相似的性质呢? • 1.带电体有吸引轻小物体的性质,磁体能吸 引钢铁类的物质。 • 2.带电体有正负电荷之分,磁体有N S极之 分。 • 3.同种电荷相互排斥,异种电荷相互吸引。 同名磁极相互排斥,异名磁极相互吸引。
这些相似是巧合,还是电与磁之间存在某些联系呢?
1.演示奥斯特实验
奥斯特实验证明
通电导线的周围有磁场,磁场的方向跟电 流的方向有关.这种现象叫做电流的磁效应
2. 既然电能 生磁,为什么手电筒在通电时连一
根大头针都吸不动?
• 因为磁性太弱了。如果将导线绕在圆筒上, 做成向下图的螺线管,磁场就会强很多。

人教版九年级物理第12章第2节电生磁 课件3

人教版九年级物理第12章第2节电生磁 课件3

7.如图所示,开关S接通后,两个通电螺线
管将: ( B )
A.相吸
B.相斥
C.先相吸、后相斥
D.先相斥、后相吸读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月9日星期六下午5时14分53秒17:14:5322.4.9
一.
19世纪丹麦物理学家 奥斯特,第一个成功 的发现电与磁之间的 联系
1.通电导体周围存在着磁场。
磁场的方向跟电 流的方向有关这 种现象叫电流的 磁效应。
2.电流的磁场方向和电流的方向有关
二、通电螺线管的磁场
1.通电螺线管外部的磁场 和条形磁体的磁场一样
2.通电螺线管两端的极性 跟螺线管中电流的方向 有关
用右手握螺线管,让四指弯 向螺线管中电流的方向,则 大拇指所指的那端就是螺线 管的北极
1.请你用安培定则判断出以下各图 中通电螺线管的N.S极
N
S
S
N
N
SS
N
2、通电螺线管右边小磁针静止时如图所示, 试在图标出电流方向.
N
S
3.判断下面图中通电螺线管的N、S极, 并画出图1中小磁针的转动方向和图2 中电源的正、负极。
N
S
( 图1)
S
N
+ (图2)
4.请画出下面两图中螺线管的导线绕向
5.如图所示,通电后欲使位于两个通电 螺线管间的小磁针的指向不变,试在 图中画出两螺线管上导线的绕法.
6.通电螺线管内部放一个小磁针,小磁针 静止时的指向如图所示,则( B C )
A. a端为电源正极 B.b端为电源正极 C.c端为通电螺线管N极 D.d端为通电螺线管N极

大学物理-第12章--电磁感应

大学物理-第12章--电磁感应
∴取以 r 为半径的圆周为绕行回路L ,绕行方向为逆时针,面元法线如图。
× × × ×
× ×××
r n ×L × × × ×
× × ××× × R
×××××
×
B
×× ×× ×× ××
当r < R
时: L E感 dl
S
B
dS
t
等式左边 L E感 dl L E感dl cos 00
× × × ×
导线内每个自由电子
受到的洛仑兹力为:
fm e(v B)
非静电力
?++ + ++
B
v
fm
在导线内部产生的静电场方向
ab
E
a
++ + ++
电子 受的静电力
fe
fe eE
平衡时: fe fm
此时电荷积累停止,
fm
ab 两端形成稳定的电势差。 b
★ 洛仑兹力是产生动生电动势的根本原因.
B
v
2、动生电动势的表达式
S 1 hL 2
磁通
m
1 hLB 2
B
t
0
o B h
C D
i
dm dt
1 hL dB 1 hL B 2 dt 2 t
L
讨论 只有CD导体存在时,
电动势的方向由C指向D
加圆弧连成闭合回路,
由楞次定理知:感生电流的
方向是逆时针方向……..
1 B hL
1 2 t
B SOCD t

铁芯
磁场 B
线圈
电 子束
环形 真空室
五、感生电场计算举例
例 12-5. 半径为R的长直螺线管内的磁场,以dB/dt 速

大学物理第十二章变化的电磁场

大学物理第十二章变化的电磁场

是匀强磁场吗? 是!
m = BScos ( t+o)
= Bosin t Scos t
i
dm
dt
= -BoS cos2 t
13
例12.1.4 长直电流I与ABC共面, AB=a, BC=b。
(1) I =Iocos t (Io 和为常量) , ABC 不 动, 求: ABC=?
解:
m
Bdscos
方向成右手螺旋关系。3
感应电流总是“企图”阻碍原磁通的改变,但又 阻止不了。
楞次定律是能量守恒定律的必然结果。
fm
fm
楞次定律能量守恒
“阻碍”改为“助长”则,不需外力作功,导线便会 自动运动下去,从而不断获得电能。这显然违背 能量守恒定律。
4
感应电动势和感应电流的关系
对闭合导体回路, 感应电动势的方向和感应电 流的方向是相同的。
B)
dl
a
b ++ B
dl
(1)若i 若i
>0, <0,
则i 则i
沿 dl方向,即ab的方向; 与dl的方向相反,即ba的方向。
-a-
(2)动生电动势只存在于运动导体内,无论导体是否构
成闭合回路,只要导体 B在 磁0场中运动切割磁场线,即
(3)若整个导体回路在磁场中运动,则在回路中产生的
动生电动势:
用法拉第电磁感应定律解题的步骤如下:
(i)首先求出回路面积上的磁通量(取正值):
m
B dS
S
对匀强磁场中的平面线圈:
m B S BS cos
(ii)求导:
i
dm
dt
(ⅲ)判断i 的方向。
8
例12.1.1 圆线圈,m=8×10-5sin100t(wb), N=100匝,

中国矿业大学(北京)《大学物理》课件 第12章 电磁感应与电磁场

中国矿业大学(北京)《大学物理》课件 第12章 电磁感应与电磁场
R2
1 2
B(
R12
R22 )
B
. .i b
边缘的电势高 于转轴的电势。
27
大学物理 第三次修订本
第12章 电磁感应与电磁场
例4 金属杆以速度 v→ 平行于长直导线移动。 求: 杆中的感应电流多大?
哪端电势高?
解: 建立如图的坐标系, 取积 分元 dx , 由安培环路定理知
v→ dx
在dx 处的磁感应强度为
判定 Ek的方向
B B 0
B
t
Ev
Ev
B 0
t
注意是Ev与
B
/
BS 0nIS
30
大学物理 第三次修订本
第12章 电磁感应与电磁场
若螺线管内的电流发生变化
l 中产生感生电动势
i
dΦ dt
0nS
dI dt
dI
G I dt
dI I
dt
B
S
l
若闭合线圈 l 的电阻为R, 感应电流
I i
R
31
大学物理 第三次修订本
第12章 电磁感应与电磁场
问题:
线圈 l 中的自由电荷是在什么力的驱动下运动? 不是电场力:
一、动生电动势
平动衡生EF时电kim动FFOmO(势PmPe(eE的v)kv非FvedB静lBB)电 edEl场k 来源×××××i:FF洛em×××××L伦P(+O-v-+兹- ×××××力Bv)×××××dBl
L
设杆长为L, 则 i 0 vBdl vBL
i方向?
22
大学物理 第三次修订本
第12章 电磁感应与电磁场
第12章 电磁感应与电磁场
建于波多黎各的直径达305 m的射电望远镜

第十二章电磁感应PPT课件

第十二章电磁感应PPT课件

例:有一半径为r的均匀刚性导体圆环,其总电阻为R,处于磁
感应强度为B的匀磁场中以匀角速度ω绕通过中心并处于
圆面内的轴线旋转,该轴线垂直于B。试求当圆环平面转
至于B平行的瞬间:
⑴ ab和 ac (其中a点是圆环与转轴的交点,ac是四分之
一圆周,b是ac的中点)
a
⑵ 比较此时a和c两点的电势。
B
解 :(2)
电磁感应
§12-1 电磁感应及其基本定律
一、电磁感应现象 1、磁场相对线圈或导体回路改变大小和方向引起的; 2、线圈或导体回路相对于磁场改变面积和取向所引起的;
综合两方面:只要穿过导体回路的磁通量发生变化, 该导体回路就会产生电流
I d (B S ) d / dt
电流:感应电流
电动势:感应电动势
解:(1)令原线圈中电流 I1 I1(t)
B
0 nI1
0
N1 l
I1
副线圈 2 N2BS
2
N20
N1 l
I1
N1 N2
M 2 0 N1N2S
I1
l
(2) 1
N1BS
N1
0 N1
l
I1S
L1
1 I1
S 0 N12
l
同样有
L2
S0
N
2 2
l
M
L1L 2
无漏磁
一般情况
k:耦合系数
例3、有两个无限长同轴的圆筒状的导体组成电缆,内外
导体中每个自由电子受到的洛伦茨力为 f ev B ,该力
为提供动生电动势的非静电力
a
D f / (e) v B D (v B) dl x x
_
注:①动生电动势不要求构成闭合回路;

物理学教学教程(第二版)课后答案解析12

物理学教学教程(第二版)课后答案解析12

第十二章电磁感应电磁场和电磁波12-1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定题12-1 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).12-2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 12-4 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律t Φd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为 2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少?分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ 12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图(b)所示.而E OA 和E OB 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-=12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB l o d cos 90sin ⎰=v ()()l θB θωl o d 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高?题 12-13 图分析 本题可用两种方法求解.方法1:用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=. 方法2:用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的导轨上电动势为零,所以V 1084.35-⨯-==E E AB 式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.12-14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 12 -14 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()ξξμξμ120020ln π2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为 2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B tl E k d d d d ξ tB r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tB r E k d d 2=设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为 ()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE l k k PQ -=-==⋅=⎰⎰θξx E 证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?12-16 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .题 12-16 图分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍. 12-17 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)题 12-17 图分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果. 解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为 221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 12-18 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).题 12-18 图分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 12-19 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .题 12-19 图分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L IΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.12-20 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A ·s-1 时,线圈A 中感应电动势的大小和方向.题 12-20 图分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21/I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RI μN B B 200=,穿过小线圈A 的磁链近似为 A BA A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A (2)线圈A 中感应电动势的大小为 V 1014.3d d 4-⨯=-=t I ME A 互感电动势的方向和线圈B 中的电流方向相同.12-21 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?题 12-21 图解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁 感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +== 则两线圈的互感为 ()2/3222202πd R R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.12-22 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3 C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .题 12-22 图分析 本题与题12-8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的.解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===SN Rq I n B C r μμ 相对磁导率 1991102==I n S N Rq C r μμ 12-23 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:方法 1: 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能. 方法 2: 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中mw 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布. 上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L .解 (1) 密绕长直螺线管在忽略端部效应时,其自感l SN L 20μ=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为 J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w m m (2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t L R R E I e 1,当电流稳定后,其最大值R E I m = 按题意⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t L RR E I e 1中,得()s 1056.122ln 221ln 4-⨯=+=⎥⎦⎤⎢⎣⎡--=R L R L t 12-24 未来可能会利用超导线圈中持续大电流建立的磁场来储存能量.要储存1 kW ·h 的能量,利用1.0T的磁场,需要多大体积的磁场? 若利用线圈中500 A 的电流储存上述能量,则该线圈的自感系数应该多大? 解 由磁感强度与磁场能量间的关系可得302m 0.92/==μB W V m 所需线圈的自感系数为 H 2922==I W L m12-25 中子星表面的磁场估计为108T,该处的磁能密度有多大?解 由磁场能量密度 21021098.32⨯==μB w m 3m /J 12-26 在真空中,若一均匀电场中的电场能量密度与一 0.50T 的均匀磁场中的磁场能量密度相等,该电场的电场强度为多少?解 2021E εw e =,022μB w m =,按题意,当m e w w =时,0220221μB E ε=则 1800m V 1051.1-⋅⨯==μεB E 12-27 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm ,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析 尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流I c ,而在平行板电容器间存在着位移电流I d ,它们使电路中的电流连续,即c d I I =.解 忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流2πd R j I d S d d =⋅=⎰S j ,由此得位移电流密度的大小222m A 9.15ππ-⋅===RI R I j c d d_。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算电缆单位长度的自感。
解:根据对称性和安培环路定理,在内圆筒和外圆筒
外的空间磁场为零。两圆筒间Байду номын сангаас场为:
B 0I 2r
(R1 r R2 )
R2 R1
考虑 l长电缆通过面元 ldr 的磁通量为
d m
B
dr
l
0I 2r
ldr
I
l
I
m
R2 0I ldr 0Il ln R2
R1 2r
2 R
电缆单位长度的自感:
回路电流的变化 。
自感 L有维持原电路状态的能力,L就是这种能力 大小的量度,它表征回路电磁惯性的大小。
4
3.自感电动势
由法拉第电磁感应定律
d dt可知:
自感电动势:L
d dt
L dI dt
负号表明自感电动势的方向总是 要阻碍回路本身电流的变化。
注意: L与i符合右手螺旋关系, 即i与i方向一致
这是由于电键 K 闭合瞬间,电路中电流发生变化, 在线圈 L 中产生自感电动势,阻止支路中的电流变化, 电流是渐变的。
2
2.自感系数 L
由毕-萨定理知:B I ,
又由磁通量的定义知 B I
写成等式: LI
L称为自感系数简称自感。 单位:“亨利”(H)
1H 1Wb A1
1H 103 mH 106 μH
7
L
m lI
10 ln 2
R2 R1
该面积的磁通链
二、互感 互感系数
2
1.互感现象
当线圈 1中的电流变化时,所激发 的磁场会在它邻近的另一个线圈 2 中产生感应电动势。
这种现象称为互感现象。该电动势叫互感电动势。
互感电动势与线圈电流变化快慢有关;与两个线圈结构以及它 们之间的相对位置和磁介质的分布有关。
解:设螺线管中通有电流I,则管内的磁感应强度 B=μ0nI
12 N1m12 ln 1B 2S ln 1 n 2 I 2S
l
线圈 2 在线圈 1 中产生的互感系数:
M 12
12 I2
n1n2lS ,
S
I2
n1 n2
由此可看出,两线圈的互感系数相等。
M 21 M 12 M n1n 2lS
12
例2、证明上例中两线圈的互感系数为:M L1L2
证明:线圈1的自感系数为:L1 n12lS 线圈 2 的自感系数为:L2 n22lS L1L2 2n12n 22l2S 2
M 就叫做这两个线圈的互感系数,简称为互感。
M 21 12 I1 I2
单位:亨利(H)
2
要求
:
与对应的I
符合右手螺旋关系
互感系数与两线圈的大小、形状、磁介质和相对位置有关。
9
3.互感电动势 由法拉第电磁感应定律可知:
线圈1电流变化在线圈2中产生的互感电动势:
21
d21 dt
M 21
dI1 dt
自感系数 L 取决于回路线圈自身的性质(回路大 小、形状、周围介质等) 。
3
L
d dt
d(LI ) dt
(L
dI dt
I
dL ) dt
如果回路自身性质不随时间变化,则:
L
L
dI dt
结论 : 回路中的自感系数,在量值上等于电流随时
间的变化率为一个单位时,在回路中产生自感电动势
的绝对值。
式中负号(-)表示:自感电动势的方向总是阻碍本身
n1 、n2,两线圈完全耦合,求两线圈的互感系数。
解:设线圈 1 中的电流为 I1,
线圈 1 在线圈 2 中产生的磁链:
l
21 N2m21 ln 2 B1S
ln 2n1 I1S
S n1 n2
线圈 1 在线圈 2 中产生的互感系数:
M 21
21 I1
n1n 2lS
11
设线圈 2 中的电流为 I2, 线圈 2 在线圈 1 中产生的磁链:

L
L
dI知,要求自感电动势,应先求自感系数 dt
自感系数的计算:
①假设线圈中的电流 I ;
②求线圈中的磁通量 m (或 磁链); ③由定义求出自感系数 L。
对于上述的由一个线圈构成的电子元件称为电感。
5
例1一长直螺线管,线圈密度为 n,长度为 l,横截面
积为 S,插有磁导率为 的磁介质,求线圈的自感系
x
l
a
ab a
0I 2x
ldx
0 Il 2
ln
a
b a
o ab x
互感系数:
M 21
21 I1
m I
0lI 2I
ln
a b a
0l ln a b
考虑:当导线放 在矩形导线框中 部,互感系数为 多大?
I
14 2 a
例4、一长直螺线管,单位长度上的匝数为n,有一半径为r 的圆环放在螺线管内,环平面与管轴垂直,求螺线管与圆 环的互感系数。
第三节 自感和互感
1
一、自感 自感系数
1.自感现象
当线圈中电流变化时,它所 激发的磁场通过线圈自身的磁通 量也在变化,使线圈自身产生感 应电动势的现象叫自感现象。该 电动势称为自感电动势。
演示实验:在实验中,两并联支路中的电阻与电感的纯 电阻相同,当电键 K闭合时,灯泡 1 立刻点亮,而灯 泡 2 为渐亮过程。
L1L2 n1n2lS M 证毕。
对于两线圈不完全耦合时
M k L1L2 其中 k 为耦合系数, (0<k≤1)
13
例3 、在长直导线旁距 a 放置一长为 l、宽为 b 的矩形 导线框,求两导体的互感系数。
解:设直导线中通有电流 I ,
载流直导线在矩形线圈内产生的 磁通量为:
I
ab
m B dS Bldx
2.互感系数
线圈 1所激发的磁场通过线圈 2的磁通链数 21
21 N2m21,
m21由“1”产生穿过“2”的磁通;
线圈2所激发的磁场通过线圈1的磁通链数为 12
8 12 N1m12 ,
m12由“2”产生穿过“1”的磁通;
21 I1, 12 I2 写成等式:21 M 21I1, 12 M12I2 从能量观点可以证明两个给定的线圈有: M 21 M12 M
M
dI1 dt
线圈2电流变化在线圈1中产生的互感电动势:
12
d12 dt
M12
dI 2 dt
M dI2 dt
互感系数的计算:
①假设线圈中的电流 I ; ②求另一个线圈中的磁通量m (或 磁链); ③由定义求出互感系数 M。
10
例1、长为 l、横截面积为 S 的长直螺线管,插有磁导率
为 的磁介质,绕两个线圈,两线圈的线圈密度分别为
数L 。
l
解: 设线圈中通有电流 I ,
线圈中的磁通量为:
m BS nIS
线圈中的自感系数L为:
S
n
I
L Nm N nIS
II
I
其中匝数:N ln
则自感系数 L NnIS lnnIS n2lS
I
I
6
例2一电缆由内外半径分别为R1、R2的两个无限长同轴 圆筒状导体构成。两圆筒电流大小相等方向相反。计
相关文档
最新文档