第六讲 RBF网络
径向基神经网络RBF介绍

径向基神经网络RBF介绍RBF网络原理RBF网络,即径向基神经网络,也是前馈型网络的一种。
它的设计思想和BP网络完全不一样。
Cover定理:将复杂的模式分类问题非线性的投射到高维空间将比投射到低维空间更可能是线性可分的。
也就是说这个问题在低维空间不一定是线性可分的,但如果把它映射到高纬度的空间去,在那里就可能是线性可分的。
这就是RBF网络的原理。
RBF将问题转换为线性可分之后便没有了BP网络的局部极小值问题。
但是RBF需要比BP网络更多的隐含层神经元。
RBF网络是一个三层的网络,出了输入输出层之外仅有一个隐层。
隐层中的转换函数是局部响应的高斯函数,而其他前向型网络,转换函数一般都是全局响应函数。
由于这样的不同,要实现同样的功能,RBF需要更多的神经元,这就是rbf网络不能取代标准前向型网络的原因。
但是RBF的训练时间更短。
它对函数的逼近是最优的,可以以任意精度逼近任意连续函数。
隐层中的神经元越多,逼近越精确RBF网络学习过程在RBF网络之前训练,需要给出输入向量X和目标向量T,训练的目的是要求得第一层和第二层之间的权值W1、阀值B1,和第二层与第三层之间的权值W2、阀值B2。
整个网络的训练分为两步,第一部是无监督的学习,求W1、B1。
第二步是有监督的学习求W2、B2。
隐藏层神经元个数网络会从0个神经元开始训练,通过检查输出误差使网络自动增加神经元。
每次循环使用,重复过程直到误差达到要求。
因此RBF网络具有结构自适应确定,输出与初始权值无关的特征。
(BP网络就不这样)广义回归神经网络GRNN径向基神经元和线性神经元可以建立广义回归神经网络,它是径RBF网络的一种变化形式,经常用于函数逼近。
在某些方面比RBF网络更具优势。
概率神经网络PNN径向基神经元和竞争神经元还可以组成概率神经网络。
PNN也是RBF的一种变化形式,结构简单训练快捷,特别适合于模式分类问题的解决。
扩展速度spread的确定RBF网络有个参数叫扩展速度spread,在MATLAB中创建RBF网络时是要事先设定好的,其默认值为1。
rbf神经网络原理

rbf神经网络原理RBF神经网络原理。
RBF神经网络是一种基于径向基函数的神经网络模型,它具有良好的非线性逼近能力和较快的学习速度,在模式识别、函数逼近、时间序列预测等领域有着广泛的应用。
本文将介绍RBF神经网络的原理及其在实际应用中的一些特点。
首先,RBF神经网络由三层结构组成,输入层、隐含层和输出层。
输入层接收外部输入信号,并将其传递给隐含层;隐含层使用径向基函数对输入信号进行非线性映射;输出层对隐含层的输出进行加权求和,并经过激活函数得到最终的输出结果。
整个网络的学习过程包括初始化、前向传播、误差反向传播和参数更新等步骤。
其次,RBF神经网络的核心在于径向基函数的选择。
常用的径向基函数包括高斯函数、多孔径函数等,它们具有局部化、非线性化的特点,能够更好地拟合复杂的非线性关系。
在实际应用中,选择适当的径向基函数对网络的性能有着重要影响,需要根据具体问题进行调整和优化。
另外,RBF神经网络的学习算法通常采用最小均方误差或梯度下降等方法,通过不断调整网络参数来最小化目标函数。
与传统的BP神经网络相比,RBF神经网络在学习速度和全局最优解的搜索能力上有一定优势,但也存在着局部最优解、过拟合等问题,需要结合具体问题进行调整和改进。
此外,RBF神经网络在模式识别、函数逼近、时间序列预测等领域有着广泛的应用。
例如,在模式识别中,RBF神经网络能够处理非线性可分问题,并且对噪声具有一定的鲁棒性;在函数逼近中,RBF神经网络能够较好地拟合复杂的非线性函数关系;在时间序列预测中,RBF神经网络能够捕捉数据的非线性动态特性,有着较好的预测效果。
综上所述,RBF神经网络是一种基于径向基函数的神经网络模型,具有良好的非线性逼近能力和较快的学习速度,在模式识别、函数逼近、时间序列预测等领域有着广泛的应用前景。
然而,在实际应用中,还需要进一步研究和改进其学习算法、径向基函数的选择以及网络结构的优化,以提高网络的性能和稳定性。
rbf神经网络原理

rbf神经网络原理
RBF神经网络是一种基于径向基函数(Radial Basis Function,简称RBF)的人工神经网络模型。
它在解决分类和回归等问题上具有优良的性能和灵活性。
RBF神经网络的基本思想是利用一组基函数来表示输入空间中的复杂映射关系。
这些基函数以输入样本为中心,通过测量样本与中心之间的距离来计算输出值。
常用的基函数包括高斯函数、多项式函数等。
与传统的前馈神经网络不同,RBF神经网络采用两层结构,包括一个隐含层和一个输出层。
隐含层的神经元是基函数的中心,负责对输入样本进行映射。
输出层的神经元用于组合隐含层的输出,并产生网络的最终输出结果。
RBF神经网络的训练过程分为两个阶段:中心选择和参数调整。
在中心选择阶段,通过聚类算法来确定基函数的中心,例如K-means聚类算法。
在参数调整阶段,使用误差反向传播算法来调整基函数的权值和输出层的权值。
RBF神经网络具有较强的非线性拟合能力和逼近性能。
它可以处理高维数据和大规模数据集,并且对于输入空间中的非线性映射具有较好的适应性。
此外,RBF神经网络还具有较快的训练速度和较好的泛化能力。
总结来说,RBF神经网络通过基函数的组合来实现对输入样
本的映射,从而实现对复杂映射关系的建模。
它是一种强大的人工神经网络模型,在多个领域和问题中表现出色。
RBF神经网络

径向基函数(RBF)神经网络RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明一下为什么RBF网络学习收敛得比较快。
当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。
由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。
BP网络就是一个典型的例子。
如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。
常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。
径向基函数解决插值问题完全内插法要求插值函数经过每个样本点,即。
样本点总共有P个。
RBF的方法是要选择P个基函数,每个基函数对应一个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。
||X-X p||表示差向量的模,或者叫2范数。
基于为径向基函数的插值函数为:输入X是个m维的向量,样本容量为P,P>m。
可以看到输入数据点X p是径向基函数φp的中心。
隐藏层的作用是把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了。
将插值条件代入:写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度无关,当Φ可逆时,有。
对于一大类函数,当输入的X各不相同时,Φ就是可逆的。
下面的几个函数就属于这“一大类”函数:1)Gauss(高斯)函数2)Reflected Sigmoidal(反常S型)函数3)Inverse multiquadrics(拟多二次)函数σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越小,宽度越窄,函数越具有选择性。
完全内插存在一些问题:1)插值曲面必须经过所有样本点,当样本中包含噪声时,神经网络将拟合出一个错误的曲面,从而使泛化能力下降。
径向基神经网络RBF介绍

径向基神经网络RBF介绍径向基神经网络(Radial Basis Function Neural Network,以下简称RBF神经网络)是一种人工神经网络模型。
它以径向基函数为激活函数,具有快速学习速度和较高的逼近能力,被广泛应用于函数逼近、模式识别、时间序列预测等领域。
下面将详细介绍RBF神经网络的基本原理、结构和学习算法。
1.基本原理:RBF神经网络由输入层、隐藏层和输出层组成。
输入层接收外部输入数据,隐藏层由一组径向基函数组成,输出层计算输出值。
其基本原理是通过适当的权值与径向基函数的线性组合,将输入空间映射到高维特征空间,并在该空间中进行线性回归或分类。
RBF神经网络的关键在于选择合适的径向基函数和隐藏层节点的中心点。
2.网络结构:隐藏层是RBF神经网络的核心,它由一组径向基函数组成。
每个径向基函数具有一个中心点和一个半径。
典型的径向基函数有高斯函数和多项式函数。
高斯函数的形式为:φ(x) = exp(-β*,x-c,^2)其中,β为控制函数衰减速度的参数,c为径向基函数的中心点,x为输入向量。
隐藏层的输出由输入向量与每个径向基函数的权值进行加权求和后经过激活函数得到。
输出层通常采用线性激活函数,用于输出预测值。
3.学习算法:RBF神经网络的学习算法包括两个步骤:网络初始化和权值训练。
网络初始化时需要确定隐藏层节点的中心点和半径。
常用的方法有K-means 聚类和最大极大算法。
权值训练阶段的目标是通过输入样本和对应的目标值来调整权值,使得网络的输出尽可能接近目标值。
常用的方法有最小均方误差算法(Least Mean Square,LMS)和最小二乘法。
最小均方误差算法通过梯度下降法修改权值,使网络输出的均方误差最小化。
最小二乘法则通过求解线性方程组得到最优权值。
在训练过程中,需要进行误差反向传播,根据输出误差调整权值。
4.特点与应用:RBF神经网络具有以下特点:-输入输出非线性映射能力强,可以逼近复杂的非线性函数关系;-学习速度较快,只需通过非线性映射学习输出函数,避免了反向传播算法的迭代计算;-具有较好的泛化能力,对噪声和异常数据有一定的鲁棒性。
神经网络控制(RBF)

神经网络控制(RBF)神经网络控制(RBF)是一种基于径向基函数(RBF)的神经网络,用于控制系统,其主要功能是通过对输入信号进行处理来实现对系统输出的控制。
通过神经网络控制,控制器可以学习系统的动态行为和非线性模型,从而使得控制器能够自适应地进行调整和优化,实现对系统的精确控制。
RBF 网络通常由三层组成:输入层、隐藏层和输出层。
输入层接受系统的输入信号,并将其传递到隐藏层,隐藏层对输入数据进行处理并输出中间层的值,其中每个中间层神经元都使用一个基函数来转换输入数据。
最后,输出层根据隐藏层输出以及学习过程中的权重调整,计算并输出最终的控制信号。
RBF 网络的核心是数据集,该数据集由训练数据和测试数据组成。
在训练过程中,通过输入训练数据来调整网络参数和权重。
训练过程分为两个阶段,第一阶段是特征选择,该阶段通过数据挖掘技术来确定最优的基函数数量和位置,并为每个基函数分配一个合适的权重。
第二阶段是更新参数,该阶段通过反向传播算法来更新网络参数和权重,以优化网络的性能和控制精度。
RBF 网络控制的优点在于其对非线性控制问题具有优秀的适应性和泛化性能。
另外,RBF 网络还具有强大的学习和自适应调整能力,能够学习并预测系统的动态行为,同时还可以自动调整参数以提高控制性能。
此外,RBF 网络控制器的结构简单、易于实现,并且具有快速的响应速度,可以满足实时控制应用的要求。
然而,RBF 网络控制也存在一些局限性。
首先,RBF 网络需要大量的训练数据来确定最佳的基函数数量和位置。
此外,由于网络参数和权重的计算量较大,实时性较低,可能存在延迟等问题。
同时,选择合适的基函数以及与其相应的权重也是一项挑战,这需要在控制问题中进行深入的技术和经验探索。
总体而言,RBF 网络控制是一种非常有效的控制方法,可以在广泛的控制问题中使用。
其结构简单,性能稳定,具有很强的适应性和泛化性能,可以实现实时控制,为复杂工业控制问题的解决提供了一个重要的解决方案。
RBF神经网络

wjhj
j1
c1j x1 b2j
其中取 x1u(k)。
6 RBF网络逼近仿真实例
使用RBF网络逼近下列对象:
y(k)u(k)3 y(k1) 1y(k1)2
7 RBF网络的优点:
神经网络有很强的非线性拟合能力,可映射任意复杂的非 线性关系,而且学习规则简单,便于计算机实现。具有很 强的鲁棒性、记忆能力、非线性映射能力以及强大的自学 习能力,因此有很大的应用市场。 ① 它具有唯一最佳逼近的特性,且无局部极小问题存在。 ② RBF神经网络具有较强的输入和输出映射功能,并且理 论证明在前向网络中RBF网络是完成映射功能的最优网络。 ③ 网络连接权值与输出呈线性关系。 ④ 分类能力好。 ⑤ 学习过程收敛速度快。
w j ( k w j (- 1 k ) η ( y ) (- k y m (h k ) j ( w ) j ( k ) 1 ) w j ( k 2 ))
2
X-Cj bj (y(k-)ym(kw )j)hj bj3
b j( k b j( )- k 1 η ) b j( b j(- k 1 -b j ) (- k 2)
2 RBF网络结构
RBF网络的结构与多层前向网络类似,它是一 种三层前向网络。第一层即输入层由信号源节点组成 ;第二层为隐含层,隐单元数视所描述的问题的需要 而定,隐单元的变换函数是RBF,它是对称中心径向 对称且衰减的非线性函数;第三层为输出层,它对输 入模式的作用做出响应。由于输入到输出的映射是非 线性的,而隐含层空间到输出空间的映射是线性的, 从而可以大大加快学习速度并避免局部极小问题。
图2 RBF神经网络逼近
在RBF网络结构中,X x 1 ,x 2 ,.x n .T 为.网.络的输入向
RBF神经网络概述

RBF神经网络概述RBF(径向基函数)神经网络是一种基于径向基函数的神经网络模型。
它由两部分组成:输入层和输出层。
输入层接收外部输入信号,然后通过径向基函数层将输入映射到隐含层。
隐含层采用径向基函数来计算输入向量与各个隐含单元的距离,并输出给输出层。
输出层根据隐含层的输出计算最终的输出结果。
1.非线性映射能力:径向基函数作为非线性映射函数,可以将输入空间映射到高维特征空间,从而可以处理非线性问题。
2.局部处理和全局处理:隐含层的每个隐含单元都对输入向量进行局部处理,隐含单元之间相互独立运算。
然后输出层将各个隐含单元的输出结果进行全局处理,得到最终的输出结果。
3.高维特征空间:由于径向基函数的作用,RBF神经网络可以将输入空间映射到高维特征空间,从而提高网络的抽象能力和判别能力。
4.可解释性:RBF神经网络中的隐含单元具有一定的物理意义,例如高斯函数的中心表示样本的分布情况,标准差表示隐含单元的灵敏度。
这样的特点使得RBF神经网络具有较好的可解释性。
1. 中心确定:通过聚类算法(如K-means算法)确定隐含层的中心,中心可以看作是样本的代表点。
2.方差确定:针对每个隐含单元,计算样本与该隐含单元中心的距离,并计算方差。
方差越大,隐含单元对距离远的样本的响应越强,方差越小,隐含单元对距离近的样本的响应越强。
3.权值确定:根据中心和方差计算得到每个隐含单元的权值。
通常采用最小二乘法或者广义逆矩阵法。
4.输出计算:根据隐含层的输出和权值,计算输出层的输出。
5.网络训练:使用样本数据进行网络训练,通过调整权值来减小网络的误差。
常用的方法有梯度下降法、遗传算法等。
RBF神经网络在模式识别、函数逼近、数据挖掘等领域有着广泛的应用。
它具有较好的非线性映射能力和逼近能力,能够处理高维特征空间的模式识别问题。
同时,RBF神经网络具有较好的可解释性,能够提供有关样本分布和网络响应的有效信息。
然而,RBF神经网络也存在一些问题。
RBF网络原理及应用

X1 X2
输入
R1(X)
x1
x2 0 1 0 1 R1(X) 0.3679 0.3679 0.1353 1
y 0 0 0 1 R2(X) 0.3679 0.3679 1 0.1353
∑
R2(X)
径向基神经元
− x − µ1
2
y
输出 x1 1 0 0 1 x2 0 1 0 1
1 0 0 1
a1 1
1 y = b0 + b1 (a0 * x ) + b2 (c0 + c1 * ) x2
0.811 y1 = 0.932 + 0.784* x + x2 ∧ 0.603 0.538 y2 = 1.161 + 0.920* x1 + x2
0.538 1 ∧
求出模型参数可得到如下三个非线性回归模型:
下面以1-9作为训练样本,10-12作为检验样本,采用 RBFNN方法进行预测。结果如下表.
10-12的预测值与实际值比较 10-12的预测值与实际值比较
RBFNN模型在多元非线性回归中的应用 2.2 RBFNN模型在多元非线性回归中的应用
从以上分析可知,用RBFNN方法做非线性回归的 拟合效果和预测效果都比传统回归方法好. 从上面的实例和分析可以得出如下结论: RBFNN法与传统回归方法相比,具有如下的特点: 1)避免数据的分析工作和建模工作,RBFNN能够从观测 样本中发现隐含的复杂结构。 2)能够完成复杂的输入输出非线性映射,理论上对任一 连续函数或映射可由一个三层神经网络实现。
y3 = 1.452 + 0.689* x
∧
0.538 1
0.754 + x2
径向基函数网络

• 正规化网络
• 其中基函数一般选用高斯函数:
• 那么:
正规化网络是一个通用逼近器,只要隐单元足够多,它就可以逼近任意M元 连续函数。且对任一未知的非线性函数,总存在一组权值使网络对该函数的 逼近效果最好。
• 广义网络
• 当基函数为高斯函数时:
RBF神经网络两种模型
• 正规化网络RN:通用逼近器 • 基本思想: • 通过加入一个含有解的先验知识的约束来控制映射函数的光滑性,若输入一
径向基函数网络
• RBF神经网络定义 • RBF神经网络工作原理 • RBF神经网络模型 • RBF神经网络学习算法 • 实例
径向基函数网络(RBF网络)
• 径向基函数是多维空间插值的传统技术,根据生物神经元具有局部响应这一 特点,将RBF引入到神经网络设计中,产生了RBF神经网络。
• RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性, 具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数 逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建 模、控制和故障诊断等。
自组织选取中心算法步骤
• 1.基于K-均值聚类方法求取基函数中心
• 2.求解方差 • 3.计算隐含层和输出层之间的权值
实例
根据RBF神经网络的网络结构和工作 原理,可确定以下编程步骤及相关语言: 初始化,确定RBF网络模型的输入,输出 向量。 用newrb()函数设计一个满足一定精度的 RBF网络。
运行程序,可得到函数逼近曲线和函数逼近 外推误差曲线分别为:
23
24
25
谢谢大家 !
20
下面看一个例子: 用RBF网络逼近Hermit多项式
y(x) 1.1(1 x 2x2 ) exp( x2 ) 2
RBF(径向基)神经网络

RBF(径向基)神经⽹络 只要模型是⼀层⼀层的,并使⽤AD/BP算法,就能称作 BP神经⽹络。
RBF 神经⽹络是其中⼀个特例。
本⽂主要包括以下内容:什么是径向基函数RBF神经⽹络RBF神经⽹络的学习问题RBF神经⽹络与BP神经⽹络的区别RBF神经⽹络与SVM的区别为什么⾼斯核函数就是映射到⾼维区间前馈⽹络、递归⽹络和反馈⽹络完全内插法⼀、什么是径向基函数 1985年,Powell提出了多变量插值的径向基函数(RBF)⽅法。
径向基函数是⼀个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意⼀点c的距离,c点称为中⼼点,也就是Φ(x,c)=Φ(‖x-c‖)。
任意⼀个满⾜Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向基函数,标准的⼀般使⽤欧⽒距离(也叫做欧式径向基函数),尽管其他距离函数也是可以的。
最常⽤的径向基函数是⾼斯核函数 ,形式为 k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中x_c为核函数中⼼,σ为函数的宽度参数 , 控制了函数的径向作⽤范围。
⼆、RBF神经⽹络 RBF神将⽹络是⼀种三层神经⽹络,其包括输⼊层、隐层、输出层。
从输⼊空间到隐层空间的变换是⾮线性的,⽽从隐层空间到输出层空间变换是线性的。
流图如下: RBF⽹络的基本思想是:⽤RBF作为隐单元的“基”构成隐含层空间,这样就可以将输⼊⽮量直接映射到隐空间,⽽不需要通过权连接。
当RBF的中⼼点确定以后,这种映射关系也就确定了。
⽽隐含层空间到输出空间的映射是线性的,即⽹络的输出是隐单元输出的线性加权和,此处的权即为⽹络可调参数。
其中,隐含层的作⽤是把向量从低维度的p映射到⾼维度的h,这样低维度线性不可分的情况到⾼维度就可以变得线性可分了,主要就是核函数的思想。
这样,⽹络由输⼊到输出的映射是⾮线性的,⽽⽹络输出对可调参数⽽⾔却⼜是线性的。
⽹络的权就可由线性⽅程组直接解出,从⽽⼤⼤加快学习速度并避免局部极⼩问题。
RBF网络原理及应用

RBF网络原理及应用RBF(Radial Basis Function)网络是一种基于radial基函数的前向神经网络,它是一种具有局部适应性和全局逼近能力的非线性模型。
其原理和应用如下:1.原理:RBF网络由输入层、隐藏层和输出层组成。
隐藏层的每一个神经元使用具有特定中心和宽度参数的radial基函数作为激活函数。
输入信号通过输入层传递到隐藏层,隐藏层的神经元计算输入信号与其对应的中心的距离,并将距离作为输入信号传递给输出层。
输出层的神经元根据权重和输入信号计算输出值。
整个网络通过不断调整隐藏层的参数和输出层的权重来进行训练,以实现模型的优化。
2.应用:-回归分析:RBF网络可以用于函数逼近问题,通过学习输入值与输出值之间的函数关系,实现对未知输入的预测。
例如,可以用RBF网络建模销售数据,根据历史数据预测未来销售情况。
-控制系统:RBF网络可以用于建立非线性的控制模型。
通过学习输入与输出之间的非线性映射,可以根据输入信号来控制输出信号,实现控制系统对复杂非线性过程的控制。
-时间序列预测:RBF网络可以用于预测时间序列数据,如股票价格、气温变化等。
通过学习历史数据的模式,可以对未来的趋势和变化进行预测。
3.RBF网络的优势:-具有局部适应性:每个隐藏神经元只对输入空间的一部分进行响应,具有局部适应性,更适合处理复杂非线性问题。
-具有全局逼近能力:通过增加足够多的隐藏神经元,RBF网络可以以任意精度逼近任何连续函数,具有较强的全局逼近能力。
-训练简单:RBF网络的训练相对简单,可以使用基于梯度下降法的误差反向传播算法进行训练。
-鲁棒性高:RBF网络对噪声和输入变化具有较好的鲁棒性,在一定程度上可以处理输入数据中的不确定性。
总结起来,RBF网络是一种基于radial基函数的前向神经网络,具有局部适应性、全局逼近能力以及鲁棒性高等优点。
它在模式识别、回归分析、控制系统、时间序列预测等领域有广泛应用,并且可以通过简单的训练方法进行优化。
rbf神经网络原理

rbf神经网络原理RBF神经网络是一种对输入输出非线性关系的建模方法,它能够有效地提取非线性的特征。
RBF神经网络的全称是“基于径向基函数的神经网络”(radial basis function neural network),它是一种基于模式识别、计算机视觉以及语音识别等任务的有效工具。
它有多种不同的应用,包括控制系统设计、语音识别、机器学习、数据挖掘等。
RBF神经网络的基本原理是将输入空间划分到多个互不重叠的子空间,每个子空间由一个独立的RBF函数来描述。
RBF函数是一种非线性函数,它可以有效地提取输入信号的非线性特征,从而实现非线性输入输出关系的建模。
RBF神经网络的基本结构由三部分组成:输入层、隐层和输出层。
输入层首先接收输入信号,并将输入信号传递到隐层。
然后,隐层根据RBF函数的参数计算出响应信号,并将其传递到输出层。
最后,输出层将响应信号进行综合处理,并计算出最终的输出结果。
作为一种有效的建模方法,RBF神经网络在模式识别、计算机视觉、语音识别等多个领域的应用越来越广泛。
它的基本原理是通过将输入空间划分为多个互不重叠的子空间,每个子空间由一个RBF函数来描述,从而有效地提取数据中的非线性特征,并通过输入层、隐层和输出层之间的联系实现非线性输入输出关系的建模,从而解决复杂的任务。
RBF神经网络的优点在于它能够有效地提取非线性的特征和信息,它能够高效地处理大规模的输入输出数据,而且它的计算量较小,可以实现快速的计算。
此外,RBF神经网络还具有良好的学习能力和泛化能力,因此,它可以对输入输出关系进行更准确的建模,从而实现更好的效果。
尽管RBF神经网络有很多优点,但它也存在一些缺点。
首先,它受到输入数据规模的限制,在处理大规模的输入信号时,效率会很低。
其次,它的训练过程复杂,需要调整多个参数,因此,它的训练时间较长。
最后,它还存在可靠性的问题,因为它的训练决定了它的计算结果的可靠性,因此,在某些特定情况下,可能无法实现可靠的计算结果。
rbf神经网络原理

rbf神经网络原理RBF神经网络又称基于最近邻的神经网络,是一种基于最近邻原理的计算模型,它是在传统的神经网络基础上发展起来的一种新型的神经网络。
一、 RBF经网络的结构与原理RBF神经网络由三层结构组成,其结构如下:输入层、隐含层、输出层。
输入层及输出层均由多个神经元组成,输入层用来接收外部输入,而输出层则用来处理数据并将结果返回外界。
隐含层则是该神经网络的核心部分,也是该神经网络的最重要的一层,它也由多个神经元组成,其主要职责是使用非线性变换将输入信号转换为输出结果。
RBF神经网络的工作原理主要是通过对每一个样本点的有效分类,来实现数据的预测和分类。
其工作原理如下:首先,网络从训练样本中学习一组最近邻表,用于计算输入与训练样本中数据点之间的距离;接着,网络利用这些距离计算出一组激活函数,用来对每个输入数据进行有效的分类;最后,网络根据每个分类对应的输出结果,综合多个神经元的输出结果,预测出最终结果。
二、 RBF经网络的优势RBF神经网络具有计算简单、参数数量少、准确率高等优势,使其在计算机视觉、语音识别、物体识别等领域有着广泛的应用。
首先,RBF神经网络具有计算简单的优势。
RBF神经网络的主要计算任务只有距离的计算和调整参数,它的计算机要求不高,而且可以采用现有的快速计算方法。
其次,RBF神经网络的参数数量少,这也是其与传统神经网络的主要区别所在。
它的参数数量仅为其他神经网络的一半至一百分之一,这种参数少的优势使得网络更加精简,训练更加容易和准确。
最后,RBF神经网络的准确率也是非常高的,这也是其与传统神经网络的主要区别之一。
它在多维数据输入的情况下,可以获得非常高的准确率,这也是它在计算机视觉、语音识别、物体识别等等领域应用的原因。
三、 RBF经网络的应用RBF神经网络在不同领域有着广泛的应用,主要应用在计算机视觉、语音识别和物体识别等领域。
1、计算机视觉:计算机视觉是指计算机在通过机器视觉以及图像处理等技术来解决视觉难题,而RBF神经网络在计算机视觉中因其具有准确率高、参数数量少等优势,一般可以应用在图形识别、人脸识别和运动目标检测等领域。
rbf神经网络原理

rbf神经网络原理
RBF神经网络,即径向基函数神经网络,是一种常用的神经网络模型。
它的核心思想是通过选择合适的基函数来近似非线性函数关系,从而实现对复杂模式的学习与分类。
RBF神经网络由三层组成:输入层,隐含层和输出层。
输入层接收外部输入的数据,每个输入节点对应一个特征。
隐含层是RBF神经网络的核心,其中的每个神经元都是一个径向基函数。
在隐含层中,每个神经元都有一个中心向量和一个标准差,用于确定其基函数的形状和大小。
通过计算输入向量与神经元中心之间的距离,再经过基函数的转换,即可得到神经元的输出。
输出层是整个神经网络的分类器,它通常采用线性组合来产生最终的输出。
常见的方法是采用最小均方误差(MSE)准则函数来训练神经网络,通过调整神经元中心和标准差的参数,以最小化实际输出与期望输出之间的误差。
RBF神经网络具有以下优点:
1. 相较于传统的前馈神经网络,RBF神经网络对线性可分和线性不可分问题的逼近能力更强。
2. RBF神经网络的训练速度较快,且容易实现并行计算。
3. 网络结构简单,参数少,不容易出现过拟合问题。
4. 对于输入输出空间中的噪声和干扰具有较强的鲁棒性。
总而言之,RBF神经网络通过径向基函数的选取,能够有效地近似非线性函数,并在模式分类等任务中取得较好的结果。
RBF神经网络

RBF神经⽹络RBF神经⽹络RBF神经⽹络通常只有三层,即输⼊层、中间层和输出层。
其中中间层主要计算输⼊x和样本⽮量c(记忆样本)之间的欧式距离的Radial Basis Function (RBF)的值,输出层对其做⼀个线性的组合。
径向基函数:RBF神经⽹络的训练可以分为两个阶段:第⼀阶段为⽆监督学习,从样本数据中选择记忆样本/中⼼点;可以使⽤聚类算法,也可以选择随机给定的⽅式。
第⼆阶段为监督学习,主要计算样本经过RBF转换后,和输出之间的关系/权重;可以使⽤BP算法计算、也可以使⽤简单的数学公式计算。
1. 随机初始化中⼼点2. 计算RBF中的激活函数值,每个中⼼点到样本的距离3. 计算权重,原函数:Y=GW4. W = G^-1YRBF⽹络能够逼近任意⾮线性的函数(因为使⽤的是⼀个局部的激活函数。
在中⼼点附近有最⼤的反应;越接近中⼼点则反应最⼤,远离反应成指数递减;就相当于每个神经元都对应不同的感知域)。
可以处理系统内难以解析的规律性,具有很好的泛化能⼒,并且具有较快的学习速度。
有很快的学习收敛速度,已成功应⽤于⾮线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
当⽹络的⼀个或多个可调参数(权值或阈值)对任何⼀个输出都有影响时,这样的⽹络称为全局逼近⽹络。
由于对于每次输⼊,⽹络上的每⼀个权值都要调整,从⽽导致全局逼近⽹络的学习速度很慢,⽐如BP⽹络。
如果对于输⼊空间的某个局部区域只有少数⼏个连接权值影响输出,则该⽹络称为局部逼近⽹络,⽐如RBF⽹络。
RBF和BP神经⽹络的对⽐BP神经⽹络(使⽤Sigmoid激活函数)是全局逼近;RBF神经⽹络(使⽤径向基函数作为激活函数)是局部逼近;相同点:1. RBF神经⽹络中对于权重的求解也可以使⽤BP算法求解。
不同点:1. 中间神经元类型不同(RBF:径向基函数;BP:Sigmoid函数)2. ⽹络层次数量不同(RBF:3层;BP:不限制)3. 运⾏速度的区别(RBF:快;BP:慢)简单的RBF神经⽹络代码实现# norm求模,pinv求逆from scipy.linalg import norm, pinvimport numpy as npfrom matplotlib import pyplot as pltimport matplotlib as mplmpl.rcParams["font.sans-serif"] = ["SimHei"]np.random.seed(28)class RBF:"""RBF径向基神经⽹络"""def__init__(self, input_dim, num_centers, out_dim):"""初始化函数:param input_dim: 输⼊维度数⽬:param num_centers: 中间的核数⽬:param out_dim:输出维度数⽬"""self.input_dim = input_dimself.out_dim = out_dimself.num_centers = num_centersself.centers = [np.random.uniform(-1, 1, input_dim) for i in range(num_centers)] self.beta = 8self.W = np.random.random((self.num_centers, self.out_dim))def _basisfunc(self, c, d):return np.exp(-self.beta * norm(c - d) ** 2)def _calcAct(self, X):G = np.zeros((X.shape[0], self.num_centers), float)for ci, c in enumerate(self.centers):for xi, x in enumerate(X):G[xi, ci] = self._basisfunc(c, x)return Gdef train(self, X, Y):"""进⾏模型训练:param X: 矩阵,x的维度必须是给定的n * input_dim:param Y: 列的向量组合,要求维度必须是n * 1:return:"""# 随机初始化中⼼点rnd_idx = np.random.permutation(X.shape[0])[:self.num_centers]self.centers = [X[i, :] for i in rnd_idx]# 相当于计算RBF中的激活函数值G = self._calcAct(X)# 计算权重==> Y=GW ==> W = G^-1Yself.W = np.dot(pinv(G), Y)def test(self, X):""" x的维度必须是给定的n * input_dim"""G = self._calcAct(X)Y = np.dot(G, self.W)return Y测试上⾯的代码:# 构造数据n = 100x = np.linspace(-1, 1, n).reshape(n, 1)y = np.sin(3 * (x + 0.5) ** 3 - 1)# RBF神经⽹络rbf = RBF(1, 20, 1)rbf.train(x, y)z = rbf.test(x)plt.figure(figsize=(12, 8))plt.plot(x, y, 'ko',label="原始值")plt.plot(x, z, 'r-', linewidth=2,label="预测值")plt.legend()plt.xlim(-1.2, 1.2)plt.show()效果图⽚:RBF训练RBF函数中⼼,扩展常数,输出权值都应该采⽤监督学习算法进⾏训练,经历⼀个误差修正学习的过程,与BP⽹络的学习原理⼀样.同样采⽤梯度下降爱法,定义⽬标函数为:ei为输⼊第i个样本时候的误差。
RBF网络

RBF 网络的学习过程与BP 网络的学习过程类似,两者的主要区别在于各使用不同的作用函数.BP 网络中隐层使用的是Sigmoid 函数,其值在输入空间中无限大的范围内为非零值,因而是一种全局逼近的神经网络;而RBF 网络中的作用函数是高斯基函数,其值在输入空间中有限范围内为非零值,因而RBF 网络是局部逼近的神经网络。
理论上,3层以上的BP 网络能够逼近任何一个非线性函数,但由于BP 网络是全局逼近网络,每一次样本学习都要重新调整网络的所有权值,收敛速度慢,易于陷入局部极小,很难满足控制系统的高度实时性要求.RBF 网络是一种3层前向网络,由输入到输出的映射是非线性的,而隐层空间到输出空间的映射是线性的,而且RBF 网络是局部逼近的神经网络,因而采用RBF 网络可大大加快学习速度并避免局部极小问题,适合于实时控制的要求。
采用RBF 网络构成神经网络控制方案,可有效提高系统的精度、鲁棒性和自适应性.在RBF 网络结构中,共有三层结构,即输入层,隐含层,输出层,隐含层中的每个节点都有自己的中心且与输入层相互连接,如图3.1。
隐层节点作用是对于输入向量进行非线性映射,再向输出层的线性映射提供输入,在隐层每一个节点先计算输入向量与各自的中心距离,然后将其作用于激励函数得到隐层节点的输出,中间节点的输出连接到每一个输出节点,输出节点的传递函数是一个线性函数。
因此,输出节点的输出是中间隐层节点输出的线性组合.这样,输入向量先经过一个非线性映射到中间隐层,再经过一个线性映射到输出。
RBF 网络整体上可以实现非线性映射。
中间隐层激励函数都是相同的,唯一不同的是它们的中心不同。
下面就是一个常用的一维径向基函数:)2exp()(22δc x x f --=确定这个函数需要两个参数:中心c 以及方差δ。
图3.1 RBF 神经网络结构径向基网络数学模型为:网络的输入Ⅳ个训练样本{}km k k k x x x X ,....,21=(N k ,...2,1=)网络对应的输出:{}km k k k y y y Y ,...,21= (N k ,...2,1=)网络输出连接权系数构成连接矩阵:}{,,..2,1,,...2,1,,J j I i j i W ===隐层节点个数I,中心点:{i C } I i ,...2,1= 方差i δ网络输入输出之间的关系:221)21exp()(i k i I i ij k kj C X w X y --=∑=δRBF 网络逼近的性能指标函数为:)(k E =2)]([21k kj k X y Y - 3.2 RBF 神经网络的性能改进3.2.1 RBF 神经网络训练数据的预处理1.进行数据预处理的原因对于使用有教师训练算法的前向神经网络,训练样本的质量对网络的性能非常重要.RBF 神经网络是一种局部网络,只有在隐含层节点中心的一定范围内的点才会使网络产生一定的输出。
RBF神经网络概述

RBF 神经网络概述1 RBF 神经网络的基本原理2 RBF 神经网络的网络结构3 RBF 神经网络的优点1 RBF 神经网络的基本原理人工神经网络以其独特的信息处理能力在许多领域得到了成功的应用。
它不仅具有强大的非线性映射能力,而且具有自适应、自学习和容错性等,能够从大量的历史数据中进行聚类和学习,进而找到某些行为变化的规律。
径向基函数(RBF)神经网络是一种新颖有效的前馈式神经网络,它具有最佳逼近和全局最优的性能,同时训练方法快速易行,不存在局部最优问题,这些优点使得RBF 网络在非线性时间序列预测中得到了广泛的应用。
1985年,Powell 提出了多变量插值的径向基函数(Radial-Basis Function, RBF)方法。
1988年,Broomhead 和Lowe 首先将RBF 应用于神经网络设计,构成了径向基函数神经网络,即RBF 神经网络。
用径向基函数(RBF)作为隐单元的“基”构成隐含层空间,对输入矢量进行一次变换,将低维的模式输入数据变换到高维空间内,通过对隐单元输出的加权求和得到输出,这就是RBF 网络的基本思想。
2 RBF 神经网络的网络结构RBF 网络是一种三层前向网络:第一层为输入层,由信号源节点组成。
第二层为隐含层,隐单元的变换函数是一种局部分布的非负非线性函数,他对中心点径向对称且衰减。
隐含层的单元数由所描述问题的需要确定。
第三层为输出层,网络的输出是隐单元输出的线性加权。
RBF 网络的输入空间到隐含层空间的变换是非线性的,而从隐含层空间到输出层空间的变换是线性。
不失一般性,假定输出层只有一个隐单元,令网络的训练样本对为{,}(1,2,...,)n n X d n N =,其中12[,,...,],(1,2,...,)T n n n nM X x x x n N ==为训练样本的输入,(1,2,...,)n d n N =为训练样本的期望输出,对应的实际输出为(1,2,...,)n Y n N =;基函数(,)i X t ϕ为第i 个隐单元的输出12[,,...,,...,](1,2,...,)i i i im iM t t t t t i I ==为基函数的中心; (1,2,...,)i w i I =为第i 个隐单元与输出单元之间的权值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容
一个例子 RBF基本思想 RBF网络拓扑结构 基函数 学习算法 RBF与多层感知机比较 实例
一个例子(1)
异或问题
一个例子(2)
1 ( x) = e
x t1
2
,
1 t1 = 1
0 t2 = 0
2 ( x) = e
x t2
2
,
一个例子(3)
其它实例
playshow playshow playshow playshow demorb1 demorb3 demorb4 demogrn1
0 0 1 1 P = , P2 = , P3 = , P4 = 1 0 1 0 1
1 ( P ) = e 2 , 1 ( P2 ) = e 1 1 1 ( P3 ) = e 1 , 1 ( P4 ) = e0
Pi
1 ( Pi ) Pi = 2 ( Pi )
'
2 ( P ) = e0 , 2 ( P2 ) = e 1 1
RBF网络拓扑结构(1)
RBF网络拓扑结构(2)
基函数
学习算法(1)
学习算法(2)
RBF与多层感知机比较(1)
RBF与多层感知机比较(2)
RBF与多层感知机比较(3)
实例(RBF)
x=-1:0.1:1 y=sin(x) net1=newrb(x,y) net2=nn(x,y) z=sim(net1,x) u=sim(net2,x) plot(x,y,'+') hold on plot(x,z) plot(x,u)
实例(BP)
figure(1) net.trainParam.epochs=100 net.trainParam.goal=0.001 net=train(net,x,y) figure(2) hold on y3=sim(net,x) plot(x,y3,':') figure(1) plot(x,y3,':')
实例(BP)
x=-2:0.1:2 y=sin(x) figure(1) plot(x,y,'-') hold on n=10 net=newff(minmax(x),[n,1],{'tansig','purelin'},'trainlm') y2=sim(net,x) figure(2) plot(x,y2)
2 ( P3 ) = e 1 , 2 ( P4 ) = e 2
一个例子(4)
RBF基本思想
神经网络设计是高维空间中的曲线拟合(逼 近)问题 学习等价于多维空间中寻找能够最佳拟合 数据的曲面(BP是随机逼近)
Cover,1965,”Geometrical and statistical properties of systems of liner inequalities with applications in pattern recognition”,IEEE Trans On Electronic Computers,Vol.EC-16,pp326-334