八年级数学下册第十六章测试题

合集下载

人教版八年级数学下册第十六章二次根式单元测试题

人教版八年级数学下册第十六章二次根式单元测试题

第十六章二次根式一、选择题(每题3分,共24分)1.在以下各式中,不是二次根式的有( )m23①-10;②10a(a≥0);③n(m,n同号且n≠0);④x+1;⑤8.A.3个B.2个C.1个D.0个x+1x的取值范围是(2.假设代数式〔x-3〕2有意义,那么实数)A.x≥-1B.x≥-1且x≠3C.>-1D.x>-1且≠3x x3.以下计算:(1)(2)2=2;(2)〔-2〕2=2;(3)(-23)2=12;(4)(2+3)(2-3)=-1.其中结果正确的个数为()A.1B.2C.3D.44.以下式子中为最简二次根式的是()A.3B.4C.8D.1 25.假设75n是整数,那么正整数n的最小值是()A.2B.3C.4D.56.一个直角三角形的两条直角边长分别为23cm,36cm,那么这个直角三角形的面积是()A.82cm2B.72cm2C.92cm2D.2cm2a2+b2a7.如果a-b=23,那么代数式(2a-b)·a-b的值为()3B.23C.33D.438.甲、乙两人计算a+1-2+a2的值,当a =5的时候得到不同的答案,甲的解答是aa+1-2a+a2=a+〔1-a〕2=a+1-a=1;乙的解答是a+1-2a+a2=a+〔a-1〕2=a+a-1=2a-1=9.以下判断正确的选项是()A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对二、填空题(每题3分,共24分)9.a<2,那么〔a-2〕2=________.110.计算:27-63=________.11.在实数范围内分解因式:x2-5=____________.12.计算:18÷3×1=________.313.化简:(1)11=________;(3)102=________;(2)=________;(4) 3212253-1________.14.一个三角形的三边长分别为8cm,12cm,18cm,那么它的周长是________cm.15.a是13的整数局部,b是13的小数局部,那么ab=________.16.我国南宋著名数学家秦九韶在他的著作?数书九章?一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即:如果一个三角形的三边长分别为a,b,c,那么该三角形的122a2+b2-c22面积为S=4[ab-〔2〕].△ABC的三边长分别为5,2,1,那么△ABC的面积为________.三、解答题(共52分)17.(10分)计算:(1)2(12+20)-3(3-5);(2)(3-2 5)( 15+5)-( 10-2)2.18.(10分)a=7+2,b=7-2,求以下代数式的值:(1)a2b+b2a;(2)a2-b2.19.(10分)先化简,再求值:13x+22·(1+)÷2,其中x=25-1. x+2x+1x-1x-120.(10分)王师傅有一根长45米的钢材,他想将它锯断后焊成三个面积分别为2平方米、18平方米、32平方米的正方形铁框,王师傅的钢材够用吗?请通过计算说明理由.21.(12分)阅读材料:小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方的形式,如3+22=(1+2)2,善于思考的小明进行了以下探索:设+2=(+2)2(其中a,,,均为正整数),那么有+2=2+22+22,ab mn bmn ab mnmn22所以a=m+2n,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决以下问题:(1)当a,b,m,n均为正整数时,假设a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得a=________,b=________;利用所探索的结论,找一组正整数a,b,m,n填空:______+______3=(____________3)2;(3)假设a +43=(+3)2,且,,n均为正整数,求a的值.mn am详解详析1.B [解析]①的被开方数是负数,不是二次根式.②符合二次根式的定义,是二次根式.③m ,n 同号,且n ≠0,那么被开方数是非负数,是二次根式.④因为x 2≥0,所以x 2+1>0,被开方数是正数,是二次根式.⑤的根指数不是2,所以不是二次根式.2.B[解析] 由题意得x +1≥0,〔x -3〕2≠0,解得x ≥-1且x ≠3.3 .[ 解析] (1) 根据“(a ) 2= a (a ≥ 0)〞可知(2)2=2成立; (2)根据“ a 2= | a 〞D|可知〔-2〕2=2成立;(3)根据“(ab )2=a 2b 2〞可知,计算(-23)2,可将-2和 3分别平方后,再相乘,所以这个结论正确; (4)根据“(a +b )(a -b )=a 2-b 2〞,(2+3)(2-3)=(2)2-(3)2=2-3=-1.4.A5.B [解析] ∵75=25×3,∴使75n 是整数的正整数 n 的最小值是3.应选B.6.C〔a -b 〕2a a -b237.A [解析]原式=2a·a -b=2,把a -b =23代入,原式=2 = 3,应选A.8.D[解析] ∵a =5,∴〔1-a 〕2=|1-a |=a -1.9.2-a10.311.(x +5)(x -5)12.213.(1)2 (2)3 (3) 2(4)3+16 6 214.(52+23)[解析]8+12+18=22+23+32=(52+23)cm.15.313-9[解析] 根据题意,得a =3,b = 13-3,所以ab =313-3) =(313-9.S =15+4-1216.1 [解析]把5,2,1代入三角形的面积公式得4[5×4-〔2 〕 ]=14〔20-16〕=1,故填1.17.解:(1)原式=2(23+25)-3 3+35=4 3+4 5-33+35= 3+75.(2)原 式 = 3 × 15+53-25×15 -10`5 -[〔10〕2-2×10×2+〔2〕2]=3 5+5 3-103-105-10+45-2=-35-53-12.18.解:(1)原式=ab(a+b).当a=7+2,b=7-2时,原式=6 7.原式=(a+b)(a-b).当a=7+2,b=7-2时,原式=87.1x+2〔x+1〕〔x-1〕1 19.解:原式=〔x+1〕2·x-1·x+2=x+1.当x=25-1时,原式=15=. 25-1+11020.解:不够用.理由如下:焊成三个面积分别为2平方米、18平方米、32平方米的正方形铁框所需的钢材的总长是4(2+18+32)=4(2+32+42)=322(米),(322)2=2048,452=2025.∵2048>2025,∴王师傅的钢材不够用.21.解:222mn (1)m+3n(2)答案不唯一,如:42112+3n2,(3)a=m根据题意,得4=2mn.∵2mn=4,且m,n为正整数,∴m=2,n=1或m=1,n=2,∴a=7或a=13.。

【3套】人教版数学八年级下册第十六章测试(含解析答案)

【3套】人教版数学八年级下册第十六章测试(含解析答案)

人教版数学八年级下册第十六章测试(含解析答案)一、选择题1.下列各式中,属于二次根式的有( )①; ②;③;④;⑤;⑥(a≤0).A.2个B.3个C.4个D.5个2. (2014·聊城模拟)函数y=中自变量x的取值范围是( )A.x>2B.x<2C.x≠2D.x≥23. (2014·广州模拟)已知|a-1|+=0,则a+b=( )A.-8B.-6C.6D.84.若1≤a≤,则+|a-2|的值是( )A.6+aB.-6-aC.-aD.15.化简×+的结果是( )A.5B.6C. D.56.下列根式中不是最简二次根式的是( )A. B. C. D.7.若x-y=-1,xy=,则代数式(x-1)(y+1)的值等于( )A.2+2B.2-2C.2D.28.(2013·昆明)下列运算正确的是( )A.x6+x2=x3B.=2C.(x+2y)2=x2+2xy+4y2D.-=9.(2014·杭州模拟)已知m=×(-2),则有( )A.5<m<6B.4<m<5C.-5<m<-4D.-6<m<-510.计算÷的结果是( )A.-B.C.D.二、填空题11.如图所示,矩形内两相邻正方形的面积分别是3和8,那么矩形内阴影部分的面积是 (结果可用根号表示).12.当x 时,=1-2x.13.计算:-= .14.我们赋予“※”一个实际含义,规定a ※b=·+,则3※5= . 15.(7-5)2 012×(-7-5)2 013= .16.将一组数,2,,2,,…,2按如下方法进行排列:2 2 23 2 22 4 6若3在第2行第3列的位置记为(2,3),2在第3行第2列的位置记为(3,2),则这组数中最大的有理数的位置记为 .三、解答题17.计算下列各题: (1)÷×;(2)(-2)(+2);(3)--+.18.先化简,再求值:÷,其中a=5-,b=-3+.19.若x,y为实数,且y=++,求-的值.20.已知M=-,N=.甲、乙两个同学在y=++18的条件下分别计算了M和N的值.甲说M的值比N 大,乙说N的值比M大.请你判断谁的结论是正确的,并说明理由.21.阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上形如,,的式子,其实我们还可以将其进一步化简:==;(一)==;(二)===-1.(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====-1.(四)(1)请用不同的方法化简.①参照(三)式得= ;②参照(四)式得= .(2)化简:+++…+.参考答案1.答案:D 解析:属于二次根式的有①②③⑤⑥,共5个.2.答案:A 解析:根据题意得x-2≥0且x-2≠0.解得x>2.3.答案:B 解析:因为|a-1|+=0,所以a-1=0,7+b=0,解得a=1,b=-7,所以a+b=-6.4.答案:D 解析:原式=|a-1|+|a-2|=a-1-(a-2)=1.5.答案:D 解析:×+=+=+=3+2=5.6.答案:C 解析:==2,被开方数中含有开得尽方的因数,因此不是最简二次根式.7.答案:B 解析:(x-1)(y+1)=xy+x-y-1=+-1-1=2-2.8.答案:D解析:A.本选项不能合并,错误;B.=-2,本选项错误;C.(x+2y)2=x2+4xy+4y2,本选项错误;D.-=3-2=,本选项正确.9.答案:A 解析:m=×(×)=×()2×=2,因为25<28<36,所以<2<,即5<2<6.10.答案:A 解析:原式=÷=-÷=-.11.答案:2-3 解析:S阴影=(-)×=2-3.12.答案:≤解析:由题意得1-2x ≥0,解得x≤.13.答案:2 解析:原式=2+-=2.14.答案:解析:3※5=×+=+=.15.答案:-7-5解析:原式=[(7-5)×(-7-5)]2 012×(-7-5)=(50-49)2 012×(-7-5)=-7-5.16.答案:(17,2) 解析:将各个数都还原为带有根号的式子,不难发现,被开方数是连续的偶数.2=,因为204÷2÷6=17,即2是(17,6),所以是最大的有理数,即(17,2).17.解:(1)÷×==;(2)(-2)(+2)=2-12=-10;(3)--+=2-3-+=-.18.解:化简得原式=,因为a=5-,b=-3+,所以原式===1.19.答案: 解:由已知可得x=,y=,化简得原式=2,把x,y的值代入,可得原式=2=.20.解:乙的结论正确.理由:由y=++18,可得x=8,y=18.因此,M=-==-=-=-;N===0.所以M<N,即N的值比M大.21.解:(1)①===-;②====-.(2)原式=+++…+=+++…+=.人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版(湖北)八年级数学下册:第十六章单元检测题一、选择题(每小题3分,共30分)1.下列式子一定是二次根式的是(C)A.3-xB.-5C.x2+1D.3 42.下列二次根式中,x的取值范围是x≥3的是(C)A.3-xB.6+2xC.2x-6D.1 x-33.下列二次根式中,是最简二次根式的是(A)A.2xy B.ab2 C.0.1 D.x4+x2y24.下列二次根式,不能与12合并的是(B)A.48B.0.3C.113D.-755.下列各式运算正确的是(C) A.2+3= 5 B.2+2=2 2C.3 2-2=2 2 D.18-82=9-4=3-2=16.设5=a,6=b,用含a,b的式子表示 2.7,则下列表示正确的是(A) A.0.3ab B.3ab C.0.1ab2D.0.1a2b7.化简(-4)2+32-(-2 3)2的结果是(A)A.-5 B.18 C.-13 D.118.等式x+1x-1=x+1x-1成立的条件是(A)A.x>1 B.x<-1 C.x≥1 D.x≤-19.已知y<2x-6+6-2x+3,化简(y-3)2+2x-y2-8y+16为(C)A.2y-13 B.13-2y C.5 D.310.已知正整数a,m,n满足a2-42=m-n,则这样的a,m,n的取值(A)A.有一组B.有两组C.多于两组D.不存在二、填空题(每小题3分,共18分)11.化简:18x2y3(x>0,y>0)=.12.比较大小:2 3__<__3 2.13.如果最简二次根式3a-8与17-2a能够合并,那么a的值为__5__.14.若(2a-1)2=1-2a,则a的取值范围为________.15.观察下列式子:1+112+122=112,1+122+132=116,1+132+142=1112……根据此规律,若1+1a2+1b2=1190,则a2+b2=__181__.16.已知a ,b ,c 满足a =2b +2,且ab +32c 2+14=0,则bc a 的值为__0__. 三、解答题(共72分)17.(8分)计算:(1) 27-12+13; (2) (48-75)×113; 【解析】原式=4 33. 【解析】原式=-2.(3) (48+4 6)÷27; (4) (23-5)(23+5)-(5-3)2.【解析】原式=43+432. 【解析】原式=-1+2 15.18.(8分)先化简,再求值:(a -1+2a +1)÷(a 2+1),其中a =2-1. 【解析】原式=1a +1=22.19.(8分)已知a +1a =6,求a -1a ,a 2-1a2的值. 【解析】(a +1a )2=a 2+1a 2+2=6,∴a 2+1a 2=4.∴(a -1a )2=a 2+1a 2-2=2.∴a -1a=±2.∵(a 2+1a 2)2=a 4+1a 4+2=16,∴a 4+1a 4=14.∴(a 2-1a 2)2=a 4+1a 4-2=12,∴a 2-1a 2=±2 3.20.(8分)一个三角形的三边长分别为23 27x ,24 x 12,1x75x 3,其中x >0. (1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.【解析】(1)周长=113x.(2)当x =3时,周长=33.21.(8分)化简求值:(1)已知x =5-12,求x 2+x -1的值; 【解析】原式=0.(2)已知x +y =-4,xy =2,求x y +y x的值. 【解析】原式=(x +y )xy xy=-2 222.(10分)已知长方形的长a =1232,宽b =1318. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.【解析】(1)2(a +b)=2×(1232+1318)=2×(2 2+2)=6 2.故长方形的周长为6 2.(2)4 ab =4 12 32×13 18=4 2 2×2=4×2=8.因为6 2>8,所以长方形的周长大.23.(10分)全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下的关系式:d =7×t -12(t ≥12).其中d 代表苔藓的直径,单位是厘米;t 代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,请问冰川约是多少年前消失的?【解析】(1)d =7×t -12,当t =16时,d =7×16-12=14.即冰川消失16年后苔藓的直径为14厘米.(2)在d =7×t -12中,当d =35时,35=7×t -12,即t -12=5,解得t =37.即苔藓的直径是35厘米时,冰川约是37年前消失的.24.(12分)解答下列各题:(1)已知x =3+23-2,y =3-23+2,求x 3-xy 2x 4y +2x 3y 2+x 2y 3的值; 【解析】x =(3+2)2=5+2 6,y =(3-2)2=5-2 6,∴x -y =4 6,xy =1,x +y =10.∴原式=x -y xy (x +y )=2 65.(2)当x =1-2时,求x x 2+a 2-x x 2+a 2+2x -x 2+a 2x 2-x x 2+a 2+1x 2+a 2的值. 【解析】令m =x 2+a 2,则x 2+a 2=m 2.原式=x m (m -x )+2x -m x (x -m )+1m =(m -x )2mx (m -x )+1m =1x=-1- 2.。

人教版八年级数学下册第十六章综合测试卷含答案

人教版八年级数学下册第十六章综合测试卷含答案

人教版八年级数学下册第十六章综合测试卷一、选择题(每题3分,共30分) 1.下列各式是二次根式的是( ) A.√-7 B.√mC.√a 2+1D.√332.二次根式√1-x 在实数范围内有意义,则实数x 的取值范围在数轴上表示为( )3.下列二次根式中,是最简二次根式的是( ) A.√2B.√12C.√12D.√94.若两个最简二次根式√5b 与√3+2b 能够合并,则b 的值为( ) A.-1B.13C.0D.15.[2023·湘西]下列运算正确的是( ) A.√(-3)2=3 B.(3a )2=6a 2C.3+√2=3√2D.(a +b )2=a 2+b 26.(母题:教材P19复习题T8)若√75n 是整数,则正整数n 的最小值是( ) A.2B.3C.4D.57.估计√48×√12+√32×2的值在数轴上最可能表示的点是( )A.AB.BC.CD.D8.已知一等腰三角形的周长为12√5,其中一边长为2√5,则这个等腰三角形的腰长为( ) A.2√5B.5√5C.2√5或5√5D.无法确定9.[2023·人大附中月考]若x =√3+1,y =√3-1,则x -y +xy 的值为( ) A.2B.2√3C.4D.010.(母题:教材P11习题T12)如图,在长方形ABCD 中无重叠地放入面积分别为8和16的两张正方形纸片,则图中空白部分的面积为()A.8√2-8B.8√3-12C.4-2√2D.8√2-2二、填空题(每题3分,共24分)11.从-√2,√3,√6中任意选择两个数,分别填在算式(□+○)2÷√2里面的“□”与“○”中,计算该算式的结果是.(只需写出一种结果)12.若y=√2x-3+√3-2x+1,则x-y=.13.计算(√5-2)2 024(√5+2)2 025的结果是.14.在△ABC中,a,b,c为三角形的三边长,化简√(a-b+c)2-2|c-a-b|=.15.实数a,b在数轴上对应点的位置如图所示,化简√a2-√b2+√(a-b)2的结果是.16.若a+4√2=(m+n√2)2,当a,m,n均为正整数时,a的值为.17.对于任意的正数a,b定义运算“★”:a★b={√a+√b(a<b),√a-√b(a≥b),则(3★2)×(8★12)的运算结果为.18.某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为(N)(用含n,k的代数式表示).三、解答题(19题16分,其余每题10分,共66分)19.(母题:教材P19复习题T3)计算:(1)(√6+√8)×√3÷3√2;(2)(-12)-1-√12+(1-√2)0-|√3-2|;(3)(√6-4√12+3√8)÷2√2;(4)(1+√3)(√2-√6)-(2√2-1)2.20.[2023·宜昌]先化简,再求值:a 2-4a+4a2-4÷a-2a2+2a+3,其中a=√3-3.21.已知等式|a-2 023|+√a-2024=a成立,求a-2 0232的值.22.[2023·北京四中期中]求√3+√5+√3-√5的值.解:设x=√3+√5+√3-√5,两边平方得x2=(√3+√5)2+(√3-√5)2+2√(3+√5)(3-√5),即x2=3+√5+3-√5+4,x2=10,∴x=±√10.∵√3+√5+√3-√5>0,∴√3+√5+√3-√5=√10.请利用上述方法求√4+√7+√4-√7的值.23.拦河坝的横断面是梯形,如图,其上底是√8m,下底是√32m,高是√3m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.阅读下列材料,解答后面的问题:在二次根式的学习中,我们不仅要关注二次根式本身的性质、运算,还要关注与分式、不等式相结合的一些运算.如:①要使二次根式√a -2有意义,则需满足a -2≥0,解得a ≥2. ②化简√1+1n 2+1(n+1)2(n >0),则需计算1+1n 2+1(n+1)2. ∵1+1n 2+1(n+1)2=n 2(n+1)2+(n+1)2+n 2n 2(n+1)2=n 2(n+1)2+n 2+2n+1+n 2n 2(n+1)2=n 2(n+1)2+2n 2+2n+1n 2(n+1)2=n 2(n+1)2+2n (n+1)+1n 2(n+1)2=[n (n+1)+1]2n 2(n+1)2,∴√1+1n 2+1(n+1)2=√[n (n+1)+1]2n 2(n+1)2=n (n+1)+1n (n+1)=1+1n (n+1)=1+1n -1n+1.(1)根据二次根式的性质,要使√a+23-a=√a+2√3-a成立,求a 的取值范围.(2)利用①中的提示,解答:已知b =√a -2+√2-a +1,求a +b 的值.(3)利用②中的结论,计算:√1+112+122+√1+122+132+√1+132+142+…+√1+12 0242+12 0252.第十六章综合答案一、1.C 2.C 3.A4.D 【点拨】由题意得5b =3+2b ,解得b =1.5.A6.B7.D 【点拨】√48×√12+√32×2=4√3×√22+√62×2=2√6+√6=3√6,∵49<54<64,∴7<3√6<8,∴式子的值在数轴上最可能表示的点是D ,故选D.8.B 【点拨】当腰长为2√5时,底边长为12√5-2√5-2√5=8√5,此时2√5+2√5<8√5,无法构成三角形;当底边长为2√5时,腰长为(12√5-2√5)÷2=5√5,此时2√5+5√5>5√5,能构成三角形.故选B.9.C 【点拨】把x =√3+1,y =√3-1代入得x -y +xy =√3+1-√3+1+(√3+1)(√3-1)=2+3-1=4,故C 正确.10.A 【点拨】根据已知条件可以求出长方形ABCD 的长和宽,从而求出长方形ABCD 的面积,即可求出空白部分的面积.二、11.52√2-2√3(答案不唯一) 12.23 13.√5+2 14.-a -3b +3c 【点拨】∵a ,b ,c 为三角形的三边长,∴a +c >b ,a +b >c ,即a -b +c >0,c -a -b <0.∴√(a -b +c )2-2|c -a -b |=(a -b +c )+2(c -a -b )=-a -3b +3c .15.-2a 【点拨】由题中数轴可以看出,a <0,b >0,∴a -b <0.∴√a 2-√b 2+√(a -b )2=-a -b +[-(a -b )]=-a -b -a +b =-2a .16.9或6 【点拨】∵a +4√2=(m +n √2)2=m 2+2n 2+2√2mn ,∴a =m 2+2n 2, 2mn =4.∵m ,n 均为正整数,∴m =1,n =2或m =2,n =1.当m =1,n =2时,a =12+2×22=9;当m =2,n =1时,a =22+2×12=6,∴a 的值为9或6.17.2 【点拨】∵3★2=√3-√2,8★12=√8+√12=2√2+2√3,∴(3★2)×(8★12)=(√3-√2)(2√2+2√3)=2(√3-√2)(√3+√2)=2. 18.kn三、19.【解】(1)原式=(3√2+2√6)÷3√2=1+23 √3.(2)原式=-2-2√3+1-(2-√3)=-2-2√3+1-2+√3=-3-√3. (3)原式=(√6-2√2+6√2)×√24=√32-1+3=√32+2.(4)原式=√2(1+√3)(1-√3)-(8-4√2+1)=√2×(1-3)-8+4√2-1=-2√2-8+4√2-1=2√2-9. 20.【解】原式=(a -2)2(a+2)(a -2)·a (a+2)a -2+3=a -2a+2·a (a+2)a -2+3=a +3.当a =√3-3时,原式=√3-3+3=√3. 21.【解】由题意得a -2 024≥0,∴a ≥2 024.原等式变形为a -2 023+√a -2 024=a . 整理,得√a -2 024=2 023.两边平方,得a -2 024=2 0232,∴a -2 0232=2 024.22.【解】设x =√4+√7+√4-√7,两边平方得x 2=(√4+√7)2+(√4-√7)2+2√4+√7·√4-√7, 即x 2=4+√7+4-√7+6,x 2=14, ∴x =±√14.∵√4+√7+√4-√7>0,∴√4+√7+√4-√7=√14.23.【解】(1)12(√8+√32)×√3=12(2√2+4√2)×√3=12×6√2×√3=3√6(m 2). 答:横断面的面积为3√6 m 2. (2)3√6=√6=√6√6×√6=100√66=50√63(m ). 答:可修50√63m 长的拦河坝. 24.【解】(1)由题意,得{a +2≥0,3-a >0,∴-2≤a <3.(2)由题意,得{a -2≥0,2-a ≥0,∴a =2,∴b =√2-2+√2-2+1=0+0+1=1, ∴a +b =2+1=3.(3)原式=(1+11-12)+(1+12-13)+(1+13-14)+…+(1+12 024- 12 025)=1×2 024+1-12 025=2 0242 0242 025.。

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。

人教版八年级数学下册第十六章测试卷及答案

人教版八年级数学下册第十六章测试卷及答案

人教版八年级数学下册第十六章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.在下列各式中,不是二次根式的有( )同号,且A.3个 B.2个 C.1个 D.0个2.( )A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-13. 下列式子中,为最简二次根式的是( )A4. 下列计算错误的是( )A BC D5.下列计算正确的是( )A.32=6 B.(-25)3=-85C.(-2a2)2=2a4 D6.若实数a,b满足ab>0,则化简( )A7.( )A.5和6之间 B.6和7之间C.7和8之间 D.8和9之间8.若x<0,( )A.0 B.-2 C.0或2 D.29.已知a,b,c为△ABC的三边长,|b-c|=0,则△ABC的形状是( ) A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10. 已知实数x,y满足:y( )A..5二.填空题(共8小题,每小题3分,共24分)11.计算_______.12. 已知a <2,_________.13.如图是一个简单的数值运算程序,当输入x ,则输出的值为________.输入x →→输出14.在△ABC 中,a,b,c 为三角形的三边长,化简2|c -a -b|=________.15.x 的取值范围是________.16.实数a,b 在数轴上对应点的位置如图所示,______.17.某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B 处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n(n >1)倍,且钢梁保持水平,则弹簧秤读数为________(N)(用含n,k 的代数式表示).18.已知三角形的三边长分别为a,b,c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S 其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 若一个三角形的三边长分别为2,3,4,则其面积是________.三.解答题(共7小题, 66分)19.(8分) 计算下列各式:;20.(8分) 先化简,再求值:a 2-b 2a ÷(a -2ab -b 2a ),其中a 2,b 2.21.(8分) 已知x 2,求(9+2-2)x +4的值.22.(8分) 已知实数a,b 满足(4a -b +11)20,求1的值.23.(10分)如图,用两个边长均为的小正方形拼成一个大的正方形.(1)求大正方形的边长;(2)沿此大正方形边的方向能否剪出一张长.宽之比为4∶3,且面积为720 cm 2的长方形纸片?若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由.24.(10分) 先阅读材料,再回答问题:已知x1,求x2+2x-1的值.计算此题时,若将x1直接代入,则运算非常麻烦.仔细观察代数式,发现由x1,得x+1所以(x+1)2=3.整理,得x2+2x=2.再代入求值会非常简便.解答过程如下:解:由x1,得x+1∴(x+1)2=3.整理,得x2+2x=2,∴x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x2,求6-2x2+8x的值.25.(14分) (1)用"="">""<"填空:4++16________2+5________2(2)由(1)中各式猜想m+n与,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成长方形的花圃,如图所示,花圃恰好可以借用一段墙体,为了围成面积为200 m2的花圃,所用的篱笆至少为多少米?参考答案1-5BABCD 6-10ABDBD12. 2-a14. -a -3b +3c15. x>216. -2a 17.k n19. 解:(1)原式=2=5;(2)原式=20.解:原式=(a +b)(a -b)a ÷a 2-2ab +b 2a =(a +b)(a -b)a ·a(a -b)2=a +b a -b .当a 2,b 2时,21. 解:原式=(9+2)2-2)+4=(9+--1+4=81-80-1+4=422. 解:由题意得{4a -b +11=013b -4a -3=0解得{a =14b =12.则1==14×14×223. 解:(1)30(cm)(2)不能,理由如下:设长方形纸片的长为4x cm,宽为3x cm,则4x·3x =720,解得x =∴4x =30,∴不能剪出符合要求的长方形纸片24. 解:由x 2,得x -2∴(x -2)2=5.整理,得x 2-4x =1,∴6-2x 2+8x =6-2(x 2-4x)=6-2×1=4.25. 解:(1)>;>;=(2)m 理由如下:当m≥0,n≥0时2≥0,∴2-2≥0.∴m -∴m (3)设花圃平行于墙的一边长为a m,垂直于墙的一边长为b m,则a >0,b >0,ab =200.根据(2)中的结论可得a 2×20=40,∴所用的篱笆至少为40 m.。

人教版八年级下册数学第16章测试题(附答案)

人教版八年级下册数学第16章测试题(附答案)

人教版八年级下册数学第16章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.下列各式中,是二次根式的有()① ;② ;③ ;④ ;⑤ (x≤3);⑥(x>0);⑦ ;⑧ ;⑨ ;⑩ .A. 4个B. 5个C. 6个D. 7个2.下列计算正确的是()A. + =B. ﹣=C. × =6D. ÷ =43.下列式子中正确的是()A. B.C. D.4.下列计算中正确的是()A. B. C. D.5.化简二次根式得()A. ﹣5B. 5C. ±5D. 306.下列二次根式中属于最简二次根式的是()A. B. C. D.7.下列计算正确的是()A. =xB. =C. =2D. =x8.如果=1﹣2a,则()A. a<B. a≤C. a>D. a≥9.下列二次根式中最简根式是()A. B. C. D.10.下列各式计算正确的是()A. +=B. 3+=3C. 3﹣=2D. =-11.要使二次根式有意义,则x的取值范围是()A. xB. xC. xD. x12.如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A. x≤10B. x≥10C. x<10D. x>10二、填空题(共8题;共16分)13.若一个数与是同类二次根式,则这个数可以是________.14.函数y= 中,自变量x的取值范是________ .15.在△ABC中,BC边上的高h= cm,它的面积恰好等于边长为cm的正方形的面积,则BC的长为________.16.当a________时,在实数范围内一有意义.17.计算的结果是________18.计算=________.19.等式中的括号应填入________20.若实数x,y,m满足等式,则m+4的算术平方根为________.三、解答题(共3题;共15分)21.站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符号公式为。

人教版八年级下册数学第十六章测试题

人教版八年级下册数学第十六章测试题

第16章二次根式单元检测卷姓名:__________ 班级:__________一、选择题(每小题3分;共30分)1.计算的结果是()A.B.C.D.2.把m根号外的因式移入根号内得()A.B.C. -D. -3.下列式子中,属于最简二次根式的是()A.B.C.D.4.下列根式中是最简根式的是()A.B.C.D.5.要使有意义,则字母x应满足的条件是( ).A. x=2B. x<2C. x≤2D. x>26.化简的正确结果是()A. (m﹣5)B. (5﹣m)C. m﹣5D. 5﹣m7.下列各式中,与是同类二次根式的是()。

A.B.C.D.8.是二次根式的条件为()A. x≥B. x≤1C. x≠lD. x为全体实数9.下列计算正确的是( )A. B.C.D.10.下列各式运算正确的是()A. B. 4C. D.二、填空题(共10题;共30分)11.计算(+1)2014×(﹣1)2013的值是________.12.如果x= +3,y= ﹣3,那么x2y+xy2=________.13.已知有意义,则实数x的取值范围是________.14.计算的结果是________.15.已知是整数,则满足条件的最小正整数n为________16.(﹣2)2016•(+2)2017=________.17. =________.18.计算:(+ )=________.19.下列各式:(a<),中,是二次根式的有________.20.相邻两边长分别是2+ 与2﹣的平行四边形的周长是________.三、解答题(共4题;40分)21.已知x= ,y= ,求x2y+xy2的值.22.先化简(1﹣)÷•,从﹣1,1,0,中选一个适当的数作为x,再求值.23.(1)已知y=﹣+8x,求的平方根.(2)当﹣4<x<1时,化简﹣2.24.阅读理解题:学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,我们来进行以下的探索:设a+b =(m+n )2(其中a,b,m,n都是正整数),则有a+b =m2+2n2+2mn ,∴a=m+2n2, b=2mn,这样就得出了把类似a+b 的式子化为平方式的方法.请仿照上述方法探索并解决下列问题:(1)当a,b,m,n都为正整数时,若a﹣b =(m﹣n )2,用含m,n 的式子分别表示a,b,得a=________,b=________;(2)利用上述方法,找一组正整数a,b,m,n填空:________﹣________ =(________﹣________ )2(3)a﹣4 =(m﹣n )2且a,m,n都为正整数,求a的值.参考答案一、选择题A DB B D B D D A D二、填空题11.+1 12.﹣8 13.x≤14.22﹣4 15. 5 16.+217. 2 18.12 19.20.8三、解答题21.解:∵x═2﹣,y= ,∴x2y+xy2=xy(x+y)=[(2﹣)+(2+ )]×1=4.22.解:原式=••=,当x=时,原式==.23.解:(1)∵y=﹣+8x,∴2x﹣1=0,解得x=,∴y=4,∴==4,4的平方根是±2.故的平方根是±2.(2)∵﹣4<x<1,∴﹣2=|x+4|﹣2|x﹣1|=x+4+2(x﹣1)=x+4+2x﹣2=3x+224.(1)m2+5n2;2mn(2)9;4;2;1(3)解:∵2mn=4,∴mn=2,而m,n都为正整数,∴m=2,n=1或m=1,n=2,当m=2,n=1时,a=9;当m=1,n=2时,a=21.即a的值为9或21答题方法:试卷检查五法重视答案,要对结果负责不少同学都说,明明题目都会做,然而考试时却不是这里出错就是那里出错,总是拿不了高分。

初中八年级数学下册第十六章综合测试卷3套及答案

初中八年级数学下册第十六章综合测试卷3套及答案
【解析】原式 = 5 2 2 2 2 3 2 2 3.
15.【答案】(1) 5 = 5 3 = 15 . 3 3 3 3
(2)由二次根式有意义的条件及分母不为 0,得 3 x>0 ,即 x 3<0 .
所以 x 3 1 3 x 1 = 3 x2 1 3 x .
3 x
A. a>b>c
B. c>b>a
C. b>a>c
D. 5 2x )
D. a>c>b
8.若 a b 2 , a b 32 , a c 5 ,则 a c 的值是( )
A. 5 2 5
B. 5 22 5
C. 5 22 5
9.(2
x)
x
1
2
的根号外的(2
x)移入根号内得(

A. 2 x
B. x 2
C. 2 x
D. 5 2 5 D. x 2
10.已知 △ABC 的三边 a 、b 、c 满足 a2 | 50 c | 10a 25 5 b ,则对 △ABC 的形状描述最准确的
是( ) A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
二、填空题(每小题 3 分,共 18 分) 11.当 a __________时, 3a 2 无意义。
【解析】要使 x 3 在实数范围内有意义,则需 x 3≥0 ,所以 x 的取值范围是 x≥3 .答案选 D.
2.【答案】A
【解析】 a2b5 | a | b2 b , 18=3 2 , 1 的被开方数含有分母,故都不是最简二次根式. x2 1 符合 3
最简二次根式的条件.故选 A.
3.【答案】B
D. (3)2 3 D.1<x≤3
5.若 2x 1 | y 3 | 0 ,则 xy 的值为()

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。

有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。

合并的是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

4.下列各式计算正确的是()A.错误!未找到引⽤源。

+错误!未找到引⽤源。

=错误!未找到引⽤源。

B.4错误!未找到引⽤源。

-3错误!未找到引⽤源。

=1C.2错误!未找到引⽤源。

×3错误!未找到引⽤源。

=6错误!未找到引⽤源。

D.错误!未找到引⽤源。

÷错误!未找到引⽤源。

=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2B.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2C.错误!未找到引⽤源。

=x-1D.错误!未找到引⽤源。

=错误!未找到引⽤源。

·错误!未找到引⽤源。

6.已知a=错误!未找到引⽤源。

+1,b=错误!未找到引⽤源。

,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。

÷错误!未找到引⽤源。

×错误!未找到引⽤源。

的结果为()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。

+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。

-1,ab=错误!未找到引⽤源。

八年级数学下册第十六章《二次根式》测试题-人教版(含答案)

八年级数学下册第十六章《二次根式》测试题-人教版(含答案)

八年级数学下册第十六章《二次根式》测试题-人教版(含答案)一.选择题(每小题 3 分,共 30 分)1.代数式24x -在实数范围内有意义,则 x 的取值范围是()A .x ≥2B .x ≠2C .x >2D .x ≤2 2.化简16的结果为( ) A .2 B .-4 C .4D .±43. 下列二次根式是最简二次根式的是()A .13B . 8C . 14D .12 4. 下列计算正确的是( ) A .822-= B .(25)(25)1-+= C 945 D 22=5. 设 x 、y 为实数,且 y =45x -5x - |y − x | 的值是( )A .1B .9C .4D .56.2(21)a -=1-2a ,则()A .a >12B . a <12C . a ≥12D . a ≤127. 已知 ab <02a b 后的结果为()A .bB .-bC .b -D .-b -8. 化简二次根式-1a a-后的结果是( )A aB a -C aD a -9. 已知110a a +,则1a a-等于( ) A .±6 B 6 C 6 D 610.已知 a 、b 、c 为互不相等的有理数,满足2(2)(2)(2)b a c +=++, 则符合条件的a 、b 、c 共有( )A .0 组B .1 组C .2 组D .4 组二、填空题(每小题 3 分,共 18 分)11. 18_________,2(27)=__________43__________.13. 在实数范围内分解因式x 3-5x =________________. 14. 已知 x =5-1,则 x ²+2x -7=___________. 15. 已知实数 a 、b 在数轴上对应的点的位置如图所示,化简:2a + |a + b | +| −a +2|-2(2)b -=___________. 16.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++, 其中n 为正整数,则n a 的值为_______________.三、解答题(共 8 题,共 72 分) 17.(8 分)计算: (1) 118288-+; (2) 11(6)2()|32|2--⨯-+-; (3) 231(32)31+---; (4) 20202021(23)(23)-+.18. (8分)先化简,再求值: 3142y xx y x y +-+,其中 x =4,y =19.19.(8 分)如图,已知长方形内两相邻正方形的面积分别为 2 和 6,求长方形内阴影部分的面积S.20. (8分)已知实数23+的整数部分为x,小数部分为y,求224x yx y+-+的值.21. (8分)已知x3+1,y31,求:(1)代数式xy的值; (2)代数式x3+x2y+xy2+y3的值.22. (10分)(1) 已知:a32,b3+2,求代数式a2b-ab2 的值;(2)运用乘法公式计算:①2+.(32)(23)(32)(2233);②2(3)已知实数x、y满足x2+10x4y-=-25 ,则(x+y)2021的值是多少?23. (10分)743+743+7212+由于4+3=7,4×3=12, 即4)²+3)²=74×312 743+7212+22(4)243(3)+⨯+2(43)+=23.请解答下列问题:(1)423+________526-=__________;(2)进一步研究发现: 2m n ±的化简, 只要我们找到两个正数 a 、b (a > b ), 使 a +b =m ,ab =n ,即22)a b m +=ab n =2m n ±___________; (3)322+526+7212+9220+11230+13242+15256+17272+请写出化简过程).24.(12分)对于任意正实数a、b,均有2()a b≥0,∴a-ab b≥0,∴a+b≥ab当且仅当a=b时,等号成立. 结论:在a+b≥ab a、b均为正实数)中,若ab为定值p,只有当a=b时,a+b有最小值p根据上述内容,回答下列问题:(1)初步探究:若n>0,只有当n=_______ 时,n+1n有最小值;(2)深入思考:下列一组图是由 4 个全等的矩形围成的大正方形,中空部分是小正方形,矩形的长和宽分别为a、b . 试利用大正方形与四个矩形的面积的大小关系,验证a+b≥ab并指出等号成立时的条件;(3)拓宽延伸:如图,已知A(-6,0),B(0,-8),点P是第一象限内的一个动点,过P 点向坐标轴作垂线,分别交x轴和y轴于C、D两点,矩形OCPD的面积始终为 48,求四边形ABCD面积的最小值以及此时P点的坐标.……ABC yD O Px参考答案一.选择题(每小题 3 分,共 30 分)1.代数式24x -在实数范围内有意义,则 x 的取值范围是()A .x ≥2B .x ≠2C .x >2D .x ≤2 【答案】A .2.化简16的结果为( ) A .2 B .-4 C .4 D .±4【答案】C .3. 下列二次根式是最简二次根式的是()A .13B . 8C . 14D .12 【答案】C .4. 下列计算正确的是( ) A .822-= B .(25)(25)1-+= C 945 D 22=【答案】A .5. 设 x 、y 为实数,且 y =45x -5x - |y − x | 的值是( )A .1B .9C .4D .5【答案】A .6.2(21)a -=1-2a ,则()A .a >12B . a <12C . a ≥12D . a ≤12【答案】D .7. 已知 ab <02a b 后的结果为()A .bB .-bC .b -D .-b -【答案】B .8. 化简二次根式-1a a-后的结果是( )A aB a -C aD a -【答案】B . 9. 已知110a a +,则1a a-等于( ) A .±6 B 6 C 6 D 6【答案】D . 提示:2211()()4a a aa-=+-=10-4=6,∴1a a-=±6.10.已知 a 、b 、c 为互不相等的有理数,满足2(2)(2)(2)b a c +=++, 则符合条件的a 、b 、c 共有( )A .0 组B .1 组C .2 组D .4 组【答案】A . 提示:由已知等式,得b 2+22b =ac +(a +c )2,∵a 、b 、c 为有理数, 比较上述等式的两边,得:b 2=ac ,2b =a +c .由2b =a +c ,得4b 2=(a +c )2,把b 2=ac 代入,得4ac =(a +c )2,∴(a -c )2=0, ∴a =c ,与题设a ≠c 不符,故选A .二、填空题(每小题 3 分,共 18 分)11. 计算:18=_________,2(27)=__________,43=__________. 【答案】32, 28,233.12. 若45n 是整数,则正整数 n 的最小值为___________. 【答案】5.13. 在实数范围内分解因式x 3-5x =________________.【答案】x (x +5)(x -5). 提示:原式=x (x 2-5)=x (x +5)(x -5). 14. 已知 x =5-1,则 x ²+2x -7=___________.【答案】-3. 提示:移项得:x +1=5,两边平方,得 x 2+2x +1=5,∴x 2+2x =4, 则x ²+2x -7=4-7=-3.15. 已知实数 a 、b 在数轴上对应的点的位置如图所示,化简:2a + |a + b | +| −a +2|-2(2)b -=___________.【答案】-3a . 提示: 由数轴,知a <b <0,∴a +b <0,-a +2>0,b -2<0, ∴原式=|a |+|a + b | +| −a +2|-|b -2|=-a -(a +b )+(-a +2)+(b -2)=-3a .16.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++, 其中n 为正整数,则n a 的值为_______________.【答案】1+1(1)n n +. 提示:22222222(1)(1)(1)(1)n n n n n a n n n n +++=+++=222222(1)(1)(1)n n n n n n +++++=22222(1)221(1)n n n n n n +++++=2222(1)2(1)1(1)n n n n n n +++++=222[(1)1](1)n n n n +++,∴a n =(1)1(1)n n n n +++=1+1(1)n n +.三、解答题(共 8 题,共 72 分) 17.(8 分)计算: 118288 (2) 11(6)2()32|2--+; (3) 231(32)31+- (4) 20202021(23)23). 【答案】(1)原式=2124711247 (2)原式=-32+(23=-3(3)原式=(3-34)2(31)(31)(31)+-+7-3423+=7-3235-3(4)原式=20202020(23)(23)(23)=2020(23)(23)-23.18. (8分)先化简,再求值: 3142y xy x ++,其中 x =4,y =19. 122x y x y 132x y当x =4,y =19114329=1+1=2.19.(8 分)如图,已知长方形内两相邻正方形的面积分别为 2 和 6, 求长方形内阴影部分的面积S .【答案】依题意,AM 2,DM =CD 6AD 26 ∴长方形ABCD 626, 则S 626-2-6=3 2. 方法2:S =AM ·AB -22·62=3 2.20. (8分)已知实数23+ 的整数部分为x ,小数部分为y ,求224x yx y +-+ 的值.23+23,∴023+1,∴x =0,y =23∴ 224x y x y +-+02(23)02(23)4+---+2(23)4234--++2(23)23-233-233-21. (8分)已知x 3+1,y 31,求:(1)代数式xy 的值; (2)代数式x 3+x 2y +xy 2+y 3的值. 【答案】(1) xy =33-1)=3-1=2. (2) x +y =31)+31)=3原式=x 2(x +y )+y 2(x +y )=(x +y )(x 2+y 2)=(x +y )[(x +y )2-2xy ] =332-2×2]=3-4)=322. (10分)(1) 已知: a 32,b 3+2,求代数式 a 2b -ab 2 的值; 【答案】a -b =-4,ab =332)=3-4=-1, ∴原式=ab (a -b )=-1×(-4)=4.(2)运用乘法公式计算:①2(2233); ②2(32)(23)(32)+. 【答案】①原式=8+627=35+6②原式=4-3+(3-62)=1+5-66-6(3)已知实数 x 、y 满足 x 2+10x 4y -=-25 ,则(x +y )2021的值是多少? 【答案】由已知条件,得 (x +5)24y -0,∵(x +5)2≥04y -0,∴(x +5)2=04y -0, ∴x =-5,y =4,∴(x +y )2021=(-5+4)2021=-1.23. (10分)743+743+7212+由于4+3=7,4×3=12, 即4)²+3)²=74×312 743+7212+22(4)243(3)+⨯+2(43)+=23.请解答下列问题:(2)进一步研究发现: 2m n ±的化简, 只要我们找到两个正数 a 、b (a > b ), 使 a +b =m ,ab =n ,即22)a b m +=ab n =2m n ±___________; (3)322+526+7212+9220+11230+13242+15256+17272+请写出化简过程).【答案】42331+52632-2m n ±2a b ab +±2()a b ±a b(3)∵32221+52632+721243+ 21+32+43+54+98+ =21)+32)+43+54+…+98) =-191+3=2.24.(12分)对于任意正实数 a 、b ,均有2()a b ≥0,∴a -ab b ≥0,∴a +b ≥ab 当且仅当 a =b 时,等号成立. 结论:在 a +b ≥ab a 、b 均为正实数)中,若 ab 为定 值p ,只有当a =b 时,a +b 有最小值p 根据上述内容,回答下列问题: (1)初步探究:若 n >0,只有当 n =_______ 时,n +1n有最小值; (2)深入思考:下列一组图是由 4 个全等的矩形围成的大正方形,中空部分是小正方形, 矩形的长和宽分别为 a 、b . 试利用大正方形与四个矩形的面积的大小关系,验证 a +b ≥ab 并指出等号成立时的条件;(3)拓宽延伸:如图,已知 A (-6,0),B (0,-8),点 P 是第一象限内的一个动点,过 P 点向坐标轴作垂线,分别交 x 轴和 y 轴于 C 、D 两点,矩形 OCPD 的面积始终为 48, 求四边形 ABCD 面积的最小值以及此时 P 点的坐标.【答案】(1) n =1. 提示: 根据a +b ≥ab 112n n nn+≥⋅当且仅当n =1n时成立,此时n =1.……ABCy DOP x(2) 大正方形的边长为a+b,中空小正方形的边长为b-a,由图形的面积,得:(a+b)2-4ab=(b-a)2≥0,∴(a+b)2-4ab≥0,∴(a+b)2≥4ab,则a+b≥ab显然,只有当a=b时,上述各式中等号成立.(3) 设P(x,y),则OC=x,OD=y,xy=48.∵A(-6,0),B(0,-8),∴OA=6,OB=8,∴四边形ABCD的面积为S=12AC·BE=12(x+6)(y+8)=12(xy+8x+6y+48)=12(48+8x+6y+48)=4x+3y+48≥43x y⋅+48=3xy48=348⨯48=96.取等号时,4x=3y,又xy=48,∴x=6,y=8,∴P(6,8).∴四边形ABCD面积的最小值为96,此时P点的坐标为P(6,8).。

人教版八年级下册数学第16章测试题(附答案)

人教版八年级下册数学第16章测试题(附答案)

人教版八年级下册数学第16章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.下列各式中,是二次根式的有()① ;② ;③ ;④ ;⑤ (x≤3);⑥(x>0);⑦ ;⑧ ;⑨ ;⑩ .A. 4个B. 5个C. 6个D. 7个2.下列计算正确的是()A. + =B. ﹣=C. × =6D. ÷ =43.下列式子中正确的是()A. B.C. D.4.下列计算中正确的是()A. B. C. D.5.化简二次根式得()A. ﹣5B. 5C. ±5D. 306.下列二次根式中属于最简二次根式的是()A. B. C. D.7.下列计算正确的是()A. =xB. =C. =2D. =x8.如果=1﹣2a,则()A. a<B. a≤C. a>D. a≥9.下列二次根式中最简根式是()A. B. C. D.10.下列各式计算正确的是()A. +=B. 3+=3C. 3﹣=2D. =-11.要使二次根式有意义,则x的取值范围是()A. xB. xC. xD. x12.如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A. x≤10B. x≥10C. x<10D. x>10二、填空题(共8题;共16分)13.若一个数与是同类二次根式,则这个数可以是________.14.函数y= 中,自变量x的取值范是________ .15.在△ABC中,BC边上的高h= cm,它的面积恰好等于边长为cm的正方形的面积,则BC的长为________.16.当a________时,在实数范围内一有意义.17.计算的结果是________18.计算=________.19.等式中的括号应填入________20.若实数x,y,m满足等式,则m+4的算术平方根为________.三、解答题(共3题;共15分)21.站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符号公式为。

人教版八年级下册数学 第十六章 二次根式 单元检测题

人教版八年级下册数学  第十六章  二次根式  单元检测题

人教版八年级下册数学第十六章 二次根式 单元检测题一.选择题(每小题3分,共30分)1. 计算:67x 3121÷23的结果是( ) A.-4 B.-23 C.40. D.72. 二次根式y +x 的一个有理化因式是( ) A. y -x B.x +y C. y +x D.x -y3. 若2)a -1(=a-1,则a 的取值范围是( )A.a>1B.a≥lC. a<lD. a≤l4. 下列计算中,正确的是( ) A.7-5=2 B.2X 8=4 C.2+3=23 D. 210=55.若,则( )A .x≥6B .x≥0C .0≤x≤6D .x 为一切实数6.下列二次根式中属于最简二次根式的是( )A .B .C .D .7.已知长方形ABCD 中,,则长方形ABCD 的面积是()A .B .C .D .8.将 )A B C D 9)A B C D 10.东东的作业本上有以下四题:做错的题是( )A .B .C .D .二.填空题(每小题3分,共24分)11. 若y-2017x -=x -2017-2 018,则(x+y)2018=12. 计算: (24-21)-(81+6)=13. 如果最简二次根式1x 2-与x -5能进行合并,则x 的值为14. 已知a 满足|2017-a|+2018a -=a ,则a-20172的值是 15.若a 、b 是实数,且|a|,则a+b=_____.16.规定运算:(a*b)=|a -b |,其中a 、b)17. 观察下列各式:①311+=231,②412+=341,③513+=451,……根据以上规律,第n个等式应为:18. 在数轴上表示实数a|a -2|的结果为_____.三.解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.(8分)计算:(1)2×÷ (2)(+)(﹣4)(3)(2﹣3)÷ (4)4+﹣+420.(6分)已知:x =+1,y =﹣1,求下列各式的值. (1)(2)x 2﹣y 221.(8分)已知y =x -2+2-x +5,求x +2y 2的值.22. (8分)已知1x =+,x 的整数部分为a ,小数部分为b ,求ab 的值.23. 若A,B 分别代表两个多项式,且A+ B=2a 2 ,A- B= 2ab.(1)求多项式A 和B;(2)当a=3+1,b=3-1时,求分式BA 的值.24. 在解决数学问题时,我们一般先仔细阅读题干,找出有用信息作为已知条件,然后利用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件;而有的信息不太明显需要结合图形、特殊式子成立的条件、实际问题等发现隐含信息作为条件,我们把这样的条件称为隐含条件。

人教版八年级下册数学第十六章 二次根式测试题含答案

人教版八年级下册数学第十六章 二次根式测试题含答案

人教版八年级下册数学第十六章测试卷一、选择题(每小题3分,共30分)1.下列计算正确的是( )A .532=+B .2553=-C .3226=⨯D .326=÷2.如果a 为任意实数, 下列各式中一定有意义的是( )AB CD 3.下列式子中,属于最简二次根式的是( )A .9B .7C .20D .31 4.下列二次根式,不能与12合并的是( )A .48B .18C .311D .-755.下列计算正确的是( )A =B 1==C .(21-+=D=6.已知ab <0,则b a 2化简后为( )A .b aB . b a -C .b a -D .b a --7.在△ABC 中,BC =,BC 上的高为cm ,则△ABC 的面积为( )A . 2B .cm 2C . 2D .28.( )ABCD9.|3﹣y |=0( )A .9B .C .D .﹣910.实数a 在数轴上的位置如图所示,则错误!未找到引用源。

化简后为( )A . 7B . -7C . 错误!未找到引用源。

D .无法确定第10题图二、填空题(每小题3分,共30分)11.当6-=x 时,二次根式73x -的值为12.小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?________ (填对或错)13.若代数式2-x x有意义,则x 的取值范围是_____________ 14.已知y =44x x -+-+3,则(y ﹣x )2017= .15.当a = 时,最简二次根式2a -与102a -是同类二次根式;16.把1m m--根号外的因式移到根号内,则得 . 17.如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数是3和-1,则点C 所对应的实数是 .第17题图18.已知a 、b 、c 是△ABC ()2940a b --=,则第三边c 的取值范围是____________.19.已知a ,b 18a b +=a +b = .20. 2 2 6 22 10 ⋅⋅⋅、、、、 (第n 个数). 三、解答题(共60分)21.(6分)化简(1(2)60061243--22.(6分)(1)(2)先化简,在求值:22()a b ab b a a a--÷-,其中1a =,1b =.23.(6分)求值: (1)已知a =21,b =41,求b a b --ba b +的值.(2)已知x =251-,求x 2-x +5的值.24.(6分)x 为偶数,求(1+x .25.(8分)一个三角形的三边长分别为,54.(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.26.(8分)在一块边长为m 的正方形土地中,修建了一个边长为m 的正方形养鱼池,问:剩余部分的面积是多少?27.(10分)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax +b =0,其中a 、b 为有理数,x 为无理数,那么a =0且b =0.运用上述知识,解决下列问题:(1)如果032)2(=++-b a ,其中a 、b 为有理数,那么a = ,b = ; (2)如果5)21()22(=--+b a ,其中a 、b 为有理数,求2a b +的值.28.(10分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个含根号的式子的平方,如(231+=+,善于思考的小明进行了如下探索:设(2a m +=+,(其中a 、b 、m 、n 均为正整数)则有2222a m n +=+222,2a m n b mn ∴=+=这样,小明找到了把部分a +. 请你仿照小明的方法探索并解决问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b 得,a = ,b =(2)若(2a m +=+且a 、b 、m 、n 均为正整数,求a 的值.参考答案1.C2.C3.B【解析】最简二次根式是指不能继续化简的二次根式,A 、原式=3;B 为最简二次根式;C 、原式=25;D 、原式=334.B【解析】本题首先将所有的二次根式的化简,如果化简后被开方数相同,则能够进行合并.3212=;3448=;2318= 5.A .【解析】A ==B ==;故该选项错误;C 、(2451+=-=-,故该选项错误;D 212==;故该选项错误.故选A . 6.B【解析】根据题意可得:a <0,b >0,则原式=a .7.C【解析】由三角形面积公式得11422ABC S BC h ==⨯==△(cm 2). 8.B【解析】二次根式的乘除法运算属于同级运算,按照从左到右的运算顺序运算即可. 9.C【解析】根据非负数的性质列出算式,分别求出x 、y 的值,根据二次根式的性质计算即可. 解:由题意得,x ﹣12=0,3﹣y =0,解得,x =12,y =3, 则﹣=2﹣=,故选:C . 10.A 【解析】二次根式的性质为:⎩⎨⎧≤-≥=)0()0(2a a a a a a ,根据数轴可得:a -4 0,a -11 0,则原式=114-+-a a =a -4+11-a =7.11.5. 【解析】当6x =-时,()73736255x -=--==.12.错【解析】二次根式是指含有的式子.13.x ≥0且x ≠2【解析】二次根式的被开方数为非负数,分式的分母不为零.根据性质可得:x ≥0且x -2≠0,解得:x ≥0且x ≠2. 14.﹣1【解析】直接利用二次根式有意义的条件得出x ,y 的值,进而代入求出答案. 解:∵y =++3,∴x =4,y =3,则(y ﹣x )2017=(3﹣4)2017=﹣1. 故答案为:﹣1. 15.4.【解析】根据同类二次根式的定义可得,a -2=10-2a ,解得a =4. 故答案为:4. 16.m -【解析】根据题意可得:m <0,所以211()()m m m m--=--=- 17.23+1.【解析】解:设点C 所对应的实数是x .则有x (-1),解得x =1. 18.5<c <13【解析】根据题意可得:a -9=0,b -4=0,解得:a =9,b =4,则a -b <c <a +b ,即5<c <13. 19.10.==,x 、y 都是正整数,是同类二次根式, ∴28a b ==⎧⎨⎩或82b a ==⎧⎨⎩, ∴a +b =10.20【解析】的倍数,的1倍,依此类推,第n21.(1)-1;(2 【解析】(1)利用平方差公式计算;(2)先将各式化简成最简二次根式,然后合并同类二次根式即可. 解:(1)原式=223-2)()( =2-3 =-1 (2)60061243--= 61066166-- =6)10616(-- =6625-22.(12【解析】(1)先根据绝对值、负整数指数幂、二次根式等知识点分别进行计算,最后进行加减运算即可.(2)先化简分式,再把a 、b 的值代入化简的式子即可求值. 解:(1)原式=34-+1.(2)原式=222a b a ab b a a--+÷=2()a b aa ab -⨯- =1a b-把1a =,1b =代入上式得:12=.23.(1)2;(2)7+【解析】(1)首先根据二次根式的计算法则将所求的二次根式进行化简,然后将a 和b 的值代入化简后的式子进行计算;(2)首先根据二次根式的化简法则将x 进行化简,然后将x 的值代入所求的代数式进行计算. 解:(1)原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时, 原式=4121412-⨯=2. (2)∵x =-251-=4525-+=25+.∴=x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45. 24.6a ≥0,b >0时才能成立. 因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩ ∴6<x ≤9 ∵x 为偶数 ∴x =8∴原式=(1+x=(1+x=(1+x∴当x =86.25.(1(2)当x =20或当x 等)【解析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并解:(1)周长=+54;(2)当x =2025=(或当x =455=等)262.【解析】解:22-====m 2).答:剩余部分的面积是m 2.27.(1)a=2,b=-3;(2)5 3 -.【解析】(1),b是有理数,则a﹣2,+3都是有理数,根据如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.即可确定(2)首先把已知的式子化成ax+b=0,(其中a、b为有理数,x为无理数)的形式,根据a=0,b=0即可求解.解:(1)2,﹣3;(2)整理,得(a+b)2+(2a﹣b﹣5)=0.∵a、b为有理数,∴250a ba b+=⎧⎨--=⎩,解得:5353ab⎧=⎪⎪⎨⎪=-⎪⎩,∴523a b+=-.第11 页共11 页。

八年级下册数学第十六章单元测试卷(含答案)

八年级下册数学第十六章单元测试卷(含答案)

八年级下册数学第十六章基础知识测验 知识梳理1.一般地,把形如a (a ≥0)的式子叫做 ,“”称为 。

2.一般地,(a )2= (a ≥0)。

3.二次根式的乘法法则:a ・b = (a ≥0,b ≥0)。

4.二次根式的除法法则:ba= (a ≥0,b >0)。

5.把满足:(1)被开方数不含分母:(2)被开方数中不含能开得尽方的因数或因式,叫做 二次根式。

6.一般地,二次根式加减时,可以先将二次根式化成 二次根式,再将 相同的二次根式进行合并。

知识反馈★知识点1:二次根式的概念1.下列各式,哪些是二次根式? (1)6; (2)18-; (3);(4)38-;(5)122++x x(6)2)12(--x ;(7) |x | (8)x 21+2.下列各式中,当字母分别取什么实数时,它就是二次根式? (1)a -1 (2)3x (3)1a 2+★知识点2;二次根式的性质3.计算2)13-( 的值为 ( )A.169B.-13C.±13D.134.使式子2)3(-x =3-x 成立的x 的取值范围是 ( )A..x ≥23 B .x ≤3 C. x=3 D .任意实数5.已知3x +=0.则x 的值为 ( )A.x>-3B.x<-3C.x=-3 D .不能确定★知识点3:代数式6.下列式子: ①0 ; ②π² ; ③2+x =4; ④32x -=1; ⑤2a +3b;⑥x -2(x ≤2).其中是代数式的有 ( ) A .2个 B .3个 C .4个 D .5个★知识点4:二次根式的乘法法则7.化简5×209的结果是 ( ) A.23 B.23 C .325 D.215 8.下列式子的结果是有理数的是 ( ) A.2×5 B.32×827C .-2×12D .32×23 9.计算:(1)6×2 (2)4xy ・y1(3) -5278×332(4)6×15×10★知识点5:二次根式乘法法则的逆用 10.计算(1)1259⨯ (2))169()16(-⨯-(3)22m 8n (m ≥0,n ≥0) (4)2432(5)345a 200c b (ac ≥0) (6) 2432x 16x +(x ≥0)★知识点6:二次根式的除法法则11.下列计算结果正确的是 ( )A.48÷12=4 B .32÷22=1C.24÷6=2D.32612.计算:(1)19.076.0 (2)-321÷275 (3)b b 6a 722(a ≥0)★知识点7:二根式旅法法则的逆用13.化简:(1)49 (2)21.1 (3)-2541★知识点8:最简二次根式的概念14.下列二次根式中,最简二次根式是 ( )A.51B.5.0C.5 D .50 15.把下列各式化为最简二次根式(1)27 (2)55(3)125★知识点9:可以合并的二次根式16.下列二次根式化简后,能与2合并的一共有 ( ) ①20 ;②12;③4 ; ④18; ⑤21; ⑥24 ;50 A .1个 B .2个 C .3个 D .4个17.下列二次根式中,化简后可以合并的是 ( )A .b 2a 与a B.xy 与yxC .50与5D .b +a 与22a b +√a +び ★划识点10:二次根式的加减18.下列各式的计算中,正确的是 ( )A.2+5=25B.45-355=1C.22y x +=x+yD.45-20=519.计算(1)2-322-33+ (2)250-83+(3)4832-315-311312+25 (4)a a a a a a 1084333a 273123-+-20.已知5≈2.236,求)4554513()54180(+--的值(结精确到0.01)。

2023年人教版八年级数学下册第十六章《二次根式》综合测试卷附答案解析

2023年人教版八年级数学下册第十六章《二次根式》综合测试卷附答案解析

2023年八年级数学下册第十六章《二次根式》综合测试卷1.下列各式是二次根式的是()A.-7B.m C.a 2+1D.332.若式子x +1+x -2在实数范围内有意义,则x 的取值范围是()A.x >-1B.x ≥-1C.x ≥-1且x ≠0D.x ≤-13.下列二次根式中,是最简二次根式的是()A.2B.12C.12D.94.4.下列运算正确的是()A.2+3=5B.30=0C.(-2a )3=-8a 3D.a 6÷a 3=a 25.化简二次根式(-5)2×3的结果为()A.-53B.53C.±53 D.30×3的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.估计5+2×10的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.若x <0,则x -x 2x 的结果是()A.0B.-2C.0或2D.29.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c |=0,则△ABC 的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.22D.6二、填空题(每题3分,共24分)11.比较大小:35________27(填“>”“<”或“=”).12.计算:24-323=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a 在数轴上对应的点的位置如图所示,则(a -4)2+(a -11)2化简后为________.15.【2022·贺州】若实数m ,n 满足|m -n -5|+2m +n -4=0,则3m +n =________.16.△ABC 的面积S =12cm 2,底边a =23cm,则底边上的高为__________.17.已知a ≠0,b ≠0且a <b ,化简-a 3b 的结果是__________.18.已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 的三边长分别为2,3,4,则其面积是________.三、解答题(19题16分,其余每题10分,共66分)19.计算:(1)(6+8)×3÷32;-12+(1-2)0-|3-2|;(3)(6-412+38)÷22;(4)(1+3)(2-6)-(22-1)2.20.先化简,再求值:23x 9x +y 2x y 3-21x -5x =12,y =4.21.已知等式|a -2023|+a -2024=a 成立,求a -20232的值.22.已知一个长方形花坛与一个圆形花坛的面积相等,长方形花坛的长为140πm,宽为35πm,求这个圆形花坛的半径.23.【跨学科题】据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5 (不考虑风速的影响).(1)求从40m高空抛物到落地的时间.(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由.(3)已知高空坠落物体动能(单位:焦耳)=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少?你能得到什么启示?(注:杀伤无防护人体只需要65焦耳的动能)24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1.(1)化简3+2 2.(2)化简4+2 3.(3)化简4-12.(4)若a±2b=m±n,则m,n与a,b的关系是什么?并说明理由.答案一、1.C2.C 3.A 4.C 5.B 6.D 7.B 8.D 9.B 10.B 二、11.>12.613.>14.715.716.43cm17.-a -ab点拨:∵a ≠0,b ≠0,∴-a 3b >0,a 3b <0.∴a ,b 异号.又∵a <b ,∴a <0,b >0.∴-a 3b =-a -ab .18.3154三、19.解:(1)原式=(32+26)÷32=1+233;(2)原式=-2-23+1-(2-3)=-2-23+1-2+3=-3-3;6-412+3×24=32-1+3=32+2;(4)原式=2×(1+3)×(1-3)-(8-42+1)=2×(1-3)-8+42-1=-22-8+42-1=22-9.20.解:原式=2x x +xy -x x +5xy=x x +6xy .当x =12,y =4时,原式=1212+612×4=24+62=2524.21.解:由题意得a -2024≥0,∴a ≥2024.原等式变形为a -2023+a -2024=a .整理,得a -2024=2023.两边平方,得a -2024=20232,∴a -20232=2024.22.解:长方形花坛的面积为140π×35π=70π(m 2),∴圆形花坛的面积为70πm 2.设圆形花坛的面积为S m 2,半径为r m,则S =πr 2,即70π=πr 2,∴r=70ππ=70.故这个圆形花坛的半径为70m. 23.解:(1)由题意知h=40m,∴t=h5=405=8=22(s).(2)不正确.理由如下:当h=80m时,t=805=16=4(s).∵4≠2×22,∴不正确.(3)当t=6s时,6=h5,∴h=180m.∴鸡蛋产生的动能为10×0.05×180=90(焦耳).启示:严禁高空抛物.24.解:(1)3+22=(2+1)2=2+1.(2)4+23=(3+1)2=3+1.(3)4-12=4-23=(3-1)2=3-1.+n=a,=b.理由:把a±2b=m±n两边平方,得a±2b=m+n±2mn,+n=a,=b.。

人教版八年级下第十六章单元测试

人教版八年级下第十六章单元测试

人教版八年级下第十六章单元测试一、选择题(共10小题;共50分)1. 计算的结果是A. B. C. D.2. 若成立,则的取值范围为A. B. C. D. 或3. 下列各式中能与合并的是A. B. D.4. 估计的运算结果应在A. 到之间B. 到之间C. 到之间D. 到之间5. 下列二次根式中属于最简二次根式的是A. B. D.6. 下列各式计算正确的是A. B.C. D.7. 已知,为实数,且,则的值为A. B. C.8. 下列算式();();();();(,.其中正确的有A. 个B. 个C. 个D. 个9. 下列计算中,正确的是B. C. D.10. 下列式子中正确的是A. B.C. D.二、填空题(共6小题;共30分)11. 计算:.12. .13. .14. 当整数时,是最简二次根式.15. 已知最简根式和是同类根式,则,.16. 计算:.三、解答题(共9小题;共117分)17. 计算:(1).(2).18. 计算:(1);(2);(3);(4.19. 将下列二次根式化成最简二次根式..20. (1)化简:;(2)计算:.21. 当是怎样的实数时,下列各式在实数范围内有意义?(1);(2;(3);(4).22. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如,善于思考的小明进行了以下探索:设(其中,,,均为整数),则有.,,这样小明就找到了一种把类似的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当,,,均为正整数时,若,用含,的式子分别表示,,得,;(2)利用所探索的结论,换一组正整数,,,填空:();(3)若,且,,均为正整数,求的值.23. 阅读下列解答过程,回答下列问题:若二次根式和是同类二次根式,求的值.解:因为是二次根式,所以.又因为与是同类二次根式,所以.即解得所以.(1)以上过程有错误吗?若有错误,请改正错误;(2)体验以上解答过程,并完成下题:若与是同类二次根式,求的值.24. 已知,且为偶数,求的值.25. 已知,,求的值.答案第一部分1. A2. B3. C4. C5. A6. B7. D8. B9. B10. C第二部分11.12.13.14.15. ,16.第三部分17. (1)(2)18. (1)(2)(3)(4)19. .20. (1)(2)21. (1).(2).(3).(4).22. (1);(2);;;(答案不唯一)(3)由题意,得:,.,且,为正整数,,或者,,,或.23. (1)有错误,应先将化为最简二次根式.(2).24. 由题意,得即,为偶数,,,当时,.25. 由得所以.。

八年级数学(下)第十六章《二次根式》基础测试题含答案

八年级数学(下)第十六章《二次根式》基础测试题含答案

八年级数学(下)第十六章《二次根式》基础测试题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x(4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。

八年级数学下册第十六章《分式》测验

八年级数学下册第十六章《分式》测验

八年级数学下册第十六章《分式》测验班别:____________姓名:____________学号:_______成绩:____________ 一、选择题1、在下列a 的取值中,能使分式aa a 433-+有意义的a 的值是( )A 、2=aB 、2-=aC 、3-=aD 、0=a 2、下列约分正确的是( ) A 、1222+=+x xx B 、()y x x y xy y x +-=--222C 、y x x y y x -=-+122D 、x y y x yx -=+-223、计算:=⎪⎭⎫⎝⎛--332( )A 、278-B 、278 C 、827 D 、827-4、解分式方程223222=++-+xx x x x 时,去分母得()A 、x x x x 423222+=--B 、2322=+-x xC 、2322=--x xD 、x x x x 423222+=+- 5、在下列x 的取值中,有可能是方程bxxx x =+-+21653的解是( )A 、0=xB 、5-=xC 、4=xD 、4-=x 二、填空题6、用科学记数法表示=0000000314.0_______________.7、约分:=-22442a a a _____________.8、计算:=-+-aa a3932______________.9、计算:()=⋅--231xy y x ___________.(结果用正指数幂表示)10、xx 232+与42-x x 的最简公分母是____________________.11、如果41=+-x x ,则=+-22x x ____________.三、计算下列各式12、1111222--⋅-+--x x x x x x x13、1211122+-+÷⎪⎭⎫ ⎝⎛-+a a a a a四、解方程 14、2313=-+-xx x15、241022-=---+x x x x x x五、综合应用16、八年级学生去距学校20千米的博物馆参观,一部分人骑自行车先走,25分钟后,其余人乘公共汽车出发,结果同时到达。

《好题》初中八年级数学下册第十六章《二次根式》经典练习(含答案)

《好题》初中八年级数学下册第十六章《二次根式》经典练习(含答案)

一、选择题1.下列说法:①带根号的数是无理数;②2(7)-与337-是互为相反数;③实数与数轴上的点是一一对应的关系;④两个无理数的和一定是无理数;⑤已知a =2+3,b =2-3,则a 、b 是互为倒数.其中错误的个数有( ) A .1个 B .2个 C .3个 D .4个B解析:B【分析】对五个命题进行判断,即可求解.【详解】解:①带根号的数是无理数,判断错误;②2(7)-与337-是互为相反数,判断正确;③实数与数轴上的点是一一对应的关系,判断正确;④两个无理数的和一定是无理数,判断错误;⑤已知a =2+3,b =2-3,则a 、b 是互为倒数,判断正确.所以错误的有两个命题.故选:B【点睛】本题考查了无理数的定义,算术平方根、立方根的定义,实数与数轴的关系,实数的运算,二次根式的乘法,熟知相关知识点是解题关键.2.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b A解析:A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴2-a b a +=-a-b+a=-b ,故选:A .【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.3.从“+,﹣,×,÷”中选择一种运算符号,填入算式“+1)□x”的“□”中,使其运算结果为有理数,则实数x 不可能是( )A B . 1 C 2 D .1 B 解析:B【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A +1+1)=0,故本选项不合题意;B 、1)无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意;C ﹣2)=3,故本选项不合题意;D )(12,故本选项不合题意.故选:B .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.(a+b )(a-b )=a 2-b 2.4. )A .8 B .4 C D B 解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】=== 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.5.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤1C解析:C【分析】直接利用二次根式有意义的条件分析得出答案.【详解】∵∴x−1≥0,解得:x≥1.故选:C.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.6.下列计算正确的是()A2=B1=C2=D=解析:D【分析】根据二次根式加法以及二次根式的性质逐项排查即可.【详解】解:A A选项错误;B77=+,故B选项错误;C、2=22=1,故C选项错误;D=D选项正确.故答案为D.【点睛】本题主要考查了二次根式加法以及二次根式的性质,掌握二次根式的加法运算法则是解答本题的关键.7.下列式子中无意义的是()A.B.C.D. A 解析:A【分析】先分别将各式化简,再根据二次根式的非负性解答.【详解】A、-3,由被开放数不能为负数得此式无意义;B、=3>0,故有意义;C、=-3,有意义;D、=13-,有意义,故选:A.【点睛】此题考查二次根式的化简,二次根式的非负性,二次根式具有双重非负性,被开方数为非负数,二次根式的值为非负数.8.n为().A.2 B.3 C.4 D.5B解析:B【分析】27n一定是一个完全平方数,把27分解因数即可确定.【详解】27n一定是一个完全平方数,把27分解因数即可确定.∵22733=⨯,∴n的最小值是3.故选B.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非==.解题关键是分解成一个完全平方数和一个代数式的积的形式.9.下列根式是最简二次根式的是()A B C D解析:B【分析】利用最简二次根式定义判断即可.【详解】A=BC2=,不是最简二次根式,该选项不符合题意;D=,不是最简二次根式,该选项不符合题意;故选:B.【点睛】本题考查了最简二次根式.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.10.下列各式成立的是()A.23=D x C=-C7=B2解析:C【分析】利用二次根式的性质进行化简判断选项的正确性.【详解】解:A2=32=9,错误;B、原式=|﹣2|=2,错误;C、原式=|﹣7|=7,正确;D、原式=|x|,错误,故选:C.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的化简方法.二、填空题11.若3x=的值为__________.1【分析】直接将x值代入计算可得【详解】当时==故答案为:1【点睛】本题主要考查了二次根式的性质与化简解题的关键是熟练掌握完全平方公式和二次根式的性质解析:1【分析】直接将x值代入计算可得.【详解】x=时,当3故答案为:1【点睛】本题主要考查了二次根式的性质与化简,解题的关键是熟练掌握完全平方公式和二次根式的性质.12.如果最简二次根式ab=____________.0【分析】根据最简二次根式及同类二次根式的定义得求出ab的值代入计算即可【详解】由题意得解得∴ab=0故答案为:0【点睛】此题考查最简二次根式及同类二次根式的定义解二元一次方程组熟记定义是解题的关键解析:0【分析】根据最简二次根式及同类二次根式的定义得12233ba a b+=⎧⎨+=+⎩,求出a、b的值代入计算即可.【详解】由题意得12233ba a b+=⎧⎨+=+⎩,解得10 ba=⎧⎨=⎩,∴ab=0,故答案为:0.【点睛】此题考查最简二次根式及同类二次根式的定义,解二元一次方程组,熟记定义是解题的关键.13.,则x的取值范围是_____.﹣5≤x≤0【分析】根据二次根式的性质和二次根式有意义的条件可得关于x的不等式组解不等式组即得答案【详解】解:∵=﹣x∴解得:﹣5≤x≤0故答案为:﹣5≤x≤0【点睛】本题考查了二次根式有意义的条件解析:﹣5≤x≤0【分析】根据二次根式的性质和二次根式有意义的条件可得关于x的不等式组,解不等式组即得答案.【详解】解:∵∴50xx-≥⎧⎨+≥⎩,解得:﹣5≤x≤0.故答案为:﹣5≤x≤0.【点睛】本题考查了二次根式有意义的条件、二次根式的性质和一元一次不等式组的解法,属于基本题型,熟练掌握上述知识是解题的关键.14.若a的小数部分,则()6a a+=_____.2【分析】根据<<可得的整数部分是3则小数部分a=﹣3代入计算即可【详解】解:∵9<11<16∴3<<4∴的整数部分是3∴小数部分是a=﹣3∴a(a+6)=(﹣3)(+3)=11﹣9=2【点睛】本题解析:2【分析】的整数部分是3,则小数部分a﹣3,代入计算即可.【详解】解:∵9<11<16,∴3<4, ∴3,∴小数部分是a﹣3,∴a (a +6﹣3)=11﹣9=2.【点睛】本题考查了无理数的估算,注意在相乘的时候,运用平方差公式简便计算.15.13aa+==______.【分析】把平方后得到取算数平方根即可求解【详解】∵∴∴(舍负)故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式是解决此题的关键【分析】平方后,得到13a a+=,取算数平方根即可求解. 【详解】 ∵13a a+=,∴212325aa =++=+=,∴=.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解决此题的关键.16.计算:))2020202022⨯-=___________1【分析】根据积的乘方逆运算求解即可【详解】解:===1故答案为:1【点睛】此题主要考查了积的乘方熟练掌握积的乘方运算法则是解答此题的关键解析:1【分析】根据积的乘方逆运算求解即可.【详解】解:))2020202022⨯=)2020[22] =2020(1)-=1故答案为:1【点睛】此题主要考查了积的乘方,熟练掌握积的乘方运算法则是解答此题的关键.17.已知4y x =+,当x 分别取1,2,3,⋯,99时,所对应的y 值的总和是___.105【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:①当时此时②当时此时当分别取12399时故答案为:105【点睛】本题考查了二次根式的化简求值绝对值运算等知识点 解析:105【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:434y x x x =+=--+,①当3x 时,|3|3x x -=-,此时43472y x x x x =+=--+=-, 1x =,725y x =-=,2x =,723y x =-=,3x =,721y x =-=,②当3x >时,33x x -=-,此时4341y x x x =-+=--+=,∴当x 分别取1,2,3,⋯,99时,4y x =+,5311(993)105=+++⨯-=.故答案为:105.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.18.计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.【分析】根据负整数指数幂定义绝对值的性质二次根式的除法计算法则依次计算再计算加减法即可【详解】解:原式==故答案为:【点睛】此题考查计算能力正确掌握负整数指数幂定义绝对值的性质二次根式的除法计算法则解析:2+【分析】根据负整数指数幂定义,绝对值的性质,二次根式的除法计算法则依次计算,再计算加减法即可.【详解】解:原式=42-+2+故答案为:2+.【点睛】此题考查计算能力,正确掌握负整数指数幂定义,绝对值的性质,二次根式的除法计算法则是解题的关键.19.20052006=________.【分析】逆用积的乘方法则和平方差公式计算即可【详解】解:原式=故答案为:【点睛】本题考查了二次根式的混合运算熟练掌握二次根式的运算法则是解答本题的关键整式的乘法的运算公式及运算法则对二次根式的运算同解析:【分析】逆用积的乘方法则和平方差公式计算即可.【详解】解:原式=20052005⋅⋅ 2005⎡⎤=⋅⋅⎣⎦=-=故答案为:-【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.20.20y =,则x y +=________.2【分析】先根据非负数的性质得出关于xy 的方程求出xy 的值代入x+y 进行计算即可【详解】解得故答案为:2【点睛】本题考查的是非负数的性质解题的关键是掌握非负数的性质即几个非负数的和为0时这几个非负数解析:2【分析】先根据非负数的性质得出关于x 、y 的方程,求出x 、y 的值,代入x+y 进行计算即可.【详解】220x y -+=,20x ∴-=,0y =,解得2x =,202x y +=+=.故答案为:2.【点睛】本题考查的是非负数的性质.解题的关键是掌握非负数的性质,即几个非负数的和为0时,这几个非负数都为0.三、解答题21.先阅读,后回答问题:x 有意义?解:要使该二次根式有意义,需x(x-3)≥0,由乘法法则得030? x x ≥⎧⎨-≥⎩或0 30x x ≤⎧⎨-≤⎩, 解得x 3≥或x 0≤,即当x 3≥或x 0≤体会解题思想后,解答:x 解析:x 2≥或1x 3<-. 【分析】 根据题目信息,列出不等式组求解即可得到x 的取值范围.【详解】解:要使该二次根式有意义,需x 23x 1-≥+0, 由乘法法则得20310x x -≥⎧⎨+>⎩或20310x x -≤⎧⎨+<⎩, 解得x 2≥或1x 3<-,即当x 2≥或1x 3<- 【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.22.化简(1)+(2解析:(1)1-+;(2)54【分析】 (1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.23.(10|12021-;(2)已知:3(4)64x +=-,求x 的值.解析:(12)8-【分析】(1)根据立方根、绝对值、零指数幂、二次根式的性质计算,即可得到答案; (2)根据立方根的性质,计算得44x +=-,再通过求解方程,即可得到答案.【详解】(10|12021-211=+-=(2)∵3(4)64x +=- ∴44x +==- ∴8x =-. 【点睛】本题考查了立方根、绝对值、零指数幂、二次根式、一元一次方程的知识;解题的关键是熟练掌握了立方根、绝对值、零指数幂、二次根式、一元一次方程的性质,从而完成求解.24.计算:(1()202051-- (2)657321x y x y +=⎧⎨-=-⎩解析:(1)75;(2)131x y ⎧=⎪⎨⎪=⎩ 【分析】(1)由二次根式的性质、绝对值的意义、立方根、乘方的运算法则进行化简,再计算加减即可;(2)利用加减消元法解二元一次方程组,即可得到答案【详解】解:(1()202051-+- =75(4)15++-- =75; (2)657321x y x y +=⎧⎨-=-⎩①② 由①-②⨯2,得:99y =,∴1y =;把1y =代入②,得13x =; ∴方程组的解为131x y ⎧=⎪⎨⎪=⎩;【点睛】本题考查了解二元一次方程组,二次根式的性质,立方根,绝对值的意义,以及乘方的运算法则,解题的关键是熟练掌握运算法则进行计算25.计算:(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭; (2)22)++.解析:(14;(2)10-【分析】(1)先化简二次根式,化去绝对值,零次幂,负指数运算,再合并同类项与同类二次根式即可(2)利用平方差公式与完全平方公式展开,再计算平方,合并同类项即可.【详解】(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭ ,=312+,4.(2)22)++,=2222-+,=523-+-,=10-【点睛】本题考查二次根式的混合计算,掌握二次根式化简方法,绝对值,零次幂,负指数,乘法公式等知识,并会用它们解决问题是关键.26.先化简,再求值:(1+12x +)÷293x x --,其中x2. 解析:12x +【分析】 首先计算括号里面的加法,再算括号外的除法,化简后,再代入x 的值可得答案.【详解】 解:原式=(22x x +++12x +)•3(3)(3)x x x -+-, =32x x ++•3(3)(3)x x x -+-, =12x +, 当x2=3. 【点睛】此题主要考查了分式的化简求值,关键是掌握计算顺序和计算法则,正确进行化简. 27.回答下列问题:(1)计算:221(3)|32-⎛⎫---+ ⎪⎝⎭; (2)计算:3(1)|1-+-+解析:(1)10+;(2【分析】(1)根据乘方、负整数指数幂、二次根式的运算法则计算;(2)根据乘方、立方根的运算法则计算.【详解】解:(1)原式=(493-+=493-+=10+;(2)原式=)112-++=112-++【点睛】本题考查实数的混合运算,涉及到乘方、负整数指数幂、二次根式的运算法则,熟练掌握各运算法则是关键.28.计算:21)-.解析:12-【分析】先根据完全平方公式、平方差公式、二次根式的乘法法则把每个二次根式化为最简二次根式,再合并同类二次根式即可.【详解】解:原式314(2=--+318=--+12=-【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下)数学单元检测题
(第十六章 分式)
一、选择题(每小题3分,共30分) 1.下列式子是分式的是( ) A .
2x B .x 2 C .π
x
D .2y x + 2.下列各式计算准确的是( )
A .11--=b a b a
B .ab
b a b 2= C .()0,≠=a ma na m n D .a m a
n m n ++=
3.下列各分式中,最简分式是( )
A .()()y x y x +-73
B .n m n m +-22
C .2222ab b a b a +-
D .222
22y xy x y x +-- 4.化简2
293m
m m --的结果是( ) A.
3+m m B.3
+-m m C.3-m m D.m m
-3 5.若把分式
xy
y
x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 6.若分式方程
x
a x
a x +-=
+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2 7.已知
432c b a ==,则c b a +的值是( ) A .54 B. 47 C.1 D.4
5
8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )
A .
x x -=+306030100 B .3060
30100-=
+x x C .x x +=-306030100 D .30
6030100+=
-x x 9.某学校学生实行急行军训练,预计行60千米的路程在下午5时到达,后来因为把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,,则可列方程( )
A .
1%206060++=x x B. 1%2060
60-+=x x C. 1%2016060++=)(x x D. 1%2016060-+=)(x x 10.已知 k b
a c
c a b c b a =+=+=+,则直线2y kx k =+一定经过( )
A.第一、二象限
B.第二、三象限
C.第三、四象限
D.第一、四象限 二、填空题(每小题3分,共18分)
11.计算23
2
3
()a b a b --÷= .
12.用科学记数法表示—0.000 000 0314= .
13.计算
221
42a a a -=-- .
14.方程34
70x x
=-的解是 .
15.瑞士中学教师巴尔末成功地从光谱数据9162536
,,,,
5122132
中得到巴尔末公式,从而打开了
光谱奥秘的大门。

请你尝试用含你n 的式子表示巴尔末公式 .
16.如果记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211
211=
+;f(12
)表示当x=12时y 的值,即f(12)=2
21()12151()2
=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(
1
n
)= (结果用含n 的代数式表示). 三、解答题(共52分) 17.(10分)计算:
(1))2(216322b a a bc a b -⋅÷ ; (2)93234962
2
2-⋅+-÷-+-a a b a b a a .
18.(10分)解方程求x : (1)
114112=---+x x x ; (2)0(,0)1
m n
m n mn x x -=≠≠+.
19.(7分)有一道题:
“先化简,再求值:22
241
(
)244
x x x x x -+÷+-- 其中,x=—3”. 小玲做题时把“x=—3”错抄成了“x=3”,但她的计算结果也是准确的,请你解释这是怎么回事?
20.(8分)今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。

某校师生也活动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?
21.(8分)一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.
22.(9分)某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m³,5月份的燃气费是90元.求该市今年居民用气的价格.。

相关文档
最新文档