【优选】2019年辽宁省葫芦岛市龙港区中考数学模拟试卷(有答案)
2019年辽宁省葫芦岛市中考数学试卷及答案解析
第1页,共22页2019年辽宁省葫芦岛市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−6的绝对值是()A. 6B. −6C. 16D. −162.下列运算正确的是()A. x 2⋅x 2=x 6B. x 4+x 4=2x 8C. −2(x 3)2=4x 6D. xy 4÷(−xy)=−y 33.甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是125分,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则这5次测试成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁4.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁)13141516人数(人)1254则该校女子排球队12名队员年龄的众数、中位数分别是()A. 13,14B. 14,15C. 15,15D. 15,146.不等式组{3x <2x +2x+13−x ≤1的解集在数轴上表示正确的是()A.B.C. D.7.某工厂计划生产300个零件,个零件,由于采用新技术,由于采用新技术,由于采用新技术,实际每天生产零件的数量是原计划实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x 个,根据题意,所列方程正确的是()A. 300x−300x+2=5B. 3002x−300x=5C. 300x−3002x=5D. 300x+2−300x=58. 二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+ 8.b的图象大致是( )A.B.C.D.9. 如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO9.)的度数为( A. 70°B. 55°C. 45°D.35°10. 如图,正方形ABCD的对角线AC,BD相交于点O,点10.E在BD上由点B向点D运动(点E不与点B重合),连接AE,将线段AE绕点A逆时针旋转90得到线段AF,连接BF交AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之)间的函数关系的是( A.B.C.D.二、填空题(本大题共8小题,共24.0分)11. 太阳的半径大约为696000000,将数据696000000用科学记数法表示为______.11.12. 分解因式:x3y−xy3=______.12.13. 若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a的值是13.______.14. 在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同.如14.果从袋子中随机摸出一个球,摸到红球的概率是13,那么n的值为______.15. 如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上15.的一个建筑物,某人在河岸b上的A处测得∠PAB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为____米.(√3≈1.73,结果精确到0.1米)16.16. 如图,BD 是▱ABCD 的对角线,按以下步骤作图:①分别以点B 和点D 为圆心,为圆心,大于12BD 的长为半径作弧,两弧相交于E ,F 两点;②作直线EF ,分别交AD ,BC 于点M ,N ,连接BM ,DN.若BD =8,MN =6,则▱ABCD 的边BC 上的高为______.17.17. 如图,在Rt △ABC 的纸片中,∠C =90°,AC =5,AB =13.点D 在边BC 上,以AD 为折痕将△ADB 折叠得到△ADB′,AB′与边BC 交于点E.若△DEB′为直角三角形,则BD 的长是______.18.18. 如图,点P 是正方形ABCD 的对角线BD 延长线上的一点,连接PA ,过点P 作PE ⊥PA 交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F ,则下列结论中:,则下列结论中:①PA =PE ;②CE =√2PD ;③BF −PD =12BD ;④S △PEF =S △ADP正确的是______(填写所有正确结论的序号)三、计算题(本大题共1小题,共10.0分) 19.19. 先化简,再求值:a 2+aa 2−2a +1÷(2a−1−1a ),其中a =(13)−1−(−2)0.四、解答题(本大题共7小题,共86.0分)20.20. 某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,两幅不完整的统计图. 查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:根据图中提供的信息,解答下列问题:(1)本次调查的学生共有______人;在扇形统计图中,B所对应的扇形的圆心角的度数是______;(2)将条形统计图补充完整;将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.女的概率.21. 在平面直角坐标系中,△ABC的三个顶点坐标分别是21.A(−1,1),B(−4,1),C(−3,3)(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;并判断以O,A1,B为顶点的三角形的形状(直接写出结果);(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出点C旋转到C2所经过的路径长.长.22. 如图,一次函数y=k1x+b的图象与x轴、y轴分别交于22.A,B两点,与反比例函数y=k2x的图象分别交于C,D的中点.两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=k2x的解析式;的解析式;(2)求△COD的面积;的面积;(3)直接写出当x取什么值时,k1x+b<k2x.23. 某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不23.低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时符合一次函数关系,如图所示: 间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元元的销售利润,销售单价应定为多少元 (3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?销售单价为多少元时,每天获得的利润最大,最大利润是多少元?24. 如图,点M是矩形ABCD的边AD延长线上一点,以AM24.交矩形对角为直径的⊙O交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;的切线;(2)若cos∠CAD=35,AF=6,MD=2,求FC的长.的长.25. 如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点25.B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;的位置关系; (2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出CE AB的值.的值.26. 如图,直线y=−x+4与x轴交于点B,与y轴交于点C,抛物线y=−x2+bx+c 26.经过B,C两点,与x轴另一交点为A.点P以每秒√2个单位长度的速度在线段BC 上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x 轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当MQ NQ=12时,的值;求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.答案解析1.【答案】A【解析】解:|−6|=6, 故选:A .根据负数的绝对值是它的相反数,可得负数的绝对值.根据负数的绝对值是它的相反数,可得负数的绝对值. 本题考查了绝对值,负数的绝对值是它的相反数.本题考查了绝对值,负数的绝对值是它的相反数. 2.【答案】D【解析】解:∵x 2⋅x 2=x 4, ∴选项A 不符合题意;不符合题意; ∵x 4+x 4=2x 4, ∴选项B 不符合题意;不符合题意;∵−2(x 3)2=−2x 6, ∴选项C 不符合题意;不符合题意;∵xy 4÷(−xy)=−y 3, ∴选项D 符合题意.符合题意.故选D .根据同底数幂的乘除法的运算方法,根据同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,幂的乘方与积的乘方的运算方法,幂的乘方与积的乘方的运算方法,以及合并同类项以及合并同类项的方法,逐项判断即可.的方法,逐项判断即可.此题主要考查了同底数幂的乘除法的运算方法,此题主要考查了同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,幂的乘方与积的乘方的运算方法,幂的乘方与积的乘方的运算方法,以及以及合并同类项的方法,要熟练掌握.合并同类项的方法,要熟练掌握.3.【答案】D【解析】解:∵S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45, ∴S 丁2<S 丙2<S 乙2<S 甲2,∴成绩最稳定的是丁.成绩最稳定的是丁. 故选:D .直接利用方差是反映一组数据的波动大小的一个量,直接利用方差是反映一组数据的波动大小的一个量,方差越大,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.可.此题主要考查了方差,正确理解方差的意义是解题关键.此题主要考查了方差,正确理解方差的意义是解题关键.4.【答案】B【解析】解:从上面看是四个小正方形,如图所示:【解析】解:从上面看是四个小正方形,如图所示:故选:B .根据从上面看得到的图形是俯视图,可得答案.根据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.5.【答案】C【解析】【分析】【解析】【分析】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.根据众数和中位数的定义求解可得.根据众数和中位数的定义求解可得. 【解答】【解答】解:∵这组数据中15出现5次,次数最多,次,次数最多, ∴众数为15岁,岁,中位数是第6、7个数据的平均数,个数据的平均数,∴中位数为15+152=15岁,岁, 故选:C .6.【答案】A【解析】【分析】【解析】【分析】本题考查的是解一元一次不等式组及在数轴上表示解集,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.大小小无解了确定不等式组的解集. 【解答】【解答】解:解不等式3x <2x +2,得:x <2, 解不等式x +13−x ≤1,得:x ≥−1,则不等式组的解集为−1≤x <2, 故选A .7.【答案】C【解析】【分析】【解析】【分析】本题考查由实际问题抽象出分式方程,本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,解答本题的关键是明确题意,解答本题的关键是明确题意,列出相应的分式方列出相应的分式方程.根据实际每天生产零件的数量是原计划的2倍,可以提前5天完成任务可以列出相应的分式方程,本题得以解决.应的分式方程,本题得以解决. 【解答】【解答】解:由题意可得,解:由题意可得,300x−3002x=5,故选C .8.【答案】D【解析】解:由二次函数图象,得出a <0,−b2a <0,b <0,A 、一次函数图象,得a >0,b >0,故A 错误;错误;B 、一次函数图象,得a <0,b >0,故B 错误;错误;C 、一次函数图象,得a >0,b <0,故C 错误;错误;D 、一次函数图象,得a <0,b <0,故D 正确;正确;故选:D .可先根据二次函数的图象判断a 、b 的符号,再判断一次函数图象与实际是否相符,判断正误.断正误.本题考查了二次函数图象,应该熟记一次函数y =kx +b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.【答案】B9.【解析】解:连接OA、OC,∵∠BAC=15°,∠ADC=20°,∴∠AOB=2(∠ADC+∠BAC)=70°,∵OA=OB(都是半径),∴∠ABO=∠OAB=12(180°−∠AOB)=55°.故选:B.根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠ABO的度数的度数同弧或等弧所对的圆周角等于这条本题考查了圆周角定理,注意掌握在同圆或等圆中,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.弧所对的圆心角的一半.10.【答案】A【解析】【分析】【解析】【分析】本题主要考查了动点问题的函数图象、全等三角形的判定和性质、中位线的性质定理,解题的关键是通过辅助线构造全等三角形而后转化线段连接FD,证明△BAE≌△DAF,得到∠ADF=∠ABE=45°,FD=BE,再说明GO为△BDF的中位线OG=12FD,则y= 12x,且x>0,是在第一象限的一次函数图象.,是在第一象限的一次函数图象.【解答】【解答】解:连接FD,∵∠BAE+∠EAD=90°,∠FAD+∠EAD=90°,∴∠BAE=∠FAD.又BA=DA,EA=FA,∴△BAE≌△DAF(SAS).∴∠ADF=∠ABE=45°,FD=BE.∴∠FDO=45°+45°=90°.∵GO⊥BD,FD⊥BD,∴GO//FD.∵O为BD中点,中点,∴GO为△BDF的中位线.的中位线.∴OG=12FD.∴y=12x,且x>0,是在第一象限的一次函数图象.,是在第一象限的一次函数图象.故选A.11.【答案】6.96×108【解析】解:将数据【解析】解:将数据696000000用科学记数法表示为6.96×108. 故答案为:6.96×108.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.是负数. 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.的值. 12.【答案】xy(x +y)(x −y)【解析】解:x 3y −xy 3,=xy(x 2−y 2),=xy(x +y)(x −y).首先提取公因式xy ,再对余下的多项式运用平方差公式继续分解.,再对余下的多项式运用平方差公式继续分解.本题考查了用提公因式法和公式法进行因式分解,本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 13.【答案】−2【解析】解:∵关于x 的一元二次方程x 2+(2+a)x =0有两个相等的实数根,有两个相等的实数根,∴△=(2+a)2−4×1×0=0, 解得:a =−2, 故答案为:−2.根据根的判别式得出△=(2+a)2−4×1×0=0,求出即可.,求出即可.本题考查了根的判别式和一元二次方程的解,能根据根的判别式和已知得出△=(2+a)2−4×1×0=0是解此题的关键.是解此题的关键.14.【答案】4【解析】解:根据题意得2n+2=13, 解得n =4,经检验:n =4是分式方程的解,是分式方程的解, 故答案为:4.根据概率公式得到2n+2=13,然后利用比例性质求出n 即可.即可.本题考查了概率公式:随机事件A 的概率P(A)=事件A 可能出现的结果数除以所有可能出现的结果数.能出现的结果数. 15.【答案】54.6【解析】解:过点A 作AE ⊥a 于点E ,过点B 作BD ⊥PA 于点D , ∵∠PBC =75°,∠PAB =30°, ∴∠DPB =45°, ∵AB =80,∴BD =40,AD =40√3, ∴PD =DB =40,∴AP =AD +PD =40√3+40, ∵a//b ,∴AE=12AP=20√3+20≈54.6,故答案为:54.6.过点A作AE⊥a于点E,过点B作BD⊥PA于点D,然后锐角三角函数的定义分别求出AD、PD后即可求出两岸之间的距离.后即可求出两岸之间的距离.本题考查解直角三角形,解题的关键是熟练运用含30度角的直角三角形性质以及锐角三角函数的定义,本题属于中等题型.三角函数的定义,本题属于中等题型.16.【答案】245【解析】【分析】【解析】【分析】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质.由作法得MN垂直平分BD,则MB=MD,NB=ND,再证明△BMN为等腰三角形得到BM=BN,则可判断四边形BMDN为菱形,利用菱形的上的高.性质和勾股定理计算出BN=5,然后利用面积法计算▱ABCD的边BC上的高.【解答】【解答】解:由作法得MN垂直平分BD,∴MB=MD,NB=ND,∵四边形ABCD为平行四边形,为平行四边形,∴AD//BC,∴∠MDB=∠NBD,而MB=MD,∴∠MBD=∠MDB,∴∠MBD=∠NBD,而BD⊥MN,∴△BMN为等腰三角形,为等腰三角形,∴BM=BN,∴BM=BN=ND=MD,∴四边形BMDN为菱形,为菱形,∴BN=√32+42=5,设▱ABCD的边BC上的高为h,∵MN⋅BD=2BN⋅ℎ,∴ℎ=6×82×5=245,即▱ABCD的边BC上的高为245.故答案为245.17.【答案】7或263【解析】【分析】【解析】【分析】本题考查轴对称的性质、直角三角形的性质、勾股定理等知识,分类讨论思想的应用注意分类的原则是不遗漏、不重复.意分类的原则是不遗漏、不重复.由勾股定理可以求出BC的长,由折叠可知对应边相等,对应角相等,当△DEB′为直角的长.三角形时,可以分为两种情况进行考虑,分别利用勾股定理可求出BD的长.【解答】【解答】解:在Rt △ABC 中,BC =√AB 2−AC 2=√132−52=12. (1)当∠EDB′=90°时,如图1,过点B′作B′F ⊥AC ,交AC 的延长线于点F , 由折叠得:AB =AB′=13,BD =B′D =CF ,设BD =x ,则B′D =CF =x ,B′F =CD =12−x , 在Rt △AFB′中,由勾股定理得:中,由勾股定理得:(5+x)2+(12−x)2=132,即:x 2−7x =0,解得:x 1=0(舍去),x 2=7, 因此,BD =7.(2)当∠DEB′=90°时,如图2,此时点E 与点C 重合,重合,由折叠得:AB =AB′=13,则B′C =13−5=8, 设BD =x ,则B′D =x ,CD =12−x , 在Rt △B′CD 中,由勾股定理得:中,由勾股定理得:(12−x)2+82=x 2, 解得:x =263,因此BD =263. 故答案为7或263.18.【答案】①②③【解析】【分析】【解析】【分析】此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,正方形的性质,平行四边形和矩形的判定和性质,勾股定理,以及等腰直角三角形的性质,熟练掌握判定与性质是解本题的关键.与性质是解本题的关键.①连接AE ,利用四点共圆证明△APE 是等腰直角三角形,可得结论;是等腰直角三角形,可得结论; ②如图3,作辅助线,证明四边形DCGP 是平行四边形,可得结论;是平行四边形,可得结论; ③证明四边形OCGF 是矩形,可作判断;是矩形,可作判断;,可作判断.,可作判断.【解答】【解答】解:连接AE,∵∠ABC=∠APE=90°,∴A、B、E、P四点共圆,四点共圆,∴∠EAP=∠PBC=45°,∵AP⊥PE,∴∠APE=90°,∴△APE是等腰直角三角形,是等腰直角三角形,∴AP=PE,正确;故①正确;②如图3,连接CG,由①知:PG//AB,PG=AB,∵AB=CD,AB//CD,∴PG//CD,PG=CD,∴四边形DCGP是平行四边形,是平行四边形,∴CG=PD,CG//PD,∵PD⊥EF,∴CG⊥EF,即∠CGE=90°,∵∠CEG=45°,∴CE=√2CG=√2PD;故②正确;正确;③由②知:∠CGF=∠GFO=90°,∵四边形ABCD是正方形,是正方形,∴AC⊥BD,∴∠COF=90°,∴四边形OCGF是矩形,是矩形,∴CG=OF=PD,∴12BD=OB=BF−OF=BF−PD,正确;故③正确;④连接AC交BP于O,如图4,在△AOP 和△PFE 中,中, ∵{∠AOP =∠EFP =90°∠APF =∠PEF AP =PE, ∴△AOP≌△PFE(AAS), ∴S △AOP =S △PEF ,∴S △ADP <S △AOP =S △PEF , 故④不正确;不正确;本题结论正确的有:①②③,故答案为①②③.19.【答案】解:a 2+aa2−2a +1÷(2a −1−1a )=a(a +1)(a −1)2÷2a −(a −1)a(a −1) =a(a +1)(a −1)2⋅a(a −1)2a −a +1=a(a +1)a −1⋅aa +1=a2a −1,当a =(13)−1−(−2)0=3−1=2时,原式=222−1=4.【解析】【解析】根据分式的减法和除法可以化简题目中的式子,根据分式的减法和除法可以化简题目中的式子,根据分式的减法和除法可以化简题目中的式子,然后将然后将a 的值代入化简后的式子即可解答本题.子即可解答本题.本题考查分式的化简求值、零指数幂、负整数指数幂,解答本题的关键是明确分式化简求值的方法.求值的方法.20.【答案】200 144°【解析】解:(1)本次调查的学生共有30÷15%=200(人),扇形统计图中,B 所对应的扇形的圆心角的度数是360°×80200=144°, 故答案为:200、144;(2)C 活动人数为200−(30+80+20)=70(人), 补全图形如下:补全图形如下:(3)画树状图为:画树状图为:或列表如下:男女1 女2 女3 男 --- (女,男) (女,男) (女,男) 女1 (男,女) --- (女,女) (女,女) 女2 (男,女) (女,女) --- (女,女) 女3(男,女)(女,女)(女,女)---∵共有12种等可能情况,1男1女有6种情况,种情况, ∴被选中的2人恰好是1男1女的概率612=12.(1)由A 活动的人数及其所占百分比可得总人数,用360°乘以B 活动人数所占比例即可得;得;(2)用总人数减去其它活动人数求出C 的人数,从而补全图形;的人数,从而补全图形;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.概率.本题考查了扇形统计图,条形统计图,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比.数与总情况数之比.21.【答案】解:(1)如图,△A 1B 1C 1为所作,为所作,∵OB =√12+42=√17,OA 1=√12+42=√17,BA 1=√52+32=√34,∴OB 2+OA 12=BA 12,∴以O ,A 1,B 为顶点的三角形为等腰直角三角形;为顶点的三角形为等腰直角三角形; (2)如图,△A 2B 2C 2为所作,点C 旋转到C 2所经过的路径长=90⋅π⋅3√2180=3√22π.【解析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,则描点即可得到△A1B1C1;为顶点的三角形的形状;然后利用勾股定理的逆定理判断以O,A1,B为顶点的三角形的形状;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而描点得到△A2B2C2,所经过的路径长.然后利用弧长公式计算出点C旋转到C2所经过的路径长.本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.点,顺次连接得出旋转后的图形.的图象上,22.【答案】解:(1)∵点C(2,4)在反比例函数y=k2x的图象上,∴k2=2×4=8,∴y2=8x;如图,作CE⊥x轴于E,∵C(2,4),点B是线段AC的中点,的中点,∴B(0,2),∵B、C在y1=k1x+b的图象上,的图象上,∴{2k1+b=4b=2,解得k1=1,b=2,∴一次函数为y1=x+2;(2)由{y=x+2y=8x,解得{x=2y=4或{x=−4y=−2,∴D(−4,−2),∴S△COD=S△BOC+S△BOD=12×2×2+12×2×4=6;(3)由图可得,当0<x<2或x<−4时,k1x+b<k2x.【解析】(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作CE⊥x轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;解析式;(2)联立方程求得D的坐标,然后根据S△COD=S△BOC+S△BOD即可求得△COD的面积;的面积;(3)根据图象即可求得k1x+b<k2x时,自变量x的取值范围.的取值范围.本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,方程组的解以及三角形的面积等,求得B 点的坐标是解题的关键.点的坐标是解题的关键. 23.【答案】解:(1)设y =kx +b(k ≠0,b 为常数)将点(50,160),(80,100)代入得代入得{160=50k +b100=80k +b解得{k =−2b =260∴y 与x 的函数关系式为:y =−2x +260 (2)由题意得:(x −50)(−2x +260)=3000化简得:x 2−180x +8000=0 解得:x 1=80,x 2=100∵x ≤50×(1+90%)=95∴x 2=100>95(不符合题意,舍去)答:销售单价为80元.元.(3)设每天获得的利润为w 元,由题意得元,由题意得w =(x −50)(−2x +260)=−2x 2+360x −13000=−2(x −90)2+3200∵a =−2<0,抛物线开口向下,抛物线开口向下∴w 有最大值,当x =90时,w 最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元.元.【解析】(1)由待定系数法可得函数的解析式;由待定系数法可得函数的解析式;(2)根据利润等于每件的利润乘以销售量,列方程可解;根据利润等于每件的利润乘以销售量,列方程可解;(3)设每天获得的利润为w 元,由题意得二次函数,写成顶点式,可求得答案.元,由题意得二次函数,写成顶点式,可求得答案. 本题综合考查了待定系数法求一次函数的解析式、本题综合考查了待定系数法求一次函数的解析式、一元二次方程的应用、一元二次方程的应用、二次函数的应用等知识点,难度中等略大.用等知识点,难度中等略大. 24.【答案】(1)证明:连接OF , ∵四边形ACD 是矩形,是矩形, ∴∠ADC =90°,∴∠CAD +∠DCA =90°, ∵EC =EF ,∴∠DCA =∠EFC , ∵OA =OF ,∴∠CAD =∠OFA ,∴∠EFC +∠OFA =90°, ∴∠EFO =90°, ∴EF ⊥OF , ∵OF 是半径,是半径, ∴EF 是⊙O 的切线;的切线; (2)连接MF , ∵AM 是直径,是直径, ∴∠AFM =90°, 在Rt △AFM 中,cos∠CAD =AF AM =35,∵AF =6,∴6AM=35,∴AM=10,∵MD=2,∴AD=8,在Rt△ADC中,cos∠CAD=AD AC=35,∴8AC=35,∴AC=403,∴FC=403−6=223【解析】(1)根据等腰三角形的性质和直角三角形两锐角互余证得∠EFC+∠OFA=90°,,从而证得结论;即可证得∠EFO=90°,即EF⊥OF,从而证得结论;(2)根据圆周角定理得出∠AFM=90°,通过解直角三角形求得AM=10,得出AD=8,进而求得AC=403,即可求得FC=403−6=223.本题考查了切线的判定和性质,矩形的性质,圆周角定理的应用以及解直角三角形等,作出辅助线构建直角三角形是解题的关键.作出辅助线构建直角三角形是解题的关键.25.【答案】解:(1)当点D与点C重合时,CE//AB,是等腰直角三角形,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,∴CE//AB;(2)当点D与点C不重合时,(1)的结论仍然成立,的结论仍然成立,理由如下:在AF上截取AF=CD,连接EF,∵∠AED=∠ACB=90°,∴∠EAF=∠EDC,中,在△EAF和△EDC中,{AE=ED∠EAF=∠EDCAF=DC,∴△EAF≌△EDC(SAS),∴EF=EC,∠AEF=∠DEC,∵∠AED=90°,∴∠FEC=90°,∴∠ECA=45°,∴∠ECA=∠CAB,∴CE//AB;(3)如图②,∠EAC=15°,∴∠CAD=30°,∴AD=2CD,AC=√3CD,∴FC=(√3−1)CD,∴EC =√22FC=√6−√22CD , ∵△ABC 是等腰直角三角形,是等腰直角三角形, ∴AB =√2AC =√6CD , ∴CEAB =√6−√22√6=3−√36,如图③,∠EAC =15°,由(2)得,∠EDC =∠EAC =15°,∴∠ADC =30°,∴CD =√3AC ,AB =√2AC , 延长AC 至G ,使AG =CD ,∴CG =AG −AC =DC −AC =√3AC −AC , 在△EAG 和△EDC 中,中, {AG =DC∠EAG =∠EDC AE =DE, ∴△EAG≌△EDC(SAS),∴EG =EC ,∠AEG =∠DEC , ∴∠CEG =90°,∴△CEG 为等腰直角三角形,为等腰直角三角形, ∴EC =√22CG=√6−√22AC , ∴CEAB =√3−12, 综上所述,当∠EAC =15°时,CEAB 的值为3−√36或√3−12.【解析】(1)根据等腰直角三角形的性质、平行线的判定定理解答;根据等腰直角三角形的性质、平行线的判定定理解答;(2)在AF 上截取AF =CD ,连接EF ,证明△EAF≌△EDC ,根据全等三角形的性质得到EF =EC ,∠AEF =∠DEC ,根据平行线的判定定理证明;,根据平行线的判定定理证明;(3)分图②、图③两种情况,根据全等三角形的性质、等腰直角三角形的性质计算,得到答案.到答案.本题考查的是全等三角形的判定和性质、等腰直角三角形的性质、勾股定理,掌握全等三角形的判定定理和性质定理是解题的关键.三角形的判定定理和性质定理是解题的关键.26.【答案】解:(1)直线y =−x +4中,当x =0时,y =4∴C(0,4)当y =−x +4=0时,解得:x =4∴B(4,0)∵抛物线y =−x 2+bx +c 经过B ,C 两点两点 ∴{−16+4b +c =00+0+c =4 解得:解得:{b =3c =4∴抛物线解析式为y =−x 2+3x +4(2)∵B(4,0),C(0,4),∠BOC =90°∴OB =OC∴∠OBC =∠OCB =45° ∵ME ⊥x 轴于点E ,PB =√2t∴Rt△BEP中,sin∠PBE=PE PB=√22∴BE=PE=√22PB=t∴x M=x P=OE=OB−BE=4−t,y P=PE=t∵点M在抛物线上在抛物线上 ∴y M=−(4−t)2+3(4−t)+4=−t2+5t∴MP=y M−y P=−t2+4t∵PN⊥y轴于点N ∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形是矩形 ∴ON=PE=t∴NC=OC−ON=4−t∵MP//CN∴△MPQ∽△NCQ∴MP NC=MQ NQ=12∴−t2+4t4−t=12解得:t1=12,t2=4(点P不与点C重合,故舍去)∴t的值为12(3)∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM//x轴,与题意矛盾轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=−x2+3x+4=0时,解得:x1=−1,x2=4∴A(−1,0)∵由(2)得,x M=4−t,ME=y M=−t2+5t∴AE=4−t−(−1)=5−t∴5−t=−t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(−1,0),M(4−t,−t2+5t),设直线AM解析式为y=ax+m ∴{−a+m=0a(4−t)+m=−t2+5t解得:解得:{a=t m=t∴直线AM:y=tx+t∴F(0,t)∴CF=OC−OF=4−t第21页,共22页。
2019年辽宁省葫芦岛市龙港区中考数学模拟试卷(含答案)
2019年辽宁省葫芦岛市龙港区中考数学模拟试卷一.选择题(满分21分,每小题3分)1.的相反数是()A.B.﹣C.D.﹣2.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40° B.50° C.80° D.100°4.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<55.在Rt△ABC中,∠C=90°,AC=4,AB=5,则tanA的值是()A.B.C.D.6.一次函数y=kx+b的图象如图,当x<0时,y的取值范围是()A.y>0 B.y<0 C.﹣1<y<0 D.y<﹣17.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD二.填空题(满分21分,每小题3分)8.某天银川市的最低温度是﹣2℃,最高温度是13℃,这一天的温差是________℃.9.在函数中,自变量x的取值范围是________.10.因式分解:9a2﹣12a+4=____________.11.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为_________cm.12.如图,A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,在行驶过程中,这列火车离A地的路程y(km)与行驶时间t(h)之间的函数关系式是_____13.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的_______倍.14.已知圆柱的底面半径为2cm,母线长为3cm,则该圆柱的侧面展开图的面积为_______cm2.三.解答题(共6小题,满分58分)15.(8分)已知y是x的反比例函数,且当x=﹣2时,y=.(1)求这个反比例函数解析式;(2)分别求当x=3和x=﹣时函数y的值.16.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)17.(10分)已知关于x的方程:(2+k)x2+2kx+(k+1)=0.(1)如果此方程只有一个实数根,求k的值;(2)如果此方程有两个实数根,求k的取值范围;(3)如果此方程无实数根,求k的取值范围.18.(10分)在南京地铁二号线某路段铺轨工程中,先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天.请你根据以上信息,就“工作量”或“工作时间”,提出一个用分式方程解决的问题,并写出解答过程.19.(10分)已知,如图,CD为⊙O的直径,∠EOD=60°,AE交⊙O于点B,E,且AB=OC,求:(1)∠A的度数;(2)∠AEO度数.20.(12分)某兴趣小组对部分中小学生去年暑假看电视的时间进行了抽样调查,根据调查的数据绘制了频数、频率分布表和频数分布直方图(小时数取整数).(1)此次调查的样本容量是多少?(2)补全频数、频率分布表和频数分布直方图;(3)请估计1200名中小学生大约有多少学生暑假期间看电视的时间会低于60小时.四.解答题(共3小题,满分24分)21.(7分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC.BC.DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.22.(8分)如图1至图5,⊙O均作无滑动滚动,⊙O1.⊙O2.⊙O3.⊙O4均表示⊙O与线段AB或BC 相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转_______-周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转_______周;若∠ABC=60°,则⊙O在点B处自转________周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转_______周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.23.(9分)全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已称为一项十分紧迫的任务.某地元有沙漠100万公顷,为了了解该地区沙漠面积的变化情况,有关部门进行了连续3年的观察,并将每年年底的观察结果坐了记录(如下表所示),然后根据这些数据描点、连线,绘成曲线图如图所示,发现其连续且成直线状.预计该地区的沙漠面积将继续按此趋势扩大.(1)如果不采取任何措施,那么到第m年底,该地区的沙漠面积将变为多少万公顷?(2)如果在第5年底,采取植树造林等措施,每年改造0.8万公顷沙漠,那么到第几年底,该地区的沙漠面积能减少到95万公顷?五.解答题(共3小题,满分16分)24.(8分)如图,AB为⊙O的直径,点D为⊙O上的一点,在BD的延长线上取点C,使DC=BD,AC 与⊙O交于点E,DF⊥AC于点F.求证:(1)DF是⊙O的切线;(2)DB2=CF•AB.25.(8分)唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.(1)观察发现再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E.F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP 的最小值为.(2)实践运用如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+A P的最小值.(3)拓展迁移如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.①求这条抛物线所对应的函数关系式;②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)26.如图,在某海域内有三个港口A.D.C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,测得港口C在B处的南偏东75°方向上,此时发现船舱漏水,应立即向最近的港口停靠.(1)试判断此时哪个港口离B处最近,说明理由,并求出最近距离.(2)若海水以每小时48吨的速度渗入船内,当船舱渗入的海水总量超过75吨时,船将沉入海中.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?一.选择题1.解:的相反数是﹣.故选:B.2.解:∵点A(a+1,b﹣2)在第二象限,∴a+1<0,b﹣2>0,解得:a<﹣1,b>2,则﹣a>1,1﹣b<﹣1,故点B(﹣a,1﹣b)在第四象限.故选:D.3.解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.4.解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.5.解:∵∠C=90°,AC=4,AB=5,∴BC==3,∴tanA==,故选:C.6.解:根据图象和数据可知,当x<0即图象在y轴左侧时,y的取值范围是y<﹣1.故选:D.7.解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.二.填空题(共7小题,满分21分,每小题3分)8.解:13﹣(﹣2)=13+2=15(℃).故答案为:15.9.解:根据题意,知,解得:x≥4,故答案为:x≥4.10.解:9a2﹣12a+4=(3a﹣2)2.11.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.12.解:∵A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,∴离A地的路程y(km)与行驶时间t(h)之间的函数关系式是y=200+120t(t≥0).故答案为:y=200+120t(t≥0).13.解:∵此六边形是正六边形,∴∠1=180°﹣120°=60°,∵AD=CD=BC,∴△BCD为等边三角形,∴BD=AC,∴△ABC是直角三角形又BC=AC,∴∠2=30°,∴AB=BC=CD,同理可得,经过2次后,所得到的正六边形是原正六边形边长()2=3倍,∴经过10次后,所得到的正六边形是原正六边形边长的()10=243倍.故答案为:243.14.解:圆柱沿一条母线剪开,所得到的侧面展开图是一个矩形,它的长是底面圆的周长,即4π,宽为母线长为3cm,所以它的面积为12πcm2.三.解答题(共6小题,满分58分)15.解:(1)设反比例函数的解析式为y=(k 为常数且 k≠0),将x=﹣2,y=代入y=,得 k=﹣1,所以,所求函数解析式为y=﹣;(2)当x=3时,y=﹣;当x=﹣时,y=3.16.解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BCtan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AHsin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.17.解:(1)当方程是一次方程时,方程只有一个实数根,此时2+k=0,解得k=﹣2当k=﹣2时,2k=﹣4≠0,即方程只有一个实数根,k的为:k=﹣2时;(2)若方程有两个实数根,需满足:△=(2k)2﹣4(2+k)(k+1)≥0,且2+k≠0解得:k≤﹣且k≠﹣2;即方程有两个实数根,k的取值范围为:k≤﹣且k≠﹣2;(3)当△<0时,方程无实数根,即(2k)2﹣4(2+k)(k+1)<0,解得:k>﹣.即方程无实数根,k的取值范围为:k>﹣.18.解:本题答案不惟一,下列解法供参考.解法一问题:甲工程队单独完成这项任务需要多少天?(2分)解:设甲工程队单独完成这项任务需要x天,则乙工程队单独完成这项任务需要(x+2)天.根据题意,得(4分),解得x1=4,x2=﹣1(舍去),∴x=4(5分)答:甲工程队单独完成这项任务需要4天.(6分)解法二问题:乙工程队单独完成这项任务需要多少天?(2分)解:设乙工程队单独完成这项任务需要x天,则乙工程队单独完成这项任务需要(x﹣2)天.根据题意,得,(4分)解得x1=6,x2=1(舍去),∴x=6.(5分)答:乙工程队单独完成这项任务需要6天.(6分)19.解:(1)连接OB,∵∠EOD=60°,∵AB=OC,OC=OB=OE,∴∠AOB=∠A,∠OBE=∠E,∵∠OBE=∠A+∠AOB=2∠A,∴∠E=2∠A,∵∠EOD=∠A+∠E,∴3∠A=60°,∴∠A=20°;(2)∵AB=OC=OB,∴∠OBE=2∠A=40°,∵OB=OE,∴∠AEO=∠EBO=40°.20.解:(1)由频率分布表可知,此次调查的样本容量是100;(2)如图:(3)1200×(0.2+0.25+0.3)=1200×=900,即1200名中小学生大约有900学生暑假期间看电视的时间会低于60小时.四.解答题(共3小题,满分24分)21.解:(1)∵二次函数y =ax2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),∴根据题意,得,解得,∴抛物线的解析式为y =﹣x2+2x+3.(2)由y =﹣x2+2x+3=﹣(x ﹣1)2+4得,D 点坐标为(1,4), ∴CD ==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).22.解:实践应用(1)2;.;.(2).拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O自转了=1(周).∴⊙O共自转了(+1)周.(2)∵多边形外角和等于360°∴所做运动和三角形的一样:(+1)周.23.解:(1)设沙漠的面积与时间x的函数关系式为y=kx+b,由题意,得,解得:,解得:y=0.2x+100当x=m时,y=0.2m+100.答:第m年底,该地区的沙漠面积将变为(0.2m+100)万公顷;(2)当x=5时,y=0.2×5+100=101(万公顷).设需要a年,该地区的沙漠面积能减少到95万公顷,由题意,得101﹣0.8a=95,解得:a=7.5.答:需要7.5年,该地区的沙漠面积能减少到95万公顷.五.解答题(共3小题,满分16分)24.证明(1)如图1,连接OD,∵OA=OB,BD=DC,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)如图2,连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∴AD⊥BC,又∵BD=DC,∴AB=AC,∵DF⊥AC,∴∠DFC=90°,∴∠DFC=∠ADC=90°,又∵∠C=∠C,∴△CDF∽△CAD,∴,即:CD2=CF•AC.又∵BD=CD,AB=AC,∴DB2=CF•AB.25.解:(1)在等腰梯形ABCD中,∵AD∥BC,且∠BAD=∠D=120°,∴∠ABC=60°;在△ADC中,AD=CD=2,∠D=120°,所以∠DAC=∠DCA=30°;∴∠BAC=∠BAD﹣∠DAC=120°﹣30°=90°,即△BAC为直角三角形;在Rt△BAC中,∠ABC=60°,∠BCA=90°﹣60°=30°,AB=2,所以AC=AB•tan60°=2;由于B.C关于直线EF对称,根据阅读资料可知BP+AP的最小值为线段AC的长,即2.(2)如图(2),作点A关于直径MN的对称点C,连接BC,则BC与直径MN的交点为符合条件的点P,BC的长为BP+AP的最小值;连接OA,则∠AON=2∠AMN=60°;∵点B是的中点,∴∠BON=∠AON=30°;∵A.C关于直径MN对称,∴=,则∠CON=∠AON=60°;∴∠BOC=∠BON+∠CON=90°,又OC=OB=MN=,在等腰Rt△BOC中,BC=OB=;即:BP+AP的最小值为.(3)①依题意,有:,解得∴抛物线的解析式:y=x2﹣2x﹣3;②取点C关于抛物线对称轴x=1的对称点D,根据抛物线的对称性,得:D(2,﹣3);连接AD,交抛物线的对称轴于点M,如图(3)﹣②;设直线AD的解析式为y=kx+b,代入A(﹣1,0)、D(2,﹣3),得:,解得∴直线AD:y=﹣x﹣1,M(1,﹣2);∴△ACM的周长最小值:lmin=AC+AD=+3.26.解:(1)连接AC.AD.BC.BD,过B作BP⊥AC于点P.由已知得∠BAD=90°,∠BAC=30°,AB=3×25=75(海里),从而(海里).∵港口C在B处的南偏东75°方向上,∴∠CBP=45°.在等腰Rt△CBP中,(海里),∴BC<AB.∵△BAD是Rt△,∴BD>AB.综上,可得港口C离B点位置最近,为海里.(2)设由B驶向港口C船的速度为每小时x海里,则据题意有,解不等式,得(海里).答:此船应以速度至少不低于每小时海里,才能保证船在抵达港口前不会沉没.。
辽宁省葫芦岛市2019-2020学年中考数学模拟试题(4)含解析
辽宁省葫芦岛市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a=12(7+1)2,估计a的值在()A.3 和4之间B.4和5之间C.5和6之间D.6和7之间2.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米3.﹣2×(﹣5)的值是()A.﹣7 B.7 C.﹣10 D.104.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣15.如图,在平面直角坐标系中,P是反比例函数kyx=的图像上一点,过点P做PQ x⊥轴于点Q,若OPQ△的面积为2,则k的值是( )A.-2 B.2 C.-4 D.46.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°7.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x的值是().A .3-B .3C .2D .88.如图,在平面直角坐标系xOy 中,△A B C '''由△ABC 绕点P 旋转得到,则点P 的坐标为( )A .(0, 1)B .(1, -1)C .(0, -1)D .(1, 0)9.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .10.已知x=2﹣,则代数式(7+4)x 2+(2+)x+ 的值是( ) A .0 B . C .2+D .2﹣ 11.7的相反数是( )A .7B .-7C .17D .-1712.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x 的方程2222x m m x x++=--的解是正数,则m 的取值范围是____________________ 14.(﹣)﹣2﹣(3.14﹣π)0=_____.15.若一个圆锥的侧面展开图是一个半径为6cm ,圆心角为120°的扇形,则该圆锥的侧面面积为______cm(结果保留π).16.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.17.抛物线y=(x﹣3)2+1的顶点坐标是____.18.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.试猜想线段BG和AE的数量关系是_____;将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若BC=DE=4,当AE取最大值时,求AF的值.20.(6分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF (点E、F分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.21.(6分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.(Ⅰ)收集、整理数据请将表格补充完整:(Ⅱ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;(Ⅲ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.22.(8分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=25DE,求tan∠ABD的值.23.(8分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.求m的取值范围;若m 为符合条件的最小整数,求此方程的根.24.(10分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.25.(10分)如图,直线y=﹣x+3分别与x 轴、y 交于点B 、C ;抛物线y=x 2+bx+c 经过点B 、C ,与x 轴的另一个交点为点A (点A 在点B 的左侧),对称轴为l 1,顶点为D .(1)求抛物线y=x 2+bx+c 的解析式.(2)点M (1,m )为y 轴上一动点,过点M 作直线l 2平行于x 轴,与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线BC 交于点N (x 3,y 3),且x 2>x 1>1.①结合函数的图象,求x 3的取值范围;②若三个点P 、Q 、N 中恰好有一点是其他两点所连线段的中点,求m 的值.26.(12分)如图,在平面直角坐标系xOy 中,直线()30y kx k =+≠与x 轴交于点A ,与双曲线()0m y m x=≠的一个交点为B (-1,4).求直线与双曲线的表达式;过点B 作BC ⊥x 轴于点C ,若点P 在双曲线m y x =上,且△PAC 的面积为4,求点P 的坐标.27.(12分)对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p,则称p 为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零.例如:下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】7的范围,进而可得7的范围.【详解】解:a=12×(77,∵27<3,∴6<7<7,∴a的值在6和7之间,故选D.【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.2.C【解析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.3.D【解析】【分析】根据有理数乘法法则计算.【详解】﹣2×(﹣5)=+(2×5)=10.故选D.【点睛】考查了有理数的乘法法则,(1) 两数相乘,同号得正,异号得负,并把绝对值相乘;(2) 任何数同0相乘,都得0;(3) 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4) 几个数相乘,有一个因数为0时,积为0.4.B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.5.C【分析】根据反比例函数k 的几何意义,求出k 的值即可解决问题【详解】解:∵过点P 作PQ ⊥x 轴于点Q ,△OPQ 的面积为2,∴|2k |=2, ∵k <0,∴k=-1.故选:C .【点睛】本题考查反比例函数k 的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.6.A【解析】【分析】利用三角形内角和求∠B ,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°. 故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.7.D【解析】【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x 的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D .【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.8.B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心. 故旋转中心坐标是P (1,-1)故选B.考点:坐标与图形变化—旋转.9.C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a >0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .10.C【解析】 【分析】把x 的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2﹣时, (7+4)x 2+(2+)x+ =(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7-4)+1+=49-48+1+=2+故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.11.B【解析】【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】7的相反数是−7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.12.C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.故选C【点睛】考核知识点:正方体的表面展开图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.m<4且m≠2【解析】解方程2222x m m x x++=--得x=4-m ,由已知可得x>0且x-2≠0,则有4-m >0且4-m-2≠0,解得:m<4且m≠2. 14.3. 【解析】试题分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果. 原式=4-1=3.考点:负整数指数幂;零指数幂.15.12π【解析】根据圆锥的侧面展开图是扇形可得,2120612360p p ´=,∴该圆锥的侧面面积为:12π, 故答案为12π.16.36°【解析】【分析】由正五边形的性质得出∠B=108°,AB=CB ,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE 是正五边形,∴∠B=108°,AB=CB ,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.17. (3,1)【解析】分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.详解:∵y=(x ﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为(3,1).点睛:主要考查了抛物线顶点式的运用.18.1【解析】【分析】由平行四边形ABCD 的对角线相交于点O ,OE ⊥AC ,根据线段垂直平分线的性质,可得AE=CE ,又由平行四边形ABCD 的AB+BC=AD+CD=1,继而可得结论.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC.∵AB=4,BC=6,∴AD+CD=1.∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案为1.【点睛】本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)BG=AE.(2)①成立BG=AE.证明见解析.②AF=【解析】【分析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.【详解】(1)BG=AE.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG取得最大值时,AE取得最大值.如图3,当旋转角为270°时,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF中,由勾股定理,得+,AF=22AE EF+=3616∴AF=213.【点睛】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.20.解:(1)①2.②95或52.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【解析】【分析】(1)①当AC=BC=2时,△ABC为等腰直角三角形;②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB 边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.【详解】(1)若△CEF与△ABC相似.①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=22AC=2.②当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,∵CE:CF=AC:BC,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=35.∴AD=AC•cosA=3×35=95.(II)若CF:CE=3:4,如答图3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此时AD=AB=12×1=52.综上所述,当AC=3,BC=4时,AD的长为95或52.(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:如图所示,连接CD,与EF交于点Q.∵CD是Rt△ABC的中线∴CD=DB=12 AB,∴∠DCB=∠B.由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠ACB=∠ACB,∴△CEF∽△CBA.21.(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【解析】【分析】(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3% .【详解】(Ⅰ)铁路发送旅客总量b 亿人次 2.52 2.76 3.07 3.42 3.82动车组发送旅客量占比× 100 34.5 % 41.3 % 47.6 % 52.6 % 56.8 %(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,故答案为折线图;(Ⅲ)预估2019 年春运期间动车组发送旅客量占比约为60%,预估理由是之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【点睛】本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.22.(1)90°;(1)证明见解析;(3)1.【解析】【分析】(1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.【详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(1)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE ∽△ADC , ∴DC DE AD DC =, ∴DC 1=AD•DE∵AC=15DE ,∴设DE=x ,则AC=15x ,则AC 1﹣AD 1=AD•DE ,期(15x )1﹣AD 1=AD•x ,整理得:AD 1+AD•x ﹣10x 1=0,解得:AD=4x 或﹣4.5x (负数舍去),则DC=22(25)(4)2x x x -=,故tan ∠ABD=tan ∠ACD=422AD x DC x==.23.(1)m >94-;(2)x 1=0,x 2=1. 【解析】【分析】 解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m >0即可求出m 的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m +2)=9+4m >0∴94m >-. (2)∵m 为符合条件的最小整数, ∴m=﹣2.∴原方程变为2=0x x -∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.24.证明见解析.【解析】试题分析:根据等腰三角形的性质可证∠DBM=∠ECM ,可证△BDM ≌△CEM ,可得MD=ME ,即可解题.试题解析:证明:△ABC 中,∵AB=AC ,∴∠DBM=∠ECM.∵M 是BC 的中点,∴BM=CM.在△BDM 和△CEM 中,∵{BD CEDBM ECM BM CM=∠=∠=,∴△BDM ≌△CEM (SAS ).∴MD=ME .考点:1.等腰三角形的性质;2.全等三角形的判定与性质.25.(2)y=x 2﹣4x+3;(2)①2<x 3<4,②m 的值为11317-或2. 【解析】【分析】(2)由直线y=﹣x+3分别与x 轴、y 交于点B 、C 求得点B 、C 的坐标,再代入y=x 2+bx+c 求得b 、c 的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D (2,﹣2),当直线l 2经过点D 时求得m=﹣2;当直线l 2经过点C 时求得m=3,再由x 2>x 2>2,可得﹣2<y 3<3,即可﹣2<﹣x 3+3<3,所以2<x 3<4;②分当直线l 2在x 轴的下方时,点Q 在点P 、N 之间和当直线l 2在x 轴的上方时,点N 在点P 、Q 之间两种情况求m 的值即可.【详解】(2)在y=﹣x+3中,令x=2,则y=3;令y=2,则x=3;得B (3,2),C (2,3),将点B (3,2),C (2,3)的坐标代入y=x 2+bx+c得:,解得 ∴y=x 2﹣4x+3;(2)∵直线l 2平行于x 轴,∴y 2=y 2=y 3=m ,①如图①,y=x 2﹣4x+3=(x ﹣2)2﹣2,∴顶点为D (2,﹣2),当直线l 2经过点D 时,m=﹣2;当直线l2经过点C时,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x轴,即PQ∥x轴,∴点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,将点Q(x2,y2)的坐标代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(负值已舍去),∴m=()2﹣4×+3=113172如图②,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.由上可得点P、Q关于直线l2对称,∴点N 在抛物线的对称轴l 2:x=2,又点N 在直线y=﹣x+3上,∴y 3=﹣2+3=2,即m=2.故m 的值为11317-或2. 【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.26.(1)直线的表达式为3y x =-+,双曲线的表达方式为4y x =-;(2)点P 的坐标为1(2,2)P -或2(2,2)P - 【解析】分析:(1)将点B (-1,4)代入直线和双曲线解析式求出k 和m 的值即可;(2)根据直线解析式求得点A 坐标,由S △ACP =12AC•|y P |=4求得点P 的纵坐标,继而可得答案. 详解:(1)∵直线()30y kx k =+≠与双曲线y =m x (0m ≠)都经过点B (-1,4), 34,14k m ∴-+==-⨯,1,4k m ∴=-=-,∴直线的表达式为3y x =-+,双曲线的表达方式为4y x=-.(2)由题意,得点C 的坐标为C (-1,0),直线3y x =-+与x 轴交于点A (3,0),4AC ∴=,∵142ACP P S AC y ∆=⋅=, 2P y ∴=±,点P 在双曲线4y x =-上,∴点P 的坐标为()12,2P -或()22,2P -.点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.27.详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(1)①首先由函数y=1x 1﹣bx=x ,求得x (1x ﹣b ﹣1)=2,然后由其不变长度为零,求得答案; ②由①,利用1≤b≤3,可求得其不变长度q 的取值范围;(3)由记函数y=x 1﹣1x (x≥m )的图象为G 1,将G 1沿x=m 翻折后得到的函数图象记为G 1,可得函数G 的图象关于x=m 对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x ﹣1,令y=x ,则x ﹣1=x ,无解;∴函数y=x ﹣1没有不变值;∵y=x -1 =1x ,令y=x ,则1x x=,解得:x=±1,∴函数1y x =的不变值为±1,q=1﹣(﹣1)=1.∵函数y=x 1,令y=x ,则x=x 1,解得:x 1=2,x 1=1,∴函数y=x 1的不变值为:2或1,q=1﹣2=1;(1)①函数y=1x 1﹣bx ,令y=x ,则x=1x 1﹣bx ,整理得:x (1x ﹣b ﹣1)=2.∵q=2,∴x=2且1x ﹣b ﹣1=2,解得:b=﹣1;②由①知:x (1x ﹣b ﹣1)=2,∴x=2或1x ﹣b ﹣1=2,解得:x 1=2,x 1=12b +.∵1≤b≤3,∴1≤x 1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵记函数y=x 1﹣1x (x≥m )的图象为G 1,将G 1沿x=m 翻折后得到的函数图象记为G 1,∴函数G 的图象关于x=m 对称,∴G :y=22)22()(2(2)()m x x x x m m x x m n -⎧-≥⎨--<⎩ .∵当x 1﹣1x=x 时,x 3=2,x 4=3; 当(1m ﹣x )1﹣1(1m ﹣x )=x 时,△=1+8m ,当△<2,即m <﹣18时,q=x 4﹣x 3=3;当△≥2,即m≥﹣18时,x 5x 6 ①当﹣18≤m≤2时,x 3=2,x 4=3,∴x 6<2,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m=1,当x 6=x 3时,m=3;当2<m <1时,x 3=2(舍去),x 4=3,此时2<x 5<x 4,x 6<2,q=x 4﹣x 6>3(舍去);当1≤m≤3时,x 3=2(舍去),x 4=3,此时2<x 5<x 4,x 6>2,q=x 4﹣x 6<3;当m >3时,x 3=2(舍去),x 4=3(舍去),此时x 5>3,x 6<2,q=x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.。
辽宁省葫芦岛市龙港区2019年中考数学模拟试卷(含解析)
2020年葫芦岛市龙港区毕业升学考试模拟卷数学卷一、选择题(每小题3分,共21分)1.下列各数中,比﹣2小的数是()A.2 B.0 C.﹣1 D.﹣32.下列计算正确的是()A.a2•a3=a6B.2a+3b=5ab C.a8÷a2=a6D.(a2b)2=a4b3.如图所示的几何体的俯视图是()A.B.C.D.4.已知点P(3﹣3a,1﹣2a)在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.5.如图,▱ABCD中,∠C=120°,AB=AE=5,AE与BD交于点F,AF=2EF,则BC的长为()A.6 B.8 C.10 D.126.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<37.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A.B.C.D.二、填空题(本题共7小题,每小题3分,共21分)说明:将下列各题结果直接填在题后的横线上.8.早春二月的某一天,大连市南部地区的平均气温为﹣3℃,北部地区的平均气温为﹣6℃,则当天南部地区比北部地区的平均气温高_______℃.9.在函数y=中,自变量x的取值范围是_________.10.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为_______.11.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为________ cm.12.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为.13.边长为6的正六边形外接圆半径是________.14.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_________.三、解答题(本题共6小题,其中15.16题各8分,17.18.19题各10分,20题12分,共58分)15.(8分)反比例函数的图象经过点A(2,3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.16.(8分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,求跨度AB的长(精确到0.01米)17.(10分)解方程组18.(10分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?19.(10分)如图,AB.CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.20.(12分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频分组频数频率0.5~50.5 0.150.5~20 0.2100.5~150.5200.5 30 0.3200.5~250.5 10 0.1率分布表和频率分布直方图(如图).(1)补全频率分布表;(2)在频率分布直方图中,长方形ABCD的面积是______;这次调查的样本容量是______;(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.四、解答题(本题共3小题,其中21题7分,22题8分,23题9分,共24分)21.(7分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.22.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为________,图2中4条弧的弧长的和为_______;(2)求图m中n条弧的弧长的和(用n表示).23.(9分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:(1)初三•二班跑得最快的是第_______接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?五、解答题和附加题(解答题共3小题,其中24.25题各8分,26题10分,共26分;)24.(8分)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD 上一点,∠ADG=∠ABD.求证:AD•CE=DE•DF;说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得8分;选取②完成证明得6分;选取③完成证明得4分.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.25.(8分)阅读材料,解答问题.材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y=x2上向右跳动,得到点P2.P3.P4.P5…(如图1所示).过P1.P2.P3分别作P1H1.P2H2.P3H3垂直于x轴,垂足为H1.H2.H3,则S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面积为1.”问题:(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形Pn﹣1PnPn+1Pn+2的面积,并说明理由(利用图2);(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形Pn﹣1PnPn+1Pn+2的面积(直接写出答案).26.(10分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A.D是人工湖边的两座雕塑,AB.BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(≈1.732,≈1.414,结果精确到0.01米)参考答案一、选择题1.下列各数中,比﹣2小的数是()A.2 B.0 C.﹣1 D.﹣3【考点】18:有理数大小比较.【分析】根据负数的绝对值越大负数反而小,可得答案.【解答】解:|﹣3|>|﹣2|,∴﹣3<﹣2,故选:D.2.下列计算正确的是()A.a2•a3=a6B.2a+3b=5ab C.a8÷a2=a6D.(a2b)2=a4b【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用积的乘方及幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、a2•a3=a5,本选项错误;B、2a+3b不能合并,本选项错误;C、a8÷a2=a6,本选项正确;D、(a2b)2=a4b2,本选项错误.故选C.3.如图所示的几何体的俯视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.4.已知点P(3﹣3a,1﹣2a)在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集;D1:点的坐标.【分析】由点P在第四象限,可得出关于a的一元一次不等式组,解不等式组即可得出a 的取值范围,再对照四个选项即可得出结论.【解答】解:∵点P(3﹣3a,1﹣2a)在第四象限,∴,解不等式①得:a<1;解不等式②得:a>.∴a的取值范围为<a<1.故选C.5.如图,▱ABCD中,∠C=120°,AB=AE=5,AE与BD交于点F,AF=2EF,则BC的长为()A.6 B.8 C.10 D.12【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质得到∠ABC=60°,得到△ABE是等边三角形,求出BE=AB=5,根据相似三角形的性质列出比例式,计算即可.【解答】解:在▱ABCD中,∠C=120°,∴∠ABC=60°,∵AB=AE,∴△ABE是等边三角形,∴BE=AB=5,∵AD∥BC,∴==2,∴BC=10,故选:C.6.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3【考点】H5:二次函数图象上点的坐标特征.【分析】先判断出抛物线开口方向上,进而求出对称轴即可求解.【解答】解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a﹣5b+c>9a+3b+c,∴<1,∴﹣>﹣1,∴x0>﹣1∴x0的取值范围是x0>﹣1.故选:B.7.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A.B.C.D.【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.解:根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选:C.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.二、填空题(本题共7小题,每小题3分,共21分)说明:将下列各题结果直接填在题后的横线上.8.早春二月的某一天,大连市南部地区的平均气温为﹣3℃,北部地区的平均气温为﹣6℃,则当天南部地区比北部地区的平均气温高 3 ℃.【分析】用南部气温减北部的气温,根据“减去一个数等于加上这个数的相反数”求出它们的差就是高出的温度.解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:当天南部地区比北部地区的平均气温高3℃.【点评】本题主要考查有理数的减法运算法则.减法运算法则:减去一个数等于加上这个数的相反数.9.在函数y=中,自变量x的取值范围是x≥1 .【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.【点评】此题主要考查函数自变量的取值范围,解决本题的关键是当函数表达式是二次根式时,被开方数为非负数.10.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为(x﹣1)(x﹣2).【分析】已知了方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.解:已知方程的两根为:x1=1,x2=2,可得:(x﹣1)(x﹣2)=0,∴x2+bx+c=(x﹣1)(x﹣2).【点评】一元二次方程ax2+bx+c=0(a≠0,A.B.c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)11.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为8 cm.【分析】连接OA,由OC垂直于弦AB,利用垂径定理得到C为AB的中点,在直角三角形AOC 中,由OA与OC的长,利用勾股定理求出AC的长,即可得出AB的长.解:连接OA,∵OC⊥AB,∴C为AB的中点,即AC=BC,在Rt△AOC中,OA=5cm,OC=3cm,根据勾股定理得:AC===4cm,∴AB=2AC=8cm.故答案为:8.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为y=160﹣80x(0≤x≤2).【分析】汽车距庄河的路程y(千米)=原来两地的距离﹣汽车行驶的距离.解:∵汽车的速度是平均每小时80千米,∴它行驶x小时走过的路程是80x,∴汽车距庄河的路程y=160﹣80x(0≤x≤2).【点评】此题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.13.边长为6的正六边形外接圆半径是 6 .【分析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为6的正六边形外接圆半径是6.【点评】正六边形的外接圆半径和正六边形的边长将组成一个等边三角形.14.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为16π.【分析】圆柱侧面积=底面周长×高,按公式代入即可.解:圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形是矩形,其长是圆柱的底面周长4π,宽为圆柱的高4,所以所得到的侧面展开图形面积为4π•4=16π.【点评】圆柱的侧面展开图形是矩形,它的面积=圆柱的底面周长×圆柱的高.三、解答题(本题共6小题,其中15.16题各8分,17.18.19题各10分,20题12分,共58分)15.(8分)反比例函数的图象经过点A(2,3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.【分析】(1)先把A点的坐标代入反比例函数y=中,求出k,即可求出函数解析式;(2)再把B点的横坐标代入反比例函数的解析式,可求出y,若y的值与B点的纵坐标相等,则说明B在函数的图象上,否则就不在函数图象上.解:(1)把(2,3)代入y=中得3=,∴k=6,∴函数的解析式是y=;(2)把x=1代入y=中得y=6,∴点B在此函数的图象上.【点评】本题考查了待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征.此题比较容易掌握.16.(8分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,求跨度AB的长(精确到0.01米)[www.*z@z&step.~c^om]【分析】想求得AB长,由等腰三角形的三线合一定理可知AB=2AD,求得AD即可,而AD 可以利用∠A的三角函数可以求出.解:∵AC=BC,D是AB的中点,∴CD⊥AB,又∵CD=1米,∠A=27°,∴AD=CD÷tan27°≈1.96,∴AB=2AD,∴AB≈3.93m.【点评】此题主要考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB.17.(10分)解方程组【分析】第一个方程的系数为1,可直接代入第二个方程.解:把(1)代入(2)得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x=﹣2或1,当x=﹣2时,y=﹣2,当x=1时,y=1,∴原方程组的解是或.【点评】当二元一次方程组的两个方程里有一个未知数的系数的绝对值为1的时候,可选择用代入法求解.18.(10分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?【分析】本题用到的等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.解:设该工程队原计划每周修建x米.由题意得:=+1.整理得:x2+x﹣30=0.解得:x1=5,x2=﹣6(不合题意舍去).经检验:x=5是原方程的解.答:该工程队原计划每周修建5米.【点评】找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.19.(10分)如图,AB.CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.【分析】根据在同圆中等弦对的弧相等,AB.CD是⊙O的直径,则弧CFD=弧AEB,由FD=EB,得,弧FD=弧EB,由等量减去等量仍是等量得:弧CFD﹣弧FD=弧AEB﹣弧EB,即弧FC=弧AE,由等弧对的圆周角相等,得∠D=∠B.方法(一)证明:∵AB.CD是⊙O的直径,∴弧CFD=弧AEB.∵FD=EB,∴弧FD=弧EB.∴弧CFD﹣弧FD=弧AEB﹣弧EB.即弧FC=弧AE.∴∠D=∠B.方法(二)证明:如图,连接CF,AE.∵AB.CD是⊙O的直径,∴∠F=∠E=90°(直径所对的圆周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【点评】本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.20.(12分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频分组频数频率0.5~50.5 0.150.5~20 0.2100.5~150.5200.5 30 0.3200.5~250.5 10 0.1率分布表和频率分布直方图(如图).(1)补全频率分布表;(2)在频率分布直方图中,长方形ABCD的面积是0.25 ;这次调查的样本容量是100 ;(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.【分析】(1)0.5﹣50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5﹣150.5的频率=1﹣0.1﹣0.2﹣0.3﹣0.1﹣0.05=0.25,则频数=100×0.25=25;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生提出这项建议的人数=1000×(0.3+0.1+0.05)=450人.解:(1)填表如下:(2)长方形ABCD的面积为0.25,样本容量是100;(3)提出这项建议的人数=1000×(0.3+0.1+0.05)=450人.【点评】记住公式:频率=频数÷总人数,是解决本题的关键,同时要会应用用样本估计总体这种方法.四、解答题(本题共3小题,其中21题7分,22题8分,23题9分,共24分)21.(7分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.【分析】(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;(2)本题要分两种情况进行讨论:①PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;②PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标.解:(1)∵抛物线y=﹣x2+5x+n经过点A(1,0)∴n=﹣4∴y=﹣x2+5x﹣4;(2)∵抛物线的解析式为y=﹣x2+5x﹣4,∴令x=0,则y=﹣4,∴B点坐标(0,﹣4),AB=,①当PB=AB时,PB=AB=,∴OP=PB﹣OB=﹣4.∴P(0,﹣4)②当PA=AB时,P、B关于x轴对称,∴P(0,4)因此P点的坐标为(0,﹣4)或(0,4).【点评】本题考查了二次函数解析式的确定、等腰三角形的构成等知识点,主要考查学生分类讨论、数形结合的数学思想方法.22.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为π,图2中4条弧的弧长的和为2π;(2)求图m中n条弧的弧长的和(用n表示).【分析】(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算.解:(1)利用弧长公式可得++=π,因为n1+n2+n3=180°.同理,四边形的=+++=2π,因为四边形的内角和为360度;(2)n条弧=++++…==(n ﹣2)π.【点评】本题综合考查了多边形的内角和和弧长公式的应用.23.(9分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:(1)初三•二班跑得最快的是第 1 接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?【分析】(1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;(2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可.解:(1)从函数图象上可看出初三•二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;(2)设在图象相交的部分,设一班的直线为y1=kx+b,把点(28,200),(40,300)代入得:解得:k=,b=﹣,即y1=x﹣,二班的为y2=k′x+b′,把点(25,200),(41,300),代入得:解得:k′=,b′=,即y2=x+联立方程组,解得:,所以发令后第37秒两班运动员在275米处第一次并列.【点评】主要考查利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.要掌握利用函数解析式联立成方程组求交点坐标的方法.五、解答题和附加题(解答题共3小题,其中24.25题各8分,26题10分,共26分;)24.(8分)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD 上一点,∠ADG=∠ABD.求证:AD•CE=DE•DF;说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得8分;选取②完成证明得6分;选取③完成证明得4分.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.【分析】连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线,若证AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一问中只能证得∠EDC=∠DAF=90°,所以在第二问中只要证得∠DEC=∠ADF即可解答此题.(1)证明:连接AF,∵DF是⊙O的直径,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直线CD是⊙O的切线∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)选取①完成证明证明:∵直线CD是⊙O的切线,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD•CE=DE•DF.【点评】此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.25.(8分)阅读材料,解答问题.材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y=x2上向右跳动,得到点P2.P3.P4.P5…(如图1所示).过P1.P2.P3分别作P1H1.P2H2.P3H3垂直于x轴,垂足为H1.H2.H3,则S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面积为1.”问题:(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形Pn﹣1PnPn+1Pn+2的面积,并说明理由(利用图2);(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形Pn﹣1PnPn+1Pn+2的面积(直接写出答案).【分析】(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P4和四边形P2P3P4P5的转化为SP1P2P3P4=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2和SP2P3P4P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3来求解;(2)(3)由图可知,Pn﹣1.Pn、Pn+1.Pn+2的横坐标为n﹣5,n﹣4,n﹣3,n﹣2,代入二次函数解析式,可得Pn﹣1.Pn、Pn+1.Pn+2的纵坐标为(n﹣5)2,(n﹣4)2,(n﹣3)2,(n﹣2)2,将四边形面积转化为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn ﹣5Hn﹣4Pn﹣4﹣S梯形Pn﹣4Hn﹣4Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2来解答.解:(1)作P5H5垂直于x轴,垂足为H5,由图可知SP1P2P3P4=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2=﹣﹣﹣=4,SP2P3P4P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3=﹣﹣﹣=4;(2)作Pn﹣1Hn﹣1.PnHn、Pn+1Hn+1.Pn+2Hn+2垂直于x轴,垂足为Hn﹣1.Hn、Hn+1.Hn+2,由图可知Pn﹣1.Pn、Pn+1.Pn+2的横坐标为n﹣5,n﹣4,n﹣3,n﹣2,代入二次函数解析式,可得Pn﹣1.Pn、Pn+1.Pn+2的纵坐标为(n﹣5)2,(n﹣4)2,(n﹣3)2,(n﹣2)2,四边形Pn﹣1PnPn+1Pn+2的面积为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣4Pn﹣4﹣S梯形Pn﹣4Hn﹣4Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2=﹣﹣﹣=4;(3)S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣4Pn﹣4﹣S梯形Pn﹣4Hn﹣4Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2=﹣﹣﹣=4.【点评】此题是一道材料分析题,考查了根据函数坐标特点求图形面积的知识.解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,26.(10分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A.D是人工湖边的两座雕塑,AB.BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(≈1.732,≈1.414,结果精确到0.01米)【分析】过点B作BE⊥DA,BF⊥DC,垂足分别为E.F,已知AD=AE+ED,则分别求得AE.DE 的长即可求得AD的长.解:过点B作BE⊥DA,BF⊥DC,垂足分别为E,F,由题意知,AD⊥CD∴四边形BFDE为矩形∴BF=ED在Rt△ABE中,AE=AB•cos∠EAB在Rt△BCF中,BF=BC•cos∠FBC∴AD=AE+BF=20•cos60°+40•cos45°=20×+40×=10+20=10+20×1.414=38.28(米).即AD=38.28米.【点评】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.。
辽宁省葫芦岛市2019-2020学年中考数学模拟试题(1)含解析
辽宁省葫芦岛市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式组21xx≥-⎧⎨>⎩的解集在数轴上表示为()A.B.C.D.2.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×1023.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC 边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C 平分∠BB′A′4.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A.18×108B.1.8×108C.1.8×109D.0.18×10105.如图所示的工件,其俯视图是()A.B.C.D.6.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧»AC的长是()A.12πB.13πC.23πD.43π7.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系 如图所示,给出以下结论:①a =8;②b =92;③c =1.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③8.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( ) A .a r //b r B .a r -2b r =0 C .b r =12a r D .2a b =r r9.如图,在等腰直角△ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A 5B .35C 22D .2310.下列式子成立的有( )个①﹣12的倒数是﹣2 ②(﹣2a 2)3=﹣8a 52325 2④方程x 2﹣3x+1=0有两个不等的实数根A .1B .2C .3D .411.如果两圆只有两条公切线,那么这两圆的位置关系是( )A .内切B .外切C .相交D .外离12.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.14.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.15.如图,在△ABC中,AB=5,AC=4,BC=3,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;②分别以点M、N为圆心,以大于12MN的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF,AE交BF于点O,连接OC,则OC=________.16.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是17.化简:a ba b b a+--22=__________.18.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67ABBC=,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:221121()1a a a a a a-+-÷++,其中a=3+1. 20.(6分)如图,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB′C′D′,点 C 的对应点 C′恰好落在CB 的延长线上,边AB 交边 C′D′于点E .(1)求证:BC =BC′;(2)若 AB =2,BC =1,求AE 的长.21.(6分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A -国学诵读”、“B -演讲”、“C -课本剧”、“D -书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是 .(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A 有多少人?22.(8分)已知()()a b A b a b a a b =---. (1)化简A ; (2)如果a,b 是方程24120x x --=的两个根,求A 的值.23.(8分)如图,△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,4).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出B 1点的坐标;(2)画出△ABC 绕原点O 旋转180°后得到的图形△A 2B 2C 2,并写出B 2点的坐标;(3)在x 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P 的坐标.24.(10分)如图,已知正比例函数y=2x与反比例函数y=kx(k>0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=kx(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.25.(10分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D 的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).26.(12分)已知二次函数y=mx2﹣2mx+n 的图象经过(0,﹣3).(1)n=_____________;(2)若二次函数y=mx2﹣2mx+n 的图象与x 轴有且只有一个交点,求m 值;(3)若二次函数y=mx2﹣2mx+n 的图象与平行于x 轴的直线y=5 的一个交点的横坐标为4,则另一个交点的坐标为;(4)如图,二次函数y=mx2﹣2mx+n 的图象经过点A(3,0),连接AC,点P 是抛物线位于线段AC 下方图象上的任意一点,求△PAC 面积的最大值.27.(12分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1,连接AB′.①若△AEB′为等边三角形,则∠BEF等于多少度.②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.(2)如图2,连接CB′,求△CB′F周长的最小值.(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据不等式组的解集在数轴上表示的方法即可解答.【详解】∵x≥﹣2,故以﹣2为实心端点向右画,x <1,故以1为空心端点向左画.故选A .【点睛】本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:>、≥向右画,<、≤向左画, “≤”、“≥”要用实心圆点表示;“<”、“>”要用空心圆点表示.2.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:7600=7.6×103, 故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C【解析】【分析】根据旋转的性质求解即可.【详解】解:根据旋转的性质,A:∠'BCB 与∠ACA '均为旋转角,故∠'BCB =∠ACA ',故A 正确; B:CB CB ='Q ,B BB C ∴∠=∠',又A CB B BB C ∠=∠+∠'''Q2A CB B ''∴∠=∠,ACB A CB ∠=∠''Q2ACB B ∴∠=∠,故B 正确;D:A BC B ''∠=∠Q ,A B C BB C ∴∠=∠'''∴B′C 平分∠BB′A′,故D 正确.无法得出C 中结论,故答案:C.【点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件4.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:1800000000=1.8×109, 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.B【解析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B .点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.6.C【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB 是⊙O 的切线,∴∠OAB=90°,∵半径OA=2,OB 交⊙O 于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π, 故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 7.A【解析】【详解】解:∵乙出发时甲行了2秒,相距8m ,∴甲的速度为8/2=4m/ s .∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s .∵a 秒后甲乙相遇,∴a =8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m ,∴b =500-408=92 m . 因此②正确.∵甲走到终点一共需耗时500/4=125 s ,,∴c =125-2=1 s . 因此③正确.终上所述,①②③结论皆正确.故选A .8.B【解析】试题解析:向量最后的差应该还是向量.20.a b v vv -= 故错误.故选B.9.B【解析】【分析】先根据翻折变换的性质得到△DEF ≌△AEF ,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF ,设CD=1,CF=x ,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF 是△AEF 翻折而成,∴△DEF ≌△AEF ,∠A=∠EDF ,∵△ABC 是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin∠BED=sin∠CDF=35 CFDF.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.10.B【解析】【分析】根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.【详解】解:①﹣12的倒数是﹣2,故正确;②(﹣2a2)3=﹣8a6,故错误;232)6﹣2,故错误;④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.故选B.【点睛】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.11.C【解析】【分析】两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.【详解】根据两圆相交时才有2条公切线.故选C.【点睛】本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.12.C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.23 3π-【解析】【分析】连接BD,易证△DAB是等边三角形,即可求得△ABD的高为3,再证明△ABG≌△DBH,即可得四边形GBHD的面积等于△ABD的面积,由图中阴影部分的面积为S扇形EBF﹣S△ABD即可求解.【详解】如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,234A AB BD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF ﹣S △ABD =2602360π⨯﹣12×=23π-故答案是:23π- 【点睛】本题考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形GBHD 的面积等于△ABD 的面积是解题关键.14.1【解析】【分析】把点(m ,0)代入y =x 2﹣x ﹣1,求出m 2﹣m =1,代入即可求出答案.【详解】∵二次函数y =x 2﹣x ﹣1的图象与x 轴的一个交点为(m ,0),∴m 2﹣m ﹣1=0,∴m 2﹣m =1,∴m 2﹣m+2017=1+2017=1.故答案为:1.【点睛】本题考查了抛物线与x 轴的交点问题,求代数式的值的应用,解答此题的关键是求出m 2﹣m =1,难度适中.15.【解析】【分析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.【详解】过点O 作OD ⊥BC ,OG ⊥AC ,垂足分别为D ,G ,由题意可得:O是△ACB的内心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四边形OGCD是正方形,∴DO=OG=3452+-=1,∴2.2.【点睛】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键.16.13.【解析】【分析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是21 63 =.故答案为1 3【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比. 17.a+b【解析】【分析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
辽宁省葫芦岛市2019-2020学年中考数学考前模拟卷(2)含解析
辽宁省葫芦岛市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A .B .C .D .2.下列方程中,是一元二次方程的是( )A .2x ﹣y=3B .x 2+1x =2C .x 2+1=x 2﹣1D .x (x ﹣1)=03.已知关于x 的一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4,则m+n 的值是( ) A .﹣10 B .10 C .﹣6 D .24.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .2(1)2y x =-++B .2(1)4y x =--+C .2(1)2y x =--+D .2(1)4y x =-++5.如图,在四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,分别以AB 、BC 、DC 为边向外作正方形,它们的面积分别为S 1、S 2、S 1.若S 2=48,S 1=9,则S 1的值为( )A .18B .12C .9D .16.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩()m 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数是()A.1.65m B.1.675m C.1.70m D.1.75m7.如图,在正方形网格中建立平面直角坐标系,若,,则点C的坐标为()A.B.C.D.8.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A.12B.13C.23D.349.抛物线y=x2+2x+3的对称轴是( )A.直线x=1 B.直线x=-1C.直线x=-2 D.直线x=210.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°11.下列运算正确的是()A.a﹣3a=2a B.(ab2)0=ab2C.8=22D.3×27=912.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A =24°,则∠BDC的度数为()A.42°B.66°C.69°D.77°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.14.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.15.如图,正方形ABCD 的边长为6,E ,F 是对角线BD 上的两个动点,且EF=12x x ,连接CE ,CF ,则△CEF 周长的最小值为_____.16.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则,y 2=_____,第n 次的运算结果y n =_____.(用含字母x 和n 的代数式表示).17.分解因式:x 2y ﹣y =_____.18.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图已知△ABC ,点D 是AB 上一点,连接CD ,请用尺规在边AC 上求作点P ,使得△PBC 的面积与△DBC 的面积相等(保留作图痕迹,不写做法)20.(6分)计算:27÷3+8×2﹣1﹣(2015+1)0+2•sin60°. 21.(6分)如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.22.(8分)P 是C e 外一点,若射线PC 交C e 于点A ,B 两点,则给出如下定义:若0PA PB 3<⋅≤,则点P 为C e 的“特征点”.()1当O e 的半径为1时.①在点()1P 2,0、()2P 0,2、()3P 4,0中,O e 的“特征点”是______; ②点P 在直线y x b =+上,若点P 为O e 的“特征点”.求b 的取值范围;()2C e 的圆心在x 轴上,半径为1,直线y x 1=+与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是C e 的“特征点”,直接写出点C 的横坐标的取值范围.23.(8分)如图,某反比例函数图象的一支经过点A (2,3)和点B (点B 在点A 的右侧),作BC ⊥y轴,垂足为点C ,连结AB ,AC .求该反比例函数的解析式;若△ABC 的面积为6,求直线AB 的表达式.24.(10分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率.25.(10分)如图,在ABC V 中,A 90∠=o ,AB AC =,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90o ,得到线段AE ,连结EC .()1依题意补全图形;()2求ECD ∠的度数;()3若CAE 7.5∠=o ,AD 1=,将射线DA 绕点D 顺时针旋转60o 交EC 的延长线于点F ,请写出求AF 长的思路.26.(12分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A )、羊肉泡馍(B )、麻酱凉皮(C )、(biang )面(D )”这四种美食中选择一种,王涛准备在“秘制凉皮(E )、肉丸胡辣汤(F )、葫芦鸡(G )、水晶凉皮(H )”这四种美食中选择一种.(1)求李华选择的美食是羊肉泡馍的概率;(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.27.(12分)如图,在△ABC 中,∠ACB =90°,∠ABC =10°,△CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE =EB ;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.2.D【解析】试题解析:A.含有两个未知数,B.不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:()1含有一个未知数,()2未知数的最高次数是2,()3整式方程. 3.D【解析】【分析】根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.4.B【解析】【分析】把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.【详解】解:∵y=x2+2x+3=(x+1)2+2,∴原抛物线的顶点坐标为(-1,2),令x=0,则y=3,∴抛物线与y轴的交点坐标为(0,3),∵抛物线绕与y轴的交点旋转180°,∴所得抛物线的顶点坐标为(1,4),∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].故选:B.【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.5.D【解析】【分析】过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.【详解】∵S2=48,∴A作AH∥CD交BC于H,则∠AHB=∠DCB.∵AD∥BC,∴四边形AHCD是平行四边形,∴AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故选D.【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.6.C【解析】【分析】根据中位数的定义解答即可.【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.所以这些运动员跳高成绩的中位数是1.1.故选:C.【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.C【解析】【分析】根据A点坐标即可建立平面直角坐标.【详解】解:由A(0,2),B(1,1)可知原点的位置,建立平面直角坐标系,如图,∴C(2,-1)故选:C .【点睛】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.8.D【解析】【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34, 故选:D.【点睛】 本题考查了随机事件的概率,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n =. 9.B【解析】【分析】 根据抛物线的对称轴公式:2b x a =-计算即可. 【详解】解:抛物线y =x 2+2x +3的对称轴是直线2121x =-=-⨯ 故选B .【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.10.C【解析】分析:欲求∠B 的度数,需求出同弧所对的圆周角∠C 的度数;△APC 中,已知了∠A 及外角∠APD 的度数,即可由三角形的外角性质求出∠C 的度数,由此得解.解答:解:∵∠APD 是△APC 的外角,∴∠APD=∠C+∠A ;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故选C.11.D【解析】【分析】直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.【详解】解:A、a﹣3a=﹣2a,故此选项错误;B、(ab2)0=1,故此选项错误;C 故此选项错误;D,正确.故选D.【点睛】此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.12.C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.61【解析】分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.14.3-【解析】试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣1,故答案为﹣1.考点:正数和负数15.25【解析】【分析】如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.【详解】如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.∵CH=EF,CH∥EF,∴四边形EFHC是平行四边形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四边形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH22AC CH+5∴△EFC的周长的最小值=25故答案为:22+45.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.16.431xx+2(21)1nnxx-+【解析】【分析】根据题目中的程序可以分别计算出y2和y n,从而可以解答本题.【详解】∵y1=21xx+,∴y2=1121yy+=221211xxxx⨯+++=431xx+,y3=871xx+,……y n=2211nnxx-+().故答案为:4231211nnx xx x+-+,().【点睛】本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和y n.17.y(x+1)(x﹣1)【解析】【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1).故答案为:y(x+1)(x﹣1).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.【解析】【分析】用女生人数除以总人数即可.【详解】由题意得,恰好是女生的准考证的概率是.故答案为:.【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】【分析】三角形的面积相等即同底等高,所以以BC为两个三角形的公共底边,在AC边上寻找到与D到BC距离相等的点即可.【详解】作∠CDP=∠BCD,PD与AC的交点即P.【点睛】本题考查了三角形面积的灵活计算,还可以利用三角形的全等来进行解题. 20.6+3. 【解析】 【分析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算. 【详解】解:原式=273 +8×12﹣1+2×3=3+4﹣1+3=6+3. 【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21.(1)证明见解析;(2)BH =. 【解析】 【分析】(1)先判断出∠AOC=90°,再判断出OC ∥BD ,即可得出结论;(2)先利用相似三角形求出BF ,进而利用勾股定理求出AF ,最后利用面积即可得出结论. 【详解】 (1)连接OC ,∵AB 是⊙O 的直径,点C 是的中点,∴∠AOC =90°, ∵OA =OB ,CD =AC , ∴OC 是△ABD 是中位线, ∴OC ∥BD ,∴∠ABD =∠AOC =90°, ∴AB ⊥BD , ∵点B 在⊙O 上,∴BD 是⊙O 的切线; (2)由(1)知,OC ∥BD , ∴△OCE ∽△BFE , ∴,∵OB =2,∴OC =OB =2,AB =4,,∴,∴BF =3,在Rt △ABF 中,∠ABF =90°,根据勾股定理得,AF =5, ∵S △ABF =AB•BF =AF•BH , ∴AB•BF =AF•BH , ∴4×3=5BH , ∴BH =. 【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键. 22.(1)①)1P 2,0、()2P 0,2;②22b 22-≤≤;(2)m 221>或,m 221<-.【解析】 【分析】()1①据若03PA PB <⋅≤,则点P 为C e 的“特征点”,可得答案;②根据若03PA PB <⋅≤,则点P 为C e 的“特征点”,可得2m ≤,根据等腰直角三角形的性质,可得答案;()2根据垂线段最短,可得PC 最短,根据等腰直角三角形的性质,可得2CM PC =,根据若03PA PB <⋅≤,则点P 为C e 的“特征点”,可得答案.【详解】解:()())1PA PB 2121211①⋅=⨯=-=,0PA PB 3∴<⋅≤,点()1P 2,0是O e 的“特征点”;()()PA PB 212131⋅=-⨯+==,0PA PB 3∴<⋅≤, 点()2P 0,?2是O e 的“特征点”; ()()PA PB 414115⋅=-⨯+=,PA PB 3∴⋅>,点()3P 4,0不是O e 的“特征点”; 故答案为()1P 2,0、()2P 0,2②如图1,在y x b =+上,若存在O e 的“特征点”点P ,点O 到直线y x b =+的距离m 2≤. 直线1y x b =+交y 轴于点E ,过O 作OH ⊥直线1y x b =+于点H . 因为OH 2=.在Rt DOE V 中,可知OE 22=. 可得1b 2 2.=同理可得2b 22=-.b ∴的取值范围是:22b 2 2.-≤≤()2如图2,设C 点坐标为()m,0,直线y x 1=+,CMP 45∠∴=o .PC MN ⊥,CPM 90∠∴=o ,MC ∴=,PC =. MC m 1=+.)PC MC m 122==+()PA PC 1m 112=-=+-,()PB PC 1m 112=+=++ Q 线段MN 上的所有点都不是C e 的“特征点”,PA PB 3∴⋅>,即))21m 11m 11(m 1)132⎤⎤+-++=+->⎥⎥⎣⎦⎣⎦,解得m 1>或m 1<-,点C 的横坐标的取值范围是m 1>或,m 1<-.故答案为 :(1)①)1P 、()2P 0,2;②b -≤(2)m 1>或,m 1<-.【点睛】本题考查一次函数综合题,解()1①的关键是利用若03PA PB <⋅≤,则点P 为C e 的“特征点”;解()1②的关键是利用等腰直角三角形的性质得出OE 的长;解()2的关键是利用等腰直角三角形的性质得出)122PC MC m ==+,又利用了3PA PB ⋅>. 23.(1)y 6x=;(2)y 12=-x+1.【解析】 【分析】(1)把A 的坐标代入反比例函数的解析式即可求得;(2)作AD ⊥BC 于D ,则D(2,b),即可利用a 表示出AD 的长,然后利用三角形的面积公式即可得到一个关于b 的方程,求得b 的值,进而求得a 的值,根据待定系数法,可得答案. 【详解】(1)由题意得:k =xy =2×3=6, ∴反比例函数的解析式为y 6x=;(2)设B 点坐标为(a ,b),如图,作AD ⊥BC 于D ,则D(2,b),∵反比例函数y 6x=的图象经过点B(a ,b), ∴b 6a=, ∴AD =36a-, ∴S △ABC 12=BC•AD 12=a(36a -)=6,解得a =6, ∴b 6a==1, ∴B(6,1),设AB 的解析式为y =kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=⎧⎨+=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为y 12=-x+1. 【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC ,AD 的长是解题的关键. 24.13【解析】 【分析】根据列表法先画出列表,再求概率. 【详解】 解:列表如下: 2 3 5 6 2 (2,3) (2,5) (2,6) 3(3,2)(3,5)(3,6)5 (5,2) (5,3) (5,6) 6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种, 所以P (数字之和都是偶数)13=. 【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键. 25.(1)见解析;(2)90°;(3)解题思路见解析. 【解析】 【分析】(1)将线段AD 绕点A 逆时针方向旋转90°,得到线段AE ,连结EC .(2)先判定△ABD ≌△ACE ,即可得到B ACE ∠=∠,再根据45B ACB ACE ∠=∠=∠=︒,即可得出90ECD ACB ACE ∠=∠+∠=︒;(3)连接DE ,由于△ADE 为等腰直角三角形,所以可求2DE =;由60ADF ∠=︒,7.5CAE ∠=︒ ,可求EDC ∠的度数和CDF ∠的度数,从而可知DF 的长;过点A 作AH DF ⊥于点H ,在Rt △ADH 中,由60ADF ∠=︒,AD=1可求AH 、DH 的长;由DF 、DH 的长可求HF 的长;在Rt △AHF 中,由AH 和HF ,利用勾股定理可求AF 的长. 【详解】 解:()1如图,()2Q 线段AD 绕点A 逆时针方向旋转90o ,得到线段AE .DAE 90∠∴=o ,AD AE =, DAC CAE 90∠∠∴+=o . BAC 90∠=o Q ,BAD DAC 90o ∠∠∴+=.BAD CAE ∠∠∴=,在ABD V 和ACE V中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ABD ∴V ≌()ACE SAS V . B ACE ∠∠∴=,ABC QV 中,A 90∠=o ,AB AC =,B ACB ACE 45∠∠∠∴===o . ECD ACB ACE 90∠∠∠∴=+=o ;()3Ⅰ.连接DE ,由于ADE V 为等腰直角三角形,所以可求DE 2=;Ⅱ.由ADF 60o ∠=,CAE 7.5∠=o ,可求EDC ∠的度数和CDF ∠的度数,从而可知DF 的长; Ⅲ.过点A 作AH DF ⊥于点H ,在Rt ADH V 中,由ADF 60o ∠=,AD 1=可求AH 、DH 的长; Ⅳ.由DF 、DH 的长可求HF 的长;Ⅴ.在Rt AHF V 中,由AH 和HF ,利用勾股定理可求AF 的长. 故答案为(1)见解析;(2)90°;(3)解题思路见解析. 【点睛】本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角. 26.(1)14;(2)见解析. 【解析】 【分析】(1)直接根据概率的意义求解即可;(2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案. 【详解】解:(1)李华选择的美食是羊肉泡馍的概率为; (2)列表得: E F G H A AE AF AG AH B BE BF BG BH CCECFCGCHD DE DF DG DH由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,所以李华和王涛选择的美食都是凉皮的概率为=.【点睛】本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力.用到的知识点为:概率=所求情况数与总情况数之比.27.(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.【解析】【分析】(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE 全等,然后得出△COE和△BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO 全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.【详解】(1)∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2) ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.。
【附5套中考模拟试卷】辽宁省葫芦岛市2019-2020学年中考数学模拟试题含解析
辽宁省葫芦岛市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若方程x 2﹣3x ﹣4=0的两根分别为x 1和x 2,则11x+21x 的值是( )A .1B .2C .﹣34D .﹣432.已知a <1,点A (x 1,﹣2)、B (x 2,4)、C (x 3,5)为反比例函数a 1y x-=图象上的三点,则下列结论正确的是( ) A .x 1>x 2>x 3B .x 1>x 3>x 2C .x 3>x 1>x 2D .x 2>x3>x 13.如图,点A 、B 、C 在⊙O 上,∠OAB=25°,则∠ACB 的度数是( )A .135°B .115°C .65°D .50°4.按如图所示的方法折纸,下面结论正确的个数( )①∠2=90°;②∠1=∠AEC ;③△ABE ∽△ECF ;④∠BAE =∠1.A .1 个B .2 个C .1 个D .4 个5.△ABC 的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是( ) A .13,5B .6.5,3C .5,2D .6.5,26.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).A .50°B .40°C .30°D .25°7.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠CAD=22.其中正确的结论有( )A .4个B .3个C .2个D .1个8.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤o o )近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18oB .36oC .41oD .58o9.设x 1,x 2是方程x 2-2x-1=0的两个实数根,则2112x x x x +的值是( ) A .-6B .-5C .-6或-5D .6或510.平面上直线a 、c 与b 相交(数据如图),当直线c 绕点O 旋转某一角度时与a 平行,则旋转的最小度数是( )A .60°B .50°C .40°D .30°11.如图,点A ,B 在反比例函数的图象上,点C ,D 在反比例函数的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为,则k 的值为( )A.4 B.3 C.2 D.12.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为()A.10cm B.20cm C.10πcm D.20πcm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.14.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.15.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.16.已知a,b为两个连续的整数,且a<5<b,则b a=_____.17.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.18.如图,要使△ABC∽△ACD,需补充的条件是_____.(只要写出一种)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?20.(6分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?21.(6分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO =15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)22.(8分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.23.(8分)先化简,再求值:22()11x x xxx x+÷-++,其中x=2.24.(10分)如图,正方形ABCD中,BD为对角线.(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若AB=4,求△DEF的周长.25.(10分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=22时,a=,b=;如图2,当∠ABE=10°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=1.求AF的长.26.(12分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).27.(12分)解不等式组21324x xx x≥⎧⎨≥⎩-①-(-)②请结合题意填空,完成本题的解答(1)解不等式①,得_______.(2)解不等式②,得_______.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为_______________.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】试题分析:找出一元二次方程的系数a ,b 及c 的值,利用根与系数的关系求出两根之和12bx x a+=-与两根之积12c x x a⋅=,然后利用异分母分式的变形,将求出的两根之和x 1+x 2=3与两根之积x 1•x 2=﹣4代入,即可求出12121211x x x x x x ++=⋅=3344=--. 故选C .考点:根与系数的关系 2.B 【解析】 【分析】 根据a 1y x -=的图象上的三点,把三点代入可以得到x 1=﹣12a - ,x 1= 14a -,x 3=15a -,在根据a的大小即可解题 【详解】解:∵点A (x 1,﹣1)、B (x 1,4)、C (x 3,5)为反比例函数a 1y x-=图象上的三点, ∴x 1=﹣12a - ,x 1= 14a -,x 3=15a - , ∵a <1, ∴a ﹣1<0, ∴x 1>x 3>x 1. 故选B . 【点睛】此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a 的大小来判断 3.B 【解析】 【分析】由OA=OB 得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P=12∠AOB ,然后根据圆内接四边形的性质求解. 【详解】解:在圆上取点 P ,连接 PA 、 PB.∵OA=OB ,∴∠OAB=∠OBA=25°,∴∠AOB=180°−2×25°=130°,∴∠P=12∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键. 4.C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.5.D【解析】【分析】根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为512132+-,【详解】解:如下图,∵△ABC的三条边长分别是5,13,12,且52+122=132, ∴△ABC是直角三角形,其斜边为外切圆直径,∴外切圆半径=132=6.5,内切圆半径=512132+-=2,故选D.【点睛】本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键. 6.B【解析】【详解】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.7.A【解析】【分析】①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②正确.由AD∥BC,推出△AEF∽△CBF,推出AEBC=AFCF,由AE=12AD=12BC,推出AFCF=12,即CF=2AF;③正确.只要证明DM垂直平分CF,即可证明;④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有ba=2ab,即2a,可得tan∠CAD=CDAD=2ba=22.【详解】如图,过D作DM∥BE交AC于N.∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFCF.∵AE=12AD=12BC,∴AFCF=12,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC,∴BM=CM,∴CN=NF.∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有ba=2ab,即b=2a,∴tan∠CAD=CDAD=2ba=2.故④正确.故选A.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.8.C【解析】【分析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度x在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C , 【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点. 9.A 【解析】试题解析:∵x 1,x 2是方程x 2-2x-1=0的两个实数根, ∴x 1+x 2=2,x 1∙x 2=-1∴2112x x x x +=2221212121212()24261x x x x x x x x x x ++-+===--. 故选A. 10.C 【解析】 【分析】先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论. 【详解】解:∵∠1=180°﹣100°=80°,a ∥c , ∴∠α=180°﹣80°﹣60°=40°. 故选:C .【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补. 11.B 【解析】 【分析】首先根据A,B 两点的横坐标,求出A,B 两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D 两点的坐标,从而得出AC,BD 的长,根据三角形的面积公式表示出S △OAC ,S △ABD 的面积,再根据△OAC 与△ABD 的面积之和为,列出方程,求解得出答案.把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2, ),∵AC//BD// y轴,∴C(1,K),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.12.A【解析】试题解析:扇形的弧长为:12030180π⨯=20πcm,∴圆锥底面半径为20π÷2π=10cm,故选A.考点:圆锥的计算.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1 2分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是12.故答案为:12.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.15.1:4【解析】∵两个相似三角形对应边上的高的比为1∶4,∴这两个相似三角形的相似比是1:4∵相似三角形的周长比等于相似比,∴它们的周长比1:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比. 16.1【分析】根据已知a b,结合a、b是两个连续的整数可得a、b的值,即可求解.【详解】解:∵a,b为两个连续的整数,且a b,∴a=2,b=3,∴b a=32=1.故答案为1.【点睛】此题考查的是如何根据无理数的范围确定两个有理数的值,,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,17.132°【解析】解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.18.∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB【解析】试题分析:∵∠DAC=∠CAB∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.故答案为∠ACD=∠B 或∠ADC=∠ACB或AD:AC=AC:AB.考点:1.相似三角形的判定;2.开放型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20,A 型献血的人数为50﹣10﹣5﹣23=12(人), 补全表格中的数据如下:故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A 型的概率=1265025=, 3000×625=720, 估计这3000人中大约有720人是A 型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.20.(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆. 【解析】 【分析】(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解; (2)把每月的生产量加起来即可,然后与计划相比较. 【详解】(1)+4-(-5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆), 因为121>120 121-120=1(辆)答:半年内总生产量是121辆.比计划多了1辆. 【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则. 21.37 【解析】试题分析:过O 点作⊥OD AB 交AB 于D 点.构造直角三角形,在Rt ADO △中,计算出,OD AD ,在Rt BDO V 中, 计算出BD .在Rt ADO △中,15,30A AO ∠=︒=Q ,sin15300.2597.77(cm).OD AO ∴=⋅︒=⨯= cos15300.96628.98(cm).AD AO =⋅︒=⨯=又∵在Rt BDO V 中,45.OBC ∠=︒7.77(cm)BD OD ∴==,36.7537(cm)AB AD BD ∴=+=≈.答:AB 的长度为37cm .22.(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分. 【解析】 【分析】(1)由直方图可知A 的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B 的人数为10及总人数可知m 的值;(2)根据平均数、众数和中位数的定义求解即可. 【详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人), m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人, 则样本分知的平均数为955751060630468.225⨯+⨯+⨯+⨯=(分),众数为75分,中位数为第13个数据,即75分. 【点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.【解析】 【分析】先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 【详解】解:原式()22,111x x x x x x x x +⎛⎫+=÷- ⎪+++⎝⎭()22,11x x x xx +=÷++ ()221,1x x x x x ++=⋅+2.x x+= 当2x =时,原式=221 2.2+=+ 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键. 24.(1)见解析;(2)22+1. 【解析】分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF 、DE 和EF 的长度,从而得出答案. 详解:(1)如图,EF 为所作;(2)解:∵四边形ABCD 是正方形,∴∠BDC=15°,CD=BC=1,又∵EF 垂直平分CD , ∴∠DEF=90°,∠EDF=∠EFD=15°, DE=EF=12CD=2,∴22, ∴△DEF 的周长2+1.点睛:本题主要考查的是中垂线的性质,属于基础题型.理解中垂线的性质是解题的关键. 25.(1);(2)2+2=52;(1)AF=2.试题分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为2,2,2,2;(2)猜想:a2+b2=5c2,如图1,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(1)如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=1,AP=PF,在△AEH 和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考点:相似形综合题.26.(1)m=1;(2)点P坐标为(﹣2m,1)或(6m,1).【解析】【分析】(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解程﹣=4,解方程即可求出m的值;(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E (2m,1),点P在x轴上,即可求出点P的坐标.【详解】解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1,经检验,m=1是原方程的解,故m的值是1;(2)设BD与x轴交于点E,∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,∴D(2m,),BD=﹣=,∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∴点P坐标为(﹣2m,1)或(6m,1).【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.27.(1)x≥-1;(2)x≤1;(3)见解析;(4)-1≤x≤1.【解析】【分析】分别解两个不等式,然后根据公共部分确定不等式组的解集,再利用数轴表示解集.【详解】解:(1)x≥-1;(2)x≤1;(3);(4)原不等式组的解集为-1≤x≤1.【点睛】本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
辽宁省葫芦岛市2019-2020学年中考数学一模考试卷含解析
辽宁省葫芦岛市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A .8374y x y x +=⎧⎨-=⎩B .8374x y x y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374y x y x -=⎧⎨+=⎩ 2.m-n 的一个有理化因式是( ) A .m n + B .m n - C .m n + D .m n -3.矩形ABCD 的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D 的坐标为( )A .(5,5)B .(5,4)C .(6,4)D .(6,5) 4.111112233499100++++++++L 的整数部分是( ) A .3B .5C .9D .6 5.下列各数中,相反数等于本身的数是( )A .–1B .0C .1D .26.如图,在⊙O 中,弦AB=CD ,AB ⊥CD 于点E ,已知CE•ED=3,BE=1,则⊙O 的直径是( )A .2B .5C .25D .57.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )8.函数y=4x-中自变量x的取值范围是A.x≥0B.x≥4C.x≤4D.x>4 9.3的相反数是()A.33B.﹣3C.﹣33D.310.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是()A.﹣2 B.23C.2 D.411.已知点M、N在以AB为直径的圆O上,∠MON=x°,∠MAN= y°,则点(x,y)一定在()A.抛物线上B.过原点的直线上C.双曲线上D.以上说法都不对12.下列运算正确的是()A.2a+3a=5a2B.(a3)3=a9C.a2•a4=a8D.a6÷a3=a2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则»BE 的长度为______.14.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=3x在第一象限的图象经过点B,则△OAC 与△BAD 的面积之差S△OAC﹣S△BAD 为_______.15.如图,边长为6cm的正三角形内接于⊙O,则阴影部分的面积为(结果保留π)_____.16.把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为.17.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.18.分解因式: 22a b ab b-+=_________.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.20.(6分)解不等式组:()()3x1x382x11x132⎧-+--<⎪⎨+--≤⎪⎩并求它的整数解的和.21.(6分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程23x x+=的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.22.(8分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)23.(8分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.24.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧 4散文10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.25.(10分)如图,在平面直角坐标系中,直线y x m =-+与x 轴交于点(4,0)A ,与y 轴交于点B ,与函数(0)k y x x=>的图象的一个交点为(3,)C n . (1)求m ,n ,k 的值;(2)将线段AB 向右平移得到对应线段A B '',当点B '落在函数(0)k y x x=>的图象上时,求线段AB 扫过的面积.26.(12分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.27.(12分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A ,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A 型车与B 型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A ,B 两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A 型车与B 型车各多少辆?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.2.B【解析】【分析】找出原式的一个有理化因式即可.【详解】故选B.【点睛】此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.3.B【解析】【分析】由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.【详解】解:∵四边形ABCD是矩形∴AB∥CD,AB=CD,AD=BC,AD∥BC,∵A(1,4)、B(1,1)、C(5,1),∴AB∥CD∥y轴,AD∥BC∥x轴∴点D坐标为(5,4)故选B.【点睛】4.C【解析】﹣1=,∴原式﹣=﹣1+10=1.故选C.5.B【解析】【分析】根据相反数的意义,只有符号不同的数为相反数.【详解】解:相反数等于本身的数是1.故选B.【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,1的相反数是1.6.C【解析】【分析】作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.【详解】解:作OH⊥AB于H,OG⊥CD于G,连接OA,由相交弦定理得,CE•ED=EA•BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE•ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由题意得,四边形HEGO是矩形,∴OH=EG=1,∴⊙O的直径为25,故选C.【点睛】此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.7.C【解析】【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.8.B【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【详解】根据题意得:x﹣1≥0,解得x≥1,则自变量x的取值范围是x≥1.故选B.【点睛】本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.9.B【解析】【分析】一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解.【详解】故选:B.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.10.C【解析】分析:将x=-2代入方程即可求出a的值.详解:将x=-2代入可得:4a-2a-4=0,解得:a=2,故选C.点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.11.B【解析】【分析】由圆周角定理得出∠MON与∠MAN的关系,从而得出x与y的关系式,进而可得出答案.【详解】∵∠MON与∠MAN分别是弧MN所对的圆心角与圆周角,∴∠MAN=12∠MON,∴12y x ,∴点(x,y)一定在过原点的直线上.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.12.B【解析】【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.【详解】A、2a+3a=5a,故此选项错误;B、(a3)3=a9,故此选项正确;C、a2•a4=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【点睛】此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2 3π【解析】试题解析:连接AE,在Rt三角形ADE中,AE=4,AD=2,∴∠DEA=30°,∵AB∥CD,∴∠EAB=∠DEA=30°,∴»BE的长度为:304180π⨯=23π.考点:弧长的计算.14.3 2【解析】【分析】【详解】设△OAC 和△BAD 的直角边长分别为a 、b,则B 点坐标为(a+b,a-b )∵点B 在反比例函数y=3x 在第一象限的图象上, ∴(a+b )(a-b )=a 2-b 2=3∴S △OAC ﹣S △BAD =12a 2-12b 2=32 【点睛】此题主要考查等腰直角三角形的面积求法和反比例函数k 值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k 值的性质.15.(4π﹣33)cm 1【解析】【分析】连接OB 、OC ,作OH ⊥BC 于H ,根据圆周角定理可知∠BOC 的度数,根据等边三角形的性质可求出OB 、OH 的长度,利用阴影面积=S 扇形OBC -S △OBC 即可得答案【详解】:连接OB 、OC ,作OH ⊥BC 于H ,则BH=HC= BC= 3,∵△ABC 为等边三角形,∴∠A=60°,由圆周角定理得,∠BOC=1∠A=110°,∵OB=OC ,∴∠OBC=30°,∴OB=cos OBCBH ∠=13 ,OH=3, ∴阴影部分的面积= 2120(23)π⨯﹣12×6×3=4π﹣33 ,故答案为:(4π﹣3)cm 1.【点睛】本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.16.y=(x﹣3)2+2【解析】【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2).向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x﹣3)2+2,故答案为:y=(x﹣3)2+2.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.17.y=﹣1x+1.【解析】【分析】由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣1,则y=﹣1x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.故答案为y=﹣1x+1.考点:一次函数图象与几何变换.18.【解析】先提取公因式b,再利用完全平方公式进行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)CD的长为23【解析】【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根据30°的性质和勾股定理可求出EF和DF的长,在Rt△CEF 中,根据勾股定理可求出CF的长,从而可求CD的长.【详解】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【点睛】本题考查了全等三角形的判定与性质,平行线的性质,菱形的判定,含30°的直角三角形的性质,勾股定理.证明AD=BC 是解(1)的关键,作EF ⊥CD 于F ,构造直角三角形是解(2)的关键.20.0【解析】分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集. 详解: ,由①去括号得:﹣3x ﹣3﹣x+3<8,解得:x >﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,则不等式组的解集为﹣2<x≤1.点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 21. (1)-2,1;(2)x=3;(3)4m.【解析】【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP 的长为xm ,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1)3220x x x +-=,()220x x x +-=, ()()210x x x +-=所以0x =或20x +=或10x -=10x ∴=,22x =-,31x =;故答案为2-,1;(223x x +=,方程的两边平方,得223x x +=即2230x x --=()()310x x -+=30x ∴-=或10x +=13x ∴=,21x =-,当1x =-时,23111x +==≠-,所以1-不是原方程的解. 所以方程23x x +=的解是3x =;(3)因为四边形ABCD 是矩形,所以90A D ∠=∠=︒,3AB CD m ==设AP xm =,则()8PD x m =-因为10BP CP +=,22BP AP AB =+,22CP CD PD =+ ∴()2298910x x ++-+= ∴ ()2289109x x -+=-+两边平方,得()222891002099x x x -+=-+++整理,得25949x x +=+两边平方并整理,得28160x x -+=即()240x -=所以4x =.经检验,4x =是方程的解.答:AP 的长为4m .【点睛】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.22.54小时 【解析】【分析】过点C 作CD ⊥AB 交AB 延长线于D .先解Rt △ACD 得出CD=AC=40海里,再解Rt △CBD 中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C 处所需的时间.【详解】解:如图,过点C 作CD ⊥AB 交AB 延长线于D .在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).考点:解直角三角形的应用-方向角问题23.(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.24.(1)41(2)15%(3)1 6【解析】【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为×111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P (丙和乙)=212=16. 25.(1)m=4, n=1,k=3.(2)3.【解析】【分析】(1) 把点(4,0)A ,分别代入直线y x m =-+中即可求出m=4,再把(3,)C n 代入直线y x m =-+即可求出n=1.把(3,1)C 代入函数(0)k y x x=>求出k 即可; (2)由(1)可求出点B 的坐标为(0,4),点B‘是由点B 向右平移得到,故点B’的纵坐标为4,把它代入反比例函数解析式即可求出它的横坐标,根据平移的知识可知四边形AA’B’B 是平行四边形,再根据平行四边形的面积计算公式计算即可.【详解】解:(1)把点(4,0)A ,分别代入直线y x m =-+中得:-4+m=0,m=4,∴直线解析式为4y x =-+.把(3,)C n 代入4y x =-+得:n=-3+4=1.∴点C 的坐标为(3,1)把(3,1)代入函数(0)k y x x =>得: 13k = 解得:k=3.∴m=4, n=1,k=3.(2)如图,设点B 的坐标为(0,y )则y=-0+4=4∴点B 的坐标是(0,4)当y=4时,34x= 解得,34x = ∴点B’(34,4) ∵A’,B’是由A,B 向右平移得到,∴四边形AA’B’B 是平行四边形,故四边形AA’B’B的面积=34⨯4=3.【点睛】本题考查了一次函数与反比例函数的交点问题及函数的平移,利用数形结合思想作出图形是解题的关键. 26.解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=82 123=;解法二(列表法):(以下过程同“解法一”)【解析】【分析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;解法二(列表法):0 10 20 300 ﹣﹣10 20 3010 10 ﹣﹣30 4020 20 30 ﹣﹣5030 30 40 50 ﹣﹣从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;考点:列表法与树状图法.【详解】请在此输入详解!27.(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.。
辽宁省葫芦岛市2019-2020学年第五次中考模拟考试数学试卷含解析
辽宁省葫芦岛市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点M 是AB 的中点,若OM =4,AB =6,则BD 的长为( )A .4B .5C .8D .102.如图,在▱ABCD 中,AB =1,AC =42,对角线AC 与BD 相交于点O ,点E 是BC 的中点,连接AE 交BD 于点F .若AC ⊥AB ,则FD 的长为( )A .2B .3C .4D .63.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA′,反比例函数y =k x的图象恰好经过点A′、B ,则k 的值是( )A .9B .133C .16915D .334.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( ) A . B . C . D .5.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A .0.76×104B .7.6×103C .7.6×104D .76×1026.如图,点A ,B 在反比例函数的图象上,点C ,D 在反比例函数的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为,则k 的值为( )A .4B .3C .2D .7.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
2019年辽宁省葫芦岛市中考数学一模试卷答案(word解析版)
2019年辽宁省葫芦岛市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)﹣2.(2分)(2019•北京)首届中国(北京)国际服务贸易交易会(京交会)于2019年6月1日闭幕,本届3.(2分)(2019•荆州)已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于()数学试卷4.(2分)(2019•湘潭)文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输∴输入,则输出的结果为(5.(2分)(2019•自贡)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()6.(2分)(2019•宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),7.(2分)(2019•枣庄)化简的结果是()解:﹣8.(2分)(2019•宿迁)如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()数学试卷9.(2分)(2019•荆门)如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为()822BD=2=2×=210.(2分)(2010•天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是()﹣二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)11.(3分)(2019•葫芦岛一模)已知m=,则m的范围是5<m<6.(﹣)2==数学试卷12.(3分)(2019•贵阳)如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为.A==80==40.故答案为:.13.(3分)(2019•青岛)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为5cm.C==5.14.(3分)(2019•葫芦岛一模)已知点A(m,0)是抛物线y=x2﹣2x﹣1与x轴的一个交点,则代数式2m2﹣4m+2019的值是2019.15.(3分)(2019•厦门)如图,已知∠ABC=90°,AB=πr,BC=,半径为r的⊙O从点A出发,沿A→B→C方向滚动到点C时停止.请你根据题意,在图上画出圆心O运动路径的示意图;圆心O运动的路程是2πr.数学试卷,,===BC=r+r+=216.(3分)(2009•太原)如图,在等腰梯形ABCD中,AD∥BC,BC=4AD=,∠B=45度.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于,2,﹣3.cosB=,=3C=4﹣==2﹣故答案为:,三、解答题(本大题共10个小题;共82分.解答应写出文字说明、证明过程或演算步骤)17.(4分)(2019•定西)计算:|﹣1|﹣2sin30°+(π﹣3.14)0+.角的正弦等于(数学试卷×+1+418.(4分)(2019•河源)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B 的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为(﹣3,﹣2);(2)点A1的坐标为(﹣2,3);(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为π.=π)19.(8分)(2019•临夏州)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到10元购物券,至多可得到50元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.20.(8分)(2019•黑河)6月5日是世界环境日,为了普及环保知识,增强环保意识,某市第一中学举行了“环保知识竞赛”,参赛人数1000人,为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(2)若成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人?(3)若这组被抽查的学生成绩的中位数是80分,请直接写出被抽查的学生中得分为80分的至少有多少人?数学试卷=0.28×21.(8分)(2019•宁德)为配合“书香进校园”活动的开展,学校决定为各班级添置图书柜,原计划用4000元购买若干个书柜,由于市场价格变化,每个单价上涨20元,实际购买时多花了400元,求书柜原来的单价是多少元?=,22.(9分)(2019•本溪)如图,△ABC是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB、BC、CA跑步(小路的宽度不计).观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B在点C的北偏西75°方向上,AC间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(参考数据:≈1.414,≈1.732)BC=200AD=200﹣400+200﹣数学试卷23.(9分)(2019•义乌)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB 的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y 轴正半轴交于点H、G,求线段OG的长.BOA=即可求出BOA=,×=2=1,=n;=2,OG=t=24.(10分)(2019•葫芦岛一模)(1)如图1,在矩形ABCD中,AB=2BC,M是AB的中点.直接写出∠BMD与∠ADM的倍数关系;(2)如图2,若四边形ABCD是平行四边形,AB=2BC,M是AB的中点,过C作CE⊥AD与AD所在直线交于点E.①若∠A为锐角,则∠BME与∠AEM有怎样的倍数关系,并证明你的结论;②当0°<∠A<120°时,上述结论成立;当120°≤∠A<180°时,上述结论不成立.数学试卷25.(10分)(2019•河北)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)由表格中的数据,得,解得x<===3526.(12分)(2019•河北)如图,A(﹣5,0),B(﹣3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.数学试卷==3,或;。
辽宁省葫芦岛市2019-2020学年中考数学模拟试题(3)含解析
辽宁省葫芦岛市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.12B.13C.14D.342.下列实数中,在2和3之间的是()A.πB.2π-C.325D.3283.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE 的度数为()A.56°B.62°C.68°D.78°4.如图,⊙O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是()A.∠DAC=∠DBC=30°B.OA∥BC,OB∥AC C.AB与OC互相垂直D.AB与OC互相平分5.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.6.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A .43B .42C .6D .47.设a ,b 是常数,不等式10x a b+>的解集为15x <,则关于x 的不等式0bx a ->的解集是( ) A .15x > B .15x <- C .15x >- D .15x < 8.在实数0,-π,3,-4中,最小的数是( )A .0B .-πC .3D .-49.计算(﹣3)﹣(﹣6)的结果等于( )A .3B .﹣3C .9D .1810.估计40的值在 ( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间11.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y=k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为( )A .6B .8C .10D .1212.﹣2018的绝对值是( )A .±2018B .﹣2018C .﹣12018D .2018二、填空题:(本大题共6个小题,每小题4分,共24分.)13.新定义[a ,b]为一次函数(其中a≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x 的方程的解为 .14.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.15.不等式组32 132x xx->⎧⎪⎨≤⎪⎩的解是____.16.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.17.如果a+b=2,那么代数式(a﹣2ba)÷a ba-的值是______.18.一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3).若以原点为位似中心,将这个正方形的边长缩小为原来的12,则新正方形的中心的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲8 8 0.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).20.(6分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.21.(6分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a (0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?22.(8分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格: 车型 起步公里数 起步价格 超出起步公里数后的单价 普通燃油型 3 13元 2.3元/公里纯电动型 3 8元 2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.23.(8分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元(1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x 个笔记本需要y 1元,买x 支钢笔需要y 2元;求y 1、y 2关于x 的函数解析式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.24.(10分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF ,(1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.25.(10分)在平面直角坐标系xOy 中,将抛物线21:23G y mx =+m≠03个单位长度后得到抛物线G 2,点A 是抛物线G 2的顶点.(1)直接写出点A的坐标;(2)过点(0,3)且平行于x轴的直线l与抛物线G2交于B,C两点.①当∠BAC=90°时.求抛物线G2的表达式;②若60°<∠BAC<120°,直接写出m的取值范围.26.(12分)如图1,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A、B 分别在x 轴与y 轴上,已知OA=6,OB=1.点 D 为y 轴上一点,其坐标为(0,2),点P 从点 A 出发以每秒 2 个单位的速度沿线段AC﹣CB 的方向运动,当点P 与点 B 重合时停止运动,运动时间为t 秒.(1)当点P 经过点C 时,求直线DP 的函数解析式;(2)如图②,把长方形沿着OP 折叠,点B 的对应点B′恰好落在AC 边上,求点P 的坐标.(3)点P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.27.(12分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可得.【详解】画树状图如下,共4种情况,有1种情况每个路口都是绿灯,所以概率为14.故选C.2.C【解析】【详解】分析:先求出每个数的范围,逐一分析得出选项. 详解:A、3<π<4,故本选项不符合题意;B、1<π−2<2,故本选项不符合题意;C、325,故本选项符合题意;D、328<4,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.3.C【解析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选C.点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.4.C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等边三角形,∴OA=AC=OC=BC=OB,∴四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四边形OACB是平行四边形,又∵OA=OB,∴四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB 是菱形;(4)∵AB与OC互相平分,∴四边形OACB 是平行四边形,又∵OA=OB ,∴四边形OACB 是菱形,即由D 选项中的条件能够判定四边形OACB 是菱形.故选C.5.D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.6.B【解析】【分析】由已知条件可得ABC DAC ~V V ,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B=∠DAC ,∠ACB=∠ACD,所以ABC DAC ~V V ,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC=8,得DC=4,代入可得AC=2, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.7.C【解析】【分析】 根据不等式10x a b +>的解集为x <15 即可判断a,b 的符号,则根据a,b 的符号,即可解不等式bx-a<0 【详解】 解不等式10x a b+>, 移项得:1-x a b> ∵解集为x<15∴1-5a b = ,且a<0∴b=-5a>0,15 15a b=- 解不等式0bx a ->,移项得:bx >a两边同时除以b 得:x >a b , 即x >-15 故选C【点睛】此题考查解一元一次不等式,掌握运算法则是解题关键8.D【解析】【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-1的大小,∵|-π|<|-1|,∴最小的数是-1.故选D .【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.9.A【解析】原式=−3+6=3,故选A10.C【解析】【分析】,可以估算出位于哪两个整数之间,从而可以解答本题.【详解】<<<即6407故选:C.【点睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.11.B【解析】【分析】根据勾股定理得到OA=2234+=5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.【详解】∵点A的坐标为(﹣3,﹣4),∴OA=22+=5,34∵四边形AOCB是菱形,∴AB=OA=5,AB∥x轴,∴B(﹣8,﹣4),∵点E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.12.D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.-=.详解:﹣2018的绝对值是2018,即20182018故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.二、填空题:(本大题共6个小题,每小题4分,共24分.)13..【解析】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数, 得到y=3x+m+2为正比例函数,即m+2=0, 解得:m=-2, 则分式方程为,去分母得:2-(x-1)=2(x-1), 去括号得:2-x+1=2x-2, 解得:x=,经检验x=是分式方程的解考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义. 14.50° 【解析】 【分析】先根据平行线的性质得出∠DEF 的度数,再根据翻折变换的性质得出∠D′EF 的度数,根据平角的定义即可得出结论. 【详解】∵AD ∥BC,∠EFB=65°, ∴∠DEF=65°, 又∵∠DEF=∠D′EF , ∴∠D′EF=65°, ∴∠AED′=50°. 【点睛】本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.15.16x <≤ 【解析】 【分析】分别求出各不等式的解集,再求出其公共解集即可. 【详解】32132x x x >①②-⎧⎪⎨≤⎪⎩解不等式①,得x>1,解不等式②,得x≤1,所以不等式组的解集是1<x≤1,故答案是:1<x≤1.【点睛】考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.3【解析】【分析】先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.【详解】∵四边形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD2268=+=1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案为:3.【点睛】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.17.2【解析】分析:根据分式的运算法则即可求出答案.详解:当a+b=2时,原式=22•a b aa a b--=()()•a b a b aa ab +--=a+b=2故答案为:2点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.18.(34,34)或(﹣34,﹣34).【解析】【分析】分点A、B、C的对应点在第一象限和第三象限两种情况,根据位似变换和正方形的性质解答可得.【详解】如图,①当点A、B、C的对应点在第一象限时,由位似比为1:2知点A′(0,32)、B′(32,0)、C′(32,32),∴该正方形的中心点的P的坐标为(34,34);②当点A、B、C的对应点在第三象限时,由位似比为1:2知点A″(0,-32)、B″(-32,0)、C″(-32,-32),∴此时新正方形的中心点Q的坐标为(-34,-34),故答案为(34,34)或(-34,-34).【点睛】本题主要考查位似变换,解题的关键是熟练掌握位似变换的性质和正方形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)填表见解析;(2)理由见解析;(3)变小.【解析】【分析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.(3)根据方差公式求解:如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.【详解】试题分析:试题解析:解:(1)甲的众数为8,乙的平均数=15(5+9+7+10+9)=8,乙的中位数为9.故填表如下:平均数众数中位数方差甲8 8 8 0.4乙8 9 9 3.2(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小.考点:1.方差;2.算术平均数;3.中位数;4.众数.20.(1)不可能事件;(2).【解析】【详解】试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为21 126.考点:列表法与树状图法.21.(1)甲种服装最多购进75件,(2)见解析.【解析】【分析】(1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【详解】(1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得x≤75答:甲种服装最多购进75件,(2)设总利润为W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1.①当0<a<10时,10-a>0,W随x增大而增大,∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;②当a=10时,所以按哪种方案进货都可以;③当10<a<20时,10-a<0,W随x增大而减小.当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.【点睛】本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键.22.8.2 km【解析】【分析】首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.【详解】解:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解得:x=8.2答:小明家到单位的路程是8.2千米.【点睛】本题考查一元一次方程的应用,找准等量关系是解题关键.23.(1)笔记本单价为14元,钢笔单价为15元;(2)y1=14×0.9x=12.6x,y2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.【解析】(1)设每个文具盒z元,每支钢笔y元,可列方程组得解之得答:每个文具盒14元,每支钢笔15元.(2)由题意知,y1关于x的函数关系式是y1=14×90%x,即y1=12.6x.买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y2=15x:当买10支以上时,超出的部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),即y2=12x+1.(3)因为x>10,所以y2=12x+1.当y1<y2,即12.6x<12x+1时,解得x<2;当y1=y2,即12.6x=12x+1时,解得x=2;当y1>y2,即12.6x>12x+1时,解得x>2.综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;当购买奖品2件时,买文具盒和买钢笔钱数相等;当购买奖品超过2件时,买钢笔省钱.24.(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC .(2)四边形ADCF 是菱形,证明如下: ∵AF ∥BC ,AF=DC ,∴四边形ADCF 是平行四边形. ∵AC ⊥AB ,AD 是斜边BC 的中线, ∴AD=DC .∴平行四边形ADCF 是菱形25.(1),;(2)①y =3-(x 2+9m <<-【解析】 【分析】(1)先求出平移后是抛物线G2的函数解析式,即可求得点A 的坐标;(2)①由(1)可知G2的表达式,首先求出AD 的值,利用等腰直角的性质得出B 的坐标,代入即可得解;②分别求出当∠BAC=60°时,当∠BAC=120°时m 的值,即可得出m 的取值范围. 【详解】(1)∵将抛物线G 1:y =mx 2+m≠0G 2,∴抛物线G 2:y =m (x 2+ ∵点A 是抛物线G 2的顶点.∴点A .(2)①设抛物线对称轴与直线l 交于点D ,如图1所示. ∵点A 是抛物线顶点, ∴AB =AC . ∵∠BAC =90°,∴△ABC 为等腰直角三角形,∴CD =AD∴点C 的坐标为(. ∵点C 在抛物线G 2上,m ()2+解得:3m =-.②依照题意画出图形,如图2所示.同理:当∠BAC=60°时,点C的坐标为(3+1,3);当∠BAC=120°时,点C的坐标为(3+3,3).∵60°<∠BAC<120°,∴点(3+1,3)在抛物线G2下方,点(3+3,3)在抛物线G2上方,∴()()22313233333233 mm⎧+-+>⎪⎨⎪+-+<⎩,解得:33m-<<-.【点睛】此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.26.(1)y=43x+2;(2)y=43x+2;(2)①S=﹣2t+16,②点P的坐标是(103,1);(3)存在,满足题意的P坐标为(6,6)或(6,7+2)或(6,1﹣7.【解析】分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;(2)①当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD 为固定值,表示出高,即可列出S与t的关系式;②设P(m,1),则PB=PB′=m,根据勾股定理求出m的值,求出此时P坐标即可;(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.详解:(1)如图1,∵OA=6,OB=1,四边形OACB 为长方形, ∴C (6,1).设此时直线DP 解析式为y=kx+b , 把(0,2),C (6,1)分别代入,得2610b k b =⎧⎨+=⎩,解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)①当点P 在线段AC 上时,OD=2,高为6,S=6; 当点P 在线段BC 上时,OD=2,高为6+1﹣2t=16﹣2t ,S=12×2×(16﹣2t )=﹣2t+16; ②设P (m ,1),则PB=PB′=m ,如图2,∵OB′=OB=1,OA=6, ∴AB′=22OB OA '-=8, ∴B′C=1﹣8=2, ∵PC=6﹣m ,∴m 2=22+(6﹣m )2,解得m=103则此时点P 的坐标是(103,1); (3)存在,理由为:若△BDP 为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=1﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP12286-7,∴AP1=1﹣7P1(6,1﹣7);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P32286-7,∴AP3=AE+EP37+2,即P3(6,7+2),综上,满足题意的P坐标为(6,6)或(6,7)或(6,1﹣7).点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.27.(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(52,74)、N(32,154);③点Q的坐标为(1,﹣6)或(1,﹣4﹣6).【解析】分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD 是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD 为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.详解:(1)∵y=ax 2﹣2ax ﹣3a=a (x ﹣1)2﹣4a ,∴D (1,﹣4a ).(2)①∵以AD 为直径的圆经过点C ,∴△ACD 为直角三角形,且∠ACD=90°;由y=ax 2﹣2ax ﹣3a=a (x ﹣3)(x+1)知,A (3,0)、B (﹣1,0)、C (0,﹣3a ),则:AC 2=9a 2+9、CD 2=a 2+1、AD 2=16a 2+4由勾股定理得:AC 2+CD 2=AD 2,即:9a 2+9+a 2+1=16a 2+4,化简,得:a 2=1,由a <0,得:a=﹣1,②∵a=﹣1,∴抛物线的解析式:y=﹣x 2+2x+3,D (1,4).∵将△OBE 绕平面内某一点旋转180°得到△PMN ,∴PM ∥x 轴,且PM=OB=1;设M (x ,﹣x 2+2x+3),则OF=x ,MF=﹣x 2+2x+3,BF=OF+OB=x+1;∵BF=2MF ,∴x+1=2(﹣x 2+2x+3),化简,得:2x 2﹣3x ﹣5=0解得:x 1=﹣1(舍去)、x 2=52. ∴M (52,74)、N (32,154). ③设⊙Q 与直线CD 的切点为G ,连接QG ,过C 作CH ⊥QD 于H ,如下图:∵C (0,3)、D (1,4),∴CH=DH=1,即△CHD 是等腰直角三角形,∴△QGD 也是等腰直角三角形,即:QD 2=2QG 2;设Q (1,b ),则QD=4﹣b ,QG 2=QB 2=b 2+4;得:(4﹣b )2=2(b 2+4),化简,得:b 2+8b ﹣8=0,解得:b=﹣4±6; 即点Q 的坐标为(1,426-+1,426--.点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.。
2019年辽宁省葫芦岛市龙港区中考数学模拟试卷(含答案)
2019年辽宁省葫芦岛市龙港区中考数学模拟试卷一.选择题(满分21分,每小题3分)1.的相反数是()A.B.﹣C.D.﹣2.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°4.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<55.在Rt△ABC中,∠C=90°,AC=4,AB=5,则tanA的值是()A.B.C.D.6.一次函数y=kx+b的图象如图,当x<0时,y的取值范围是()A.y>0 B.y<0 C.﹣1<y<0 D.y<﹣17.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD二.填空题(满分21分,每小题3分)8.某天银川市的最低温度是﹣2℃,最高温度是13℃,这一天的温差是________℃.9.在函数中,自变量x的取值范围是________.10.因式分解:9a2﹣12a+4=____________.11.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为_________cm.12.如图,A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,在行驶过程中,这列火车离A地的路程y(km)与行驶时间t(h)之间的函数关系式是_____13.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的_______倍.14.已知圆柱的底面半径为2cm,母线长为3cm,则该圆柱的侧面展开图的面积为_______cm2.三.解答题(共6小题,满分58分)15.(8分)已知y是x的反比例函数,且当x=﹣2时,y=.(1)求这个反比例函数解析式;(2)分别求当x=3和x=﹣时函数y的值.16.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)17.(10分)已知关于x的方程:(2+k)x2+2kx+(k+1)=0.(1)如果此方程只有一个实数根,求k的值;(2)如果此方程有两个实数根,求k的取值范围;(3)如果此方程无实数根,求k的取值范围.18.(10分)在南京地铁二号线某路段铺轨工程中,先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天.请你根据以上信息,就“工作量”或“工作时间”,提出一个用分式方程解决的问题,并写出解答过程.19.(10分)已知,如图,CD 为⊙O 的直径,∠EOD =60°,AE 交⊙O 于点B ,E ,且AB =OC ,求:(1)∠A 的度数;(2)∠AEO 度数.20.(12分)某兴趣小组对部分中小学生去年暑假看电视的时间进行了抽样调查,根据调查的数据绘制了频数、频率分布表和频数分布直方图(小时数取整数).(1)此次调查的样本容量是多少?(2)补全频数、频率分布表和频数分布直方图;(3)请估计1200名中小学生大约有多少学生暑假期间看电视的时间会低于60小时.四.解答题(共3小题,满分24分)21.(7分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC.BC.DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.22.(8分)如图1至图5,⊙O均作无滑动滚动,⊙O1.⊙O2.⊙O3.⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转_______-周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转_______周;若∠ABC=60°,则⊙O在点B处自转________周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转_______周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.23.(9分)全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已称为一项十分紧迫的任务.某地元有沙漠100万公顷,为了了解该地区沙漠面积的变化情况,有关部门进行了连续3年的观察,并将每年年底的观察结果坐了记录(如下表所示),然后根据这些数据描点、连线,绘成曲线图如图所示,发现其连续且成直线状.预计该地区的沙漠面积将继续按此趋势扩大.(1)如果不采取任何措施,那么到第m年底,该地区的沙漠面积将变为多少万公顷?(2)如果在第5年底,采取植树造林等措施,每年改造0.8万公顷沙漠,那么到第几年底,该地区的沙漠面积能减少到95万公顷?五.解答题(共3小题,满分16分)24.(8分)如图,AB为⊙O的直径,点D为⊙O上的一点,在BD的延长线上取点C,使DC=BD,AC与⊙O交于点E,DF⊥AC于点F.求证:(1)DF是⊙O的切线;(2)DB2=CF•AB.25.(8分)唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.(1)观察发现再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E.F是底边AD与BC 的中点,连接EF,在线段EF上找一点P,使BP+AP最短.作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为.(2)实践运用如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+A P的最小值.(3)拓展迁移如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C (0,﹣3)两点,与x轴交于另一点B.①求这条抛物线所对应的函数关系式;②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)26.如图,在某海域内有三个港口A.D.C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,测得港口C在B处的南偏东75°方向上,此时发现船舱漏水,应立即向最近的港口停靠.(1)试判断此时哪个港口离B处最近,说明理由,并求出最近距离.(2)若海水以每小时48吨的速度渗入船内,当船舱渗入的海水总量超过75吨时,船将沉入海中.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?参考答案一.选择题1.解:的相反数是﹣.故选:B.2.解:∵点A(a+1,b﹣2)在第二象限,∴a+1<0,b﹣2>0,解得:a<﹣1,b>2,则﹣a>1,1﹣b<﹣1,故点B(﹣a,1﹣b)在第四象限.故选:D.3.解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.4.解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.5.解:∵∠C=90°,AC=4,AB=5,∴BC==3,∴tanA==,故选:C.6.解:根据图象和数据可知,当x<0即图象在y轴左侧时,y的取值范围是y<﹣1.故选:D.7.解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选:B.二.填空题(共7小题,满分21分,每小题3分)8.解:13﹣(﹣2)=13+2=15(℃).故答案为:15.9.解:根据题意,知,解得:x≥4,故答案为:x≥4.10.解:9a2﹣12a+4=(3a﹣2)2.11.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.12.解:∵A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,∴离A地的路程y(km)与行驶时间t(h)之间的函数关系式是y=200+120t(t≥0).故答案为:y=200+120t(t≥0).13.解:∵此六边形是正六边形,∴∠1=180°﹣120°=60°,∵AD=CD=BC,∴△BCD为等边三角形,∴BD=AC,∴△ABC是直角三角形又BC=AC,∴∠2=30°,∴AB=BC=CD,同理可得,经过2次后,所得到的正六边形是原正六边形边长()2=3倍,∴经过10次后,所得到的正六边形是原正六边形边长的()10=243倍.故答案为:243.14.解:圆柱沿一条母线剪开,所得到的侧面展开图是一个矩形,它的长是底面圆的周长,即4π,宽为母线长为3cm,所以它的面积为12πcm2.三.解答题(共6小题,满分58分)15.解:(1)设反比例函数的解析式为y=(k 为常数且k≠0),将x=﹣2,y=代入y=,得k=﹣1,所以,所求函数解析式为y=﹣;(2)当x=3时,y=﹣;当x=﹣时,y=3.16.解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BCtan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AHsin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.17.解:(1)当方程是一次方程时,方程只有一个实数根,此时2+k=0,解得k=﹣2当k=﹣2时,2k=﹣4≠0,即方程只有一个实数根,k的为:k=﹣2时;(2)若方程有两个实数根,需满足:△=(2k)2﹣4(2+k)(k+1)≥0,且2+k≠0解得:k≤﹣且k≠﹣2;即方程有两个实数根,k的取值范围为:k≤﹣且k≠﹣2;(3)当△<0时,方程无实数根,即(2k)2﹣4(2+k)(k+1)<0,解得:k>﹣.即方程无实数根,k的取值范围为:k>﹣.18.解:本题答案不惟一,下列解法供参考.解法一问题:甲工程队单独完成这项任务需要多少天?(2分)解:设甲工程队单独完成这项任务需要x天,则乙工程队单独完成这项任务需要(x+2)天.根据题意,得(4分),解得x1=4,x2=﹣1(舍去),∴x=4(5分)答:甲工程队单独完成这项任务需要4天.(6分)解法二问题:乙工程队单独完成这项任务需要多少天?(2分)解:设乙工程队单独完成这项任务需要x天,则乙工程队单独完成这项任务需要(x﹣2)天.根据题意,得,(4分)解得x1=6,x2=1(舍去),∴x=6.(5分)答:乙工程队单独完成这项任务需要6天.(6分)19.解:(1)连接OB,∵∠EOD=60°,∵AB=OC,OC=OB=OE,∴∠AOB=∠A,∠OBE=∠E,∵∠OBE=∠A+∠AOB=2∠A,∴∠E=2∠A,∵∠EOD=∠A+∠E,∴3∠A=60°,∴∠A=20°;(2)∵AB=OC=OB,∴∠OBE=2∠A=40°,∵OB=OE,∴∠AEO=∠EBO=40°.20.解:(1)由频率分布表可知,此次调查的样本容量是100;(2)如图:(3)1200×(0.2+0.25+0.3)=1200×=900,即1200名中小学生大约有900学生暑假期间看电视的时间会低于60小时.四.解答题(共3小题,满分24分)21.解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).22.解:实践应用(1)2;.;.(2).拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O自转了=1(周).∴⊙O共自转了(+1)周.(2)∵多边形外角和等于360°∴所做运动和三角形的一样:(+1)周.23.解:(1)设沙漠的面积与时间x的函数关系式为y=kx+b,由题意,得,解得:,解得:y=0.2x+100当x=m时,y=0.2m+100.答:第m年底,该地区的沙漠面积将变为(0.2m+100)万公顷;(2)当x=5时,y=0.2×5+100=101(万公顷).设需要a年,该地区的沙漠面积能减少到95万公顷,由题意,得101﹣0.8a=95,解得:a=7.5.答:需要7.5年,该地区的沙漠面积能减少到95万公顷.五.解答题(共3小题,满分16分)24.证明(1)如图1,连接OD,∵OA=OB,BD=DC,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)如图2,连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∴AD⊥BC,又∵BD=DC,∴AB=AC,∵DF⊥AC,∴∠DFC=90°,∴∠DFC=∠ADC=90°,又∵∠C=∠C,∴△CDF∽△CAD,∴,即:CD2=CF•AC.又∵BD=CD,AB=AC,∴DB2=CF•AB.25.解:(1)在等腰梯形ABCD中,∵AD∥BC,且∠BAD=∠D=120°,∴∠ABC=60°;在△ADC中,AD=CD=2,∠D=120°,所以∠DAC=∠DCA=30°;∴∠BAC=∠BAD﹣∠DAC=120°﹣30°=90°,即△BAC为直角三角形;在Rt△BAC中,∠ABC=60°,∠BCA=90°﹣60°=30°,AB=2,所以AC=AB•tan60°=2;由于B.C关于直线EF对称,根据阅读资料可知BP+AP的最小值为线段AC的长,即2.(2)如图(2),作点A关于直径MN的对称点C,连接BC,则BC与直径MN的交点为符合条件的点P,BC的长为BP+AP的最小值;连接OA,则∠AON=2∠AMN=60°;∵点B是的中点,∴∠BON=∠AON=30°;∵A.C关于直径MN对称,∴=,则∠CON=∠AON=60°;∴∠BOC=∠BON+∠CON=90°,又OC=OB=MN=,在等腰Rt△BOC中,BC=OB=;即:BP+AP的最小值为.(3)①依题意,有:,解得∴抛物线的解析式:y=x2﹣2x﹣3;②取点C关于抛物线对称轴x=1的对称点D,根据抛物线的对称性,得:D(2,﹣3);连接AD,交抛物线的对称轴于点M,如图(3)﹣②;设直线AD的解析式为y=kx+b,代入A(﹣1,0)、D(2,﹣3),得:,解得∴直线AD:y=﹣x﹣1,M(1,﹣2);∴△ACM的周长最小值:lmin=AC+AD=+3.26.解:(1)连接AC.AD.BC.BD,过B作BP⊥AC于点P.由已知得∠BAD=90°,∠BAC=30°,AB=3×25=75(海里),从而(海里).∵港口C在B处的南偏东75°方向上,∴∠CBP=45°.在等腰Rt△CBP中,(海里),∴BC<AB.∵△BAD是Rt△,∴BD>AB.综上,可得港口C离B点位置最近,为海里.(2)设由B驶向港口C船的速度为每小时x海里,则据题意有,解不等式,得(海里).答:此船应以速度至少不低于每小时海里,才能保证船在抵达港口前不会沉没.。
辽宁省葫芦岛市龙港区2019年中考数学模拟试卷
2020年辽宁省葫芦岛市龙港区中考数学模拟试卷一.选择题(满分21分,每小题3分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣52.下列运算正确的是()A.(x﹣y)2=x2﹣y2 B.x2•x4=x6C.D.(2x2)3=6x63.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣14.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.5.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20° B.30° C.40° D.70°6.若x=﹣4,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<67.关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根 B.有两相等实数根C.无实数根 D.不能确定二.填空题(满分21分,每小题3分)8.某天银川市的最低温度是﹣2℃,最高温度是13℃,这一天的温差是________℃.9.在函数中,自变量x的取值范围是________.10.因式分解:9a2﹣12a+4=____________.11.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为_________cm.12.如图,A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,在行驶过程中,这列火车离A地的路程y(km)与行驶时间t(h)之间的函数关系式是_____13.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的_______倍.14.已知圆柱的底面半径为2cm,母线长为3cm,则该圆柱的侧面展开图的面积为_______cm2.三.解答题(共6小题,满分58分)15.(8分)已知y是x的反比例函数,且当x=﹣2时,y=.(1)求这个反比例函数解析式;(2)分别求当x=3和x=﹣时函数y的值.16.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC 的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH 长米,HF 长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)17.(10分)已知关于x的方程:(2+k)x2+2kx+(k+1)=0.(1)如果此方程只有一个实数根,求k的值;(2)如果此方程有两个实数根,求k的取值范围;(3)如果此方程无实数根,求k的取值范围.18.(10分)在南京地铁二号线某路段铺轨工程中,先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天.请你根据以上信息,就“工作量”或“工作时间”,提出一个用分式方程解决的问题,并写出解答过程.19.(10分)已知,如图,CD为⊙O的直径,∠EOD=60°,AE交⊙O于点B,E,且AB=OC,求:(1)∠A的度数;(2)∠AEO度数.20.(12分)某兴趣小组对部分中小学生去年暑假看电视的时间进行了抽样调查,根据调查的数据绘制了频数、频率分布表和频数分布直方图(小时数取整数).看电视时间0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5以上合计(小时)频数20 30 15 10 100频率0.2 0.25 0.1 1(1)此次调查的样本容量是多少?(2)补全频数、频率分布表和频数分布直方图;(3)请估计1200名中小学生大约有多少学生暑假期间看电视的时间会低于60小时.四.解答题(共3小题,满分24分)21.(7分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC.BC.DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.22.(8分)如图1至图5,⊙O均作无滑动滚动,⊙O1.⊙O2.⊙O3.⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转_______-周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转_______周;若∠ABC=60°,则⊙O在点B处自转________周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B ﹣C滚动到⊙O4的位置,⊙O自转_______周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.23.(9分)全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已称为一项十分紧迫的任务.某地元有沙漠100万公顷,为了了解该地区沙漠面积的变化情况,有关部门进行了连续3年的观察,并将每年年底的观察结果坐了记录(如下表所示),然后根据这些数据描点、连线,绘成曲线图如图所示,发现其连续且成直线状.预计该地区的沙漠面积将继续按此趋势扩大.观察时间x 该地区沙漠面积比原有面积增加的数量y第一年底0.2万公顷第二年底0.4万公顷第三年底0.6万公顷(1)如果不采取任何措施,那么到第m年底,该地区的沙漠面积将变为多少万公顷?(2)如果在第5年底,采取植树造林等措施,每年改造0.8万公顷沙漠,那么到第几年底,该地区的沙漠面积能减少到95万公顷?五.解答题(共3小题,满分16分)24.(8分)如图,AB为⊙O的直径,点D为⊙O上的一点,在BD的延长线上取点C,使DC =BD,AC与⊙O交于点E,DF⊥AC于点F.求证:(1)DF是⊙O的切线;(2)DB2=CF•AB.25.(8分)唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.(1)观察发现再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E.F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为.(2)实践运用如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+A P的最小值.(3)拓展迁移如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C (0,﹣3)两点,与x轴交于另一点B.①求这条抛物线所对应的函数关系式;②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)26.如图,在某海域内有三个港口A.D.C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,测得港口C在B处的南偏东75°方向上,此时发现船舱漏水,应立即向最近的港口停靠.(1)试判断此时哪个港口离B处最近,说明理由,并求出最近距离.(2)若海水以每小时48吨的速度渗入船内,当船舱渗入的海水总量超过75吨时,船将沉入海中.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?参考答案一.选择题1.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.2.解:∵(x﹣y)2=x2﹣2xy+y2,故选项A错误;∵x2•x4=x6,故选项B正确;∵=3,故选项C错误;∵(2x2)3=8x6,故选项D错误;故选:B.3.解:将0.056用科学记数法表示为5.6×10﹣2,故选:B.4.解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.5.解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.6.解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.7.解:△=(k+3)2﹣4×k=k2+2k+9=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,所以方程有两个不相等的实数根.故选:A.二.填空题(共7小题,满分21分,每小题3分)8.解:13﹣(﹣2)=13+2=15(℃).故答案为:15.9.解:根据题意,知,解得:x≥4,故答案为:x≥4.10.解:9a2﹣12a+4=(3a﹣2)2.11.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.12.解:∵A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,∴离A地的路程y(km)与行驶时间t(h)之间的函数关系式是y=200+120t(t≥0).故答案为:y=200+120t(t≥0).13.解:∵此六边形是正六边形,∴∠1=180°﹣120°=60°,∵AD=CD=BC,∴△BCD为等边三角形,∴BD=AC,∴△ABC是直角三角形又BC=AC,∴∠2=30°,∴AB=BC=CD,同理可得,经过2次后,所得到的正六边形是原正六边形边长()2=3倍,∴经过10次后,所得到的正六边形是原正六边形边长的()10=243倍.故答案为:243.14.解:圆柱沿一条母线剪开,所得到的侧面展开图是一个矩形,它的长是底面圆的周长,即4π,宽为母线长为3cm,所以它的面积为12πcm2.三.解答题(共6小题,满分58分)15.解:(1)设反比例函数的解析式为y=(k 为常数且 k≠0),将x=﹣2,y=代入y=,得 k=﹣1,所以,所求函数解析式为y=﹣;(2)当x=3时,y=﹣;当x=﹣时,y=3.16.解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BCtan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AHsin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.17.解:(1)当方程是一次方程时,方程只有一个实数根,此时2+k=0,解得k=﹣2当k=﹣2时,2k=﹣4≠0,即方程只有一个实数根,k的为:k=﹣2时;(2)若方程有两个实数根,需满足:△=(2k)2﹣4(2+k)(k+1)≥0,且2+k≠0解得:k≤﹣且k≠﹣2;即方程有两个实数根,k的取值范围为:k≤﹣且k≠﹣2;(3)当△<0时,方程无实数根,即(2k)2﹣4(2+k)(k+1)<0,解得:k>﹣.即方程无实数根,k的取值范围为:k>﹣.18.解:本题答案不惟一,下列解法供参考.解法一问题:甲工程队单独完成这项任务需要多少天?(2分)解:设甲工程队单独完成这项任务需要x天,则乙工程队单独完成这项任务需要(x+2)天.根据题意,得(4分),解得x1=4,x2=﹣1(舍去),∴x=4(5分)答:甲工程队单独完成这项任务需要4天.(6分)解法二问题:乙工程队单独完成这项任务需要多少天?(2分)解:设乙工程队单独完成这项任务需要x天,则乙工程队单独完成这项任务需要(x﹣2)天.根据题意,得,(4分)解得x1=6,x2=1(舍去),∴x=6.(5分)答:乙工程队单独完成这项任务需要6天.(6分)19.解:(1)连接OB,∵∠EOD=60°,∵AB=OC,OC=OB=OE,∴∠AOB=∠A,∠OBE=∠E,∵∠OBE=∠A+∠AOB=2∠A,∴∠E=2∠A,∵∠EOD=∠A+∠E,∴3∠A=60°,∴∠A=20°;(2)∵AB=OC=OB,∴∠OBE=2∠A=40°,∵OB=OE,∴∠AEO=∠EBO=40°.20.解:(1)由频率分布表可知,此次调查的样本容量是100;(2)如图:看电视时间0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5以上合计(小时)频数20 25 30 15 10 100 频率0.2 0.25 0.3 0.15 0.1 1(3)1200×(0.2+0.25+0.3)=1200×=900,即1200名中小学生大约有900学生暑假期间看电视的时间会低于60小时.四.解答题(共3小题,满分24分)21.解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).22.解:实践应用(1)2;.;.(2).拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O自转了=1(周).∴⊙O共自转了(+1)周.(2)∵多边形外角和等于360°∴所做运动和三角形的一样:(+1)周.23.解:(1)设沙漠的面积与时间x的函数关系式为y=kx+b,由题意,得,解得:,解得:y=0.2x+100当x=m时,y=0.2m+100.答:第m年底,该地区的沙漠面积将变为(0.2m+100)万公顷;(2)当x=5时,y=0.2×5+100=101(万公顷).设需要a年,该地区的沙漠面积能减少到95万公顷,由题意,得101﹣0.8a=95,解得:a=7.5.答:需要7.5年,该地区的沙漠面积能减少到95万公顷.五.解答题(共3小题,满分16分)24.证明(1)如图1,连接OD,∵OA=OB,BD=DC,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)如图2,连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∴AD⊥BC,又∵BD=DC,∴AB=AC,∵DF⊥AC,∴∠DFC=90°,∴∠DFC=∠ADC=90°,又∵∠C=∠C,∴△CDF∽△CAD,∴,即:CD2=CF•AC.又∵BD=CD,AB=AC,∴DB2=CF•AB.25.解:(1)在等腰梯形ABCD中,∵AD∥BC,且∠BAD=∠D=120°,∴∠ABC=60°;在△ADC中,AD=CD=2,∠D=120°,所以∠DAC=∠DCA=30°;∴∠BAC=∠BAD﹣∠DAC=120°﹣30°=90°,即△BAC为直角三角形;在Rt△BAC中,∠ABC=60°,∠BCA=90°﹣60°=30°,AB=2,所以AC=AB•tan60°=2;由于B.C关于直线EF对称,根据阅读资料可知BP+AP的最小值为线段AC的长,即2.(2)如图(2),作点A关于直径MN的对称点C,连接BC,则BC与直径MN的交点为符合条件的点P,BC的长为BP+AP的最小值;连接OA,则∠AON=2∠AMN=60°;∵点B是的中点,∴∠BON=∠AON=30°;∵A.C关于直径MN对称,∴=,则∠CON=∠AON=60°;∴∠BOC=∠BON+∠CON=90°,又OC=OB=MN=,在等腰Rt△BOC中,BC=OB=;即:BP+AP的最小值为.(3)①依题意,有:,解得∴抛物线的解析式:y=x2﹣2x﹣3;②取点C关于抛物线对称轴x=1的对称点D,根据抛物线的对称性,得:D(2,﹣3);连接AD,交抛物线的对称轴于点M,如图(3)﹣②;设直线AD的解析式为y=kx+b,代入A(﹣1,0)、D(2,﹣3),得:,解得∴直线AD:y=﹣x﹣1,M(1,﹣2);∴△ACM的周长最小值:lmin=AC+AD=+3.26.解:(1)连接AC.AD.BC.BD,过B作BP⊥AC于点P.由已知得∠BAD=90°,∠BAC=30°,AB=3×25=75(海里),从而(海里).∵港口C在B处的南偏东75°方向上,∴∠CBP=45°.在等腰Rt△CBP中,(海里),∴BC<AB.∵△BAD是Rt△,∴BD>AB.综上,可得港口C离B点位置最近,为海里.(2)设由B驶向港口C船的速度为每小时x海里,则据题意有,解不等式,得(海里).答:此船应以速度至少不低于每小时海里,才能保证船在抵达港口前不会沉没.21。
辽宁省葫芦岛市2019-2020学年九年级数学中考模拟试卷(含答案)
辽宁省葫芦岛市2019-2020学年九年级数学中考模拟试卷(含答案)一、单选题1.-3 的相反数是()A. B. 3 C. - D. 3【答案】 D【考点】相反数及有理数的相反数2.下列运算中, 正确的是( )A. (x2)3=x5B. x3·x3=x6C. 3x2+2x3=5x5D. (x+y)2=x2+y2【答案】B【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,幂的乘方3.已知,则的值等于().A. B. C. D.【答案】B【考点】代数式求值,单项式除以单项式4.下列四个函数中,自变量的取值范围为≥1的是()A. B. C. D.【答案】A【考点】函数自变量的取值范围5.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等边三角形、等腰梯形、菱形、正五边形等四种方案,你认为符合条件的是()A. 等边三角形B. 等腰梯形C. 菱形D. 正五边形【答案】C【考点】轴对称图形,中心对称及中心对称图形6.地球上的海洋面积约为361000000 千米2,用科学记数法表示为()A. 3.61×106千米2B. 3.61×107千米2C. 3.61×108千米2D. 3.61×109千米2【答案】C【考点】科学记数法—表示绝对值较大的数7.已知一多边形的每一个内角都等于150°,则这个多边形是()A. 十二边形B. 十边形C. 八边形D. 六边形【答案】A【考点】多边形内角与外角8.如图,在中,,,那么以为圆心、6为半径的⊙与直线的位置关系是()A. 相交B. 相切C. 相离D. 不能确定【答案】A【考点】圆与圆的位置关系9.“十•一”黄金周期间,某风景区在7天假期中,共接待游客的人数(单位:万人)统计如下表:其中众数和中位数分别是()A. 1.2,2B. 2,2.5C. 2,2D. 1.2,2.5【答案】C【考点】中位数,众数10.随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费按原标准降低了元后,再次下调了25%,现在的收费标准是每分钟元,则原收费标准每分钟为()A. 元B. 元C. 元D. 元【答案】B【考点】一元一次方程的其他应用11.水是地球上极宝贵的资源.某城市为了节约用水,实行了价格调控,限定每月每户用水量不超过6吨时,每吨价格为2.25元;当用水量超过6吨时,超过部分每吨价格为3.25元.则按此调控价格的每户每月水费(元)与用水量(吨)的函数图像大致为()A. B.C. D.【答案】B【考点】分段函数,通过函数图像获取信息并解决问题12.如图,△ABC中,∠ACB=90°,∠B=30°,AC=1,过点C作CD1⊥AB于D1,过D1作D1 D2⊥BC于D2,过D2作D2 D3⊥AB于D3,这样继续作下去,……,线段D n D n+1能等于(n为正整数)()A. B. C. D.【答案】 D【考点】解直角三角形,探索图形规律二、填空题13.计算: =________.【答案】【考点】二次根式的混合运算14.如图,直线∥,直线分别交、于、两点,,垂足为.若,则________°.【答案】65【考点】垂线,平行线的性质15.方程组的解是________.【答案】,【考点】解二元一次方程组,因式分解法解一元二次方程16.已知:如图,、是⊙的割线,,,.则=________ .【答案】8【考点】圆内接四边形的性质,相似三角形的判定与性质17.一个学生荡秋千,秋千链子的长度为,当秋千向两边摆动时,摆角(指摆到最高位置时的秋千与铅垂线的夹角)恰好是,则它摆至最高位置时与其摆至最低位置时的高度之差为________m.(结果可以保留根号)【答案】【考点】垂径定理的应用18.某市出租车收费标准如下:起租费:5元;基价里程:3公里;等时费:每等5分钟加收1公里的租价;租价:每公里1.20元.星期天,某同学从家出发坐出租车去火车站接一朋友回家.如图表示该同学离家距离与离家时间的关系如图所示,则该同学最少应付车费________元.(注:1公里=1千米)【答案】17【考点】通过函数图像获取信息并解决问题三、解答题19.已知x=3是方程的一个根,求k的值和方程其余的根.【答案】解:把x=3代入,得+ =1,解得k=﹣3.将k=﹣3代入原方程得:,方程两边都乘以x(x+2),得10x﹣3(x+2)=x(x+2),整理得x2﹣5x+6=0,解得x1=2,x2=3.检验:x=2时,x(x+2)=8≠0∴x=2是原方程的根.x=3时,x(x+2)=15≠0∴x=3是原方程的根.∴原方程的根为x1=2,x2=3.故k=3,方程其余的根为x=2【考点】分式方程的解,解分式方程20.“三等分一个角”是数学史上一个著名问题,今天人们已经知道,仅用圆规和直尺是不可能作出的.在探索中,有人曾利用过如下的图形.其中,四边形ABCD是矩形,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF= ∠F,你能证明∠ECB= ∠ACB吗?【答案】证明:∵,又∵,∴.∵∥,∴,∴,∴【考点】三角形的外角性质,矩形的性质21.某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%.(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?【答案】(1)解:由题意知成本价为:%=1200(元).设这款彩屏手机的新单价为每部元.根据题意,得1200+20%•80% =80% ,解得. 故新单价为每部1875元所以,让利后的实际销售价每部为:1875 80%=1500(元(2)解:由题意,得≥200000,解得≥ .因此,今年至少应销售这款彩屏手机667部,才能使按新单价让利销售的利润不低于20万元.【考点】一元一次不等式的特殊解,一元一次不等式的应用,一元二次方程的实际应用-销售问题22.如图1,有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积是________,边长是________.(2)把10个小正方形组成的图形纸(如图2),剪开并拼成正方形.①请在4×4方格图内画出这个正方形.②以小正方形的边长为单位长度画一条数轴,并在数轴上画出表示- 的点.(3)这种研究和解决问题的方式,主要体现了的数学思想方法.A. 数形结合B. 代入C. 换元D. 归纳【答案】(1)5;(2)解:①10个小正方形组成的图形纸剪开并拼成正方形的边长为,如图所示:②表示- 的点如图所示:(3)A【考点】实数在数轴上的表示,勾股定理,正方形的性质23.行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得数据如下表:(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;(2)观察图象.估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5 m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?【答案】(1)解:依题意描点连线即可(2)解:设抛物线为,再根据表格中所给数据可得方程,解出a,b,c即(3)解:当y=46.5时,代入函数关系式解出x的值,根据题意进行取舍即可【考点】待定系数法求二次函数解析式24.如图①,Rt△ABC中,∠ABC=90°,∠CAB的平分线交BC于点O,以O为圆心,OB长为半径作⊙O.(1)求证:⊙O与AC相切.(2)若AB=6,AC=10.①求⊙O的半径;②如图②,延长AO交⊙O于点D,过点D作⊙O的切线,分别交AC、AB的延长线于E、F,试求EF的长.【答案】(1)证明:∵∠ABC=90°,∠CAB的平分线是AO,∴点O到AB和到AC的距离相等,∴点O到AC的距离等于圆O的半径,∴⊙O与AC相切(2)解:①作OM⊥AC于点M,如图所示,∵AB=6,AC=10,∠ABC=90°,∴BC=8,AB=AM=6,∴MC=4,OC=8-OB,设圆O的半径是r,∴r2+42=(8-r)2解得,r=3,即⊙O的半径是3;②∵AB=6,BO=3,∠ABO=90°,∴AO=3 ,∴AD=3+3 ,∵AD⊥EF,∴∠ADF=90°,∴∠ADF=∠ABO=90°,∵∠DAF=∠BAO,∴△DAF∽△BAO,∴,即,解得,DF= ,∵AD平分∠EAF,AD⊥EF,∴EF=2DF=3+3【考点】切线的判定,圆的综合题。
2019年辽宁省葫芦岛市龙港区中考数学模拟试卷(含答案)
2019年辽宁省葫芦岛市龙港区中考数学模拟试卷一.选择题(满分21分,每小题3分)1.的相反数是( )A.B.﹣C.D.﹣2.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在( )A.第一象限B.第二象限C.第三象限D.第四象限3.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为( )A.40°B.50°C.80°D.100°4.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是( )A.k≤5B.k≤5,且k≠1C.k<5,且k≠1D.k<55.在Rt△ABC中,∠C=90°,AC=4,AB=5,则tanA的值是( )A.B.C.D.6.一次函数y=kx+b的图象如图,当x<0时,y的取值范围是( )A.y>0B.y<0C.﹣1<y<0D.y<﹣17.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中( )A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD二.填空题(满分21分,每小题3分)8.某天银川市的最低温度是﹣2℃,最高温度是13℃,这一天的温差是________℃.9.在函数中,自变量x的取值范围是________.10.因式分解:9a2﹣12a+4=____________.11.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为_________cm.12.如图,A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,在行驶过程中,这列火车离A地的路程y(km)与行驶时间t(h)之间的函数关系式是_____13.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的_______倍.14.已知圆柱的底面半径为2cm,母线长为3cm,则该圆柱的侧面展开图的面积为_______cm2.三.解答题(共6小题,满分58分)15.(8分)已知y是x的反比例函数,且当x=﹣2时,y=.(1)求这个反比例函数解析式;(2)分别求当x=3和x=﹣时函数y的值.16.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH 长米,HF 长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.果保留根号)(2)求篮板底部点E到地面的距离.(结17.(10分)已知关于x的方程:(2+k)x2+2kx+(k+1)=0.(1)如果此方程只有一个实数根,求k的值;(2)如果此方程有两个实数根,求k的取值范围;(3)如果此方程无实数根,求k的取值范围.18.(10分)在南京地铁二号线某路段铺轨工程中,先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天.请你根据以上信息,就“工作量”或“工作时间”,提出一个用分式方程解决的问题,并写出解答过程.19.(10分)已知,如图,CD为⊙O的直径,∠EOD=60°,AE交⊙O于点B,E,且AB=OC,求:(1)∠A的度数;度数.(2)∠AEO20.(12分)某兴趣小组对部分中小学生去年暑假看电视的时间进行了抽样调查,根据调查的数据绘制了频数、频率分布表和频数分布直方图(小时数取整数).看电视时间0.5~20.520.5~40.540.5~60.560.5~80.580.5以上合计(小时)频数20301510100频率0.20.250.11(1)此次调查的样本容量是多少?(2)补全频数、频率分布表和频数分布直方图;(3)请估计1200名中小学生大约有多少学生暑假期间看电视的时间会低于60小时.四.解答题(共3小题,满分24分)21.(7分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC.BC.DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.22.(8分)如图1至图5,⊙O均作无滑动滚动,⊙O1.⊙O2.⊙O3.⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转_______-周;若AB=l,则⊙O自转 周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转_______周;若∠ABC=60°,则⊙O在点B处自转________周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转_______周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.23.(9分)全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已称为一项十分紧迫的任务.某地元有沙漠100万公顷,为了了解该地区沙漠面积的变化情况,有关部门进行了连续3年的观察,并将每年年底的观察结果坐了记录(如下表所示),然后根据这些数据描点、连线,绘成曲线图如图所示,发现其连续且成直线状.预计该地区的沙漠面积将继续按此趋势扩大.观察时间x该地区沙漠面积比原有面积增加的数量y第一年底0.2万公顷第二年底0.4万公顷第三年底0.6万公顷(1)如果不采取任何措施,那么到第m年底,该地区的沙漠面积将变为多少万公顷?(2)如果在第5年底,采取植树造林等措施,每年改造0.8万公顷沙漠,那么到第几年底,该地区的沙漠面积能减少到95万公顷?五.解答题(共3小题,满分16分)24.(8分)如图,AB为⊙O的直径,点D为⊙O上的一点,在BD的延长线上取点C,使DC=BD,AC与⊙O交于点E,DF⊥AC于点F.求证:(1)DF是⊙O的切线;(2)DB2=CF•AB.25.(8分)唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.(1)观察发现再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E.F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为 .(2)实践运用如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+A P的最小值.(3)拓展迁移如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.①求这条抛物线所对应的函数关系式;②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)26.如图,在某海域内有三个港口A.D.C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,测得港口C在B处的南偏东75°方向上,此时发现船舱漏水,应立即向最近的港口停靠.(1)试判断此时哪个港口离B处最近,说明理由,并求出最近距离.(2)若海水以每小时48吨的速度渗入船内,当船舱渗入的海水总量超过75吨时,船将沉入海中.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?一.选择题1.解:的相反数是﹣.故选:B.2.解:∵点A(a+1,b﹣2)在第二象限,∴a+1<0,b﹣2>0,解得:a<﹣1,b>2,则﹣a>1,1﹣b<﹣1,故点B(﹣a,1﹣b)在第四象限.故选:D.3.解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.4.解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.5.解:∵∠C=90°,AC=4,AB=5,∴BC==3,∴tanA==,故选:C.6.解:根据图象和数据可知,当x<0即图象在y轴左侧时,y的取值范围是y<﹣1.故选:D.7.解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.二.填空题(共7小题,满分21分,每小题3分)8.解:13﹣(﹣2)=13+2=15(℃).故答案为:15.9.解:根据题意,知,解得:x≥4,故答案为:x≥4.10.解:9a2﹣12a+4=(3a﹣2)2.11.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.12.解:∵A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,∴离A地的路程y(km)与行驶时间t(h)之间的函数关系式是y=200+120t(t≥0).故答案为:y=200+120t(t≥0).13.解:∵此六边形是正六边形,∴∠1=180°﹣120°=60°,∵AD=CD=BC,∴△BCD为等边三角形,∴BD=AC,∴△ABC是直角三角形又BC=AC,∴∠2=30°,∴AB=BC=CD,同理可得,经过2次后,所得到的正六边形是原正六边形边长()2=3倍,∴经过10次后,所得到的正六边形是原正六边形边长的()10=243倍.故答案为:243.14.解:圆柱沿一条母线剪开,所得到的侧面展开图是一个矩形,它的长是底面圆的周长,即4π,宽为母线长为3cm,所以它的面积为12πcm2.三.解答题(共6小题,满分58分)15.解:(1)设反比例函数的解析式为y=(k 为常数且k≠0),将x=﹣2,y=代入y=,得 k=﹣1,所以,所求函数解析式为y=﹣;(2)当x=3时,y=﹣;当x=﹣时,y=3.16.解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BCtan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AHsin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.17.解:(1)当方程是一次方程时,方程只有一个实数根,此时2+k=0,解得k=﹣2当k=﹣2时,2k=﹣4≠0,即方程只有一个实数根,k的为:k=﹣2时;(2)若方程有两个实数根,需满足:△=(2k)2﹣4(2+k)(k+1)≥0,且2+k≠0解得:k≤﹣且k≠﹣2;即方程有两个实数根,k的取值范围为:k≤﹣且k≠﹣2;(3)当△<0时,方程无实数根,即(2k)2﹣4(2+k)(k+1)<0,解得:k>﹣.即方程无实数根,k的取值范围为:k>﹣.18.解:本题答案不惟一,下列解法供参考.解法一问题:甲工程队单独完成这项任务需要多少天?(2分)解:设甲工程队单独完成这项任务需要x天,则乙工程队单独完成这项任务需要(x+2)天.根据题意,得(4分),解得x1=4,x2=﹣1(舍去),∴x=4(5分)答:甲工程队单独完成这项任务需要4天.(6分)解法二问题:乙工程队单独完成这项任务需要多少天?(2分)解:设乙工程队单独完成这项任务需要x天,则乙工程队单独完成这项任务需要(x﹣2)天.根据题意,得,(4分)解得x1=6,x2=1(舍去),∴x=6.(5分)答:乙工程队单独完成这项任务需要6天.(6分)19.解:(1)连接OB,∵∠EOD=60°,∵AB=OC,OC=OB=OE,∴∠AOB=∠A,∠OBE=∠E,∵∠OBE=∠A+∠AOB=2∠A,∴∠E=2∠A,∵∠EOD=∠A+∠E,∴3∠A=60°,∴∠A=20°;(2)∵AB=OC=OB,∴∠OBE=2∠A=40°,∵OB=OE,∴∠AEO=∠EBO=40°.20.解:(1)由频率分布表可知,此次调查的样本容量是100;(2)如图:看电视时间(小时)0.5~20.520.5~40.540.5~60.560.5~80.580.5以上 合计频数2025301510100频率0.20.250.30.150.11(3)1200×(0.2+0.25+0.3)=1200×=900,即1200名中小学生大约有900学生暑假期间看电视的时间会低于60小时.四.解答题(共3小题,满分24分)21.解:(1)∵二次函数y =ax2+bx﹣3a 经过点A (﹣1,0)、C (0,3),∴根据题意,得,解得,∴抛物线的解析式为y =﹣x2+2x+3.(2)由y =﹣x2+2x+3=﹣(x﹣1)2+4得,D 点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).22.解:实践应用(1)2;.;.(2).拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O自转了=1(周).∴⊙O共自转了(+1)周.(2)∵多边形外角和等于360°∴所做运动和三角形的一样:(+1)周.23.解:(1)设沙漠的面积与时间x的函数关系式为y=kx+b,由题意,得,解得:,解得:y=0.2x+100当x=m时,y=0.2m+100.答:第m年底,该地区的沙漠面积将变为(0.2m+100)万公顷;(2)当x=5时,y=0.2×5+100=101(万公顷).设需要a年,该地区的沙漠面积能减少到95万公顷,由题意,得101﹣0.8a=95,解得:a=7.5.答:需要7.5年,该地区的沙漠面积能减少到95万公顷.五.解答题(共3小题,满分16分)24.证明(1)如图1,连接OD,∵OA=OB,BD=DC,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)如图2,连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∴AD⊥BC,又∵BD=DC,∴AB=AC,∵DF⊥AC,∴∠DFC=90°,∴∠DFC=∠ADC=90°,又∵∠C=∠C,∴△CDF∽△CAD,∴,即:CD2=CF•AC.又∵BD=CD,AB=AC,∴DB2=CF•AB.25.解:(1)在等腰梯形ABCD中,∵AD∥BC,且∠BAD=∠D=120°,∴∠ABC=60°;在△ADC中,AD=CD=2,∠D=120°,所以∠DAC=∠DCA=30°;∴∠BAC=∠BAD﹣∠DAC=120°﹣30°=90°,即△BAC为直角三角形;在Rt△BAC中,∠ABC=60°,∠BCA=90°﹣60°=30°,AB=2,所以AC=AB•tan60°=2;由于B.C关于直线EF对称,根据阅读资料可知BP+AP的最小值为线段AC的长,即2.(2)如图(2),作点A关于直径MN的对称点C,连接BC,则BC与直径MN的交点为符合条件的点P,BC 的长为BP+AP的最小值;连接OA,则∠AON=2∠AMN=60°;∵点B是的中点,∴∠BON=∠AON=30°;∵A.C关于直径MN对称,∴=,则∠CON=∠AON=60°;∴∠BOC=∠BON+∠CON=90°,又OC=OB=MN=,在等腰Rt△BOC中,BC=OB=;即:BP+AP的最小值为.(3)①依题意,有:,解得∴抛物线的解析式:y=x2﹣2x﹣3;②取点C关于抛物线对称轴x=1的对称点D,根据抛物线的对称性,得:D(2,﹣3);连接AD,交抛物线的对称轴于点M,如图(3)﹣②;设直线AD的解析式为y=kx+b,代入A(﹣1,0)、D(2,﹣3),得:,解得∴直线AD:y=﹣x﹣1,M(1,﹣2);∴△ACM的周长最小值:lmin=AC+AD=+3.26.解:(1)连接AC.AD.BC.BD,过B作BP⊥AC于点P.由已知得∠BAD=90°,∠BAC=30°,AB=3×25=75(海里),从而(海里).∵港口C在B处的南偏东75°方向上,∴∠CBP=45°.在等腰Rt△CBP中,(海里),∴BC<AB.∵△BAD是Rt△,∴BD>AB.综上,可得港口C离B点位置最近,为海里.(2)设由B驶向港口C船的速度为每小时x海里,则据题意有,解不等式,得(海里).答:此船应以速度至少不低于每小时海里,才能保证船在抵达港口前不会沉没.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年辽宁省葫芦岛市龙港区中考数学模拟试卷一.选择题(满分21分,每小题3分)1.的相反数是()A.B.﹣C.D.﹣2.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40° B.50° C.80° D.100°4.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<55.在Rt△ABC中,∠C=90°,AC=4,AB=5,则tanA的值是()A.B.C.D.6.一次函数y=kx+b的图象如图,当x<0时,y的取值范围是()A.y>0 B.y<0 C.﹣1<y<0 D.y<﹣17.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD二.填空题(满分21分,每小题3分)8.某天银川市的最低温度是﹣2℃,最高温度是13℃,这一天的温差是________℃.9.在函数中,自变量x的取值范围是________.10.因式分解:9a2﹣12a+4=____________.11.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为_________cm.12.如图,A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,在行驶过程中,这列火车离A地的路程y(km)与行驶时间t(h)之间的函数关系式是_____13.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的_______倍.14.已知圆柱的底面半径为2cm,母线长为3cm,则该圆柱的侧面展开图的面积为_______cm2.三.解答题(共6小题,满分58分)15.(8分)已知y是x的反比例函数,且当x=﹣2时,y=.(1)求这个反比例函数解析式;(2)分别求当x=3和x=﹣时函数y的值.16.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)17.(10分)已知关于x的方程:(2+k)x2+2kx+(k+1)=0.(1)如果此方程只有一个实数根,求k的值;(2)如果此方程有两个实数根,求k的取值范围;(3)如果此方程无实数根,求k的取值范围.18.(10分)在南京地铁二号线某路段铺轨工程中,先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天.请你根据以上信息,就“工作量”或“工作时间”,提出一个用分式方程解决的问题,并写出解答过程.19.(10分)已知,如图,CD为⊙O的直径,∠EOD=60°,AE交⊙O于点B,E,且AB=OC,求:(1)∠A 的度数;(2)∠AEO度数.20.(12分)某兴趣小组对部分中小学生去年暑假看电视的时间进行了抽样调查,根据调查的数据绘制了频数、频率分布表和频数分布直方图(小时数取整数).0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5以上合计看电视时间(小时)频数20 30 15 10 100频率0.2 0.25 0.1 1(1)此次调查的样本容量是多少?(2)补全频数、频率分布表和频数分布直方图;(3)请估计1200名中小学生大约有多少学生暑假期间看电视的时间会低于60小时.四.解答题(共3小题,满分24分)21.(7分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC.BC.DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.22.(8分)如图1至图5,⊙O均作无滑动滚动,⊙O1.⊙O2.⊙O3.⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转_______-周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转_______周;若∠ABC=60°,则⊙O在点B处自转________周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转_______周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.23.(9分)全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已称为一项十分紧迫的任务.某地元有沙漠100万公顷,为了了解该地区沙漠面积的变化情况,有关部门进行了连续3年的观察,并将每年年底的观察结果坐了记录(如下表所示),然后根据这些数据描点、连线,绘成曲线图如图所示,发现其连续且成直线状.预计该地区的沙漠面积将继续按此趋势扩大.观察时间x 该地区沙漠面积比原有面积增加的数量y第一年底0.2万公顷第二年底0.4万公顷第三年底0.6万公顷(1)如果不采取任何措施,那么到第m年底,该地区的沙漠面积将变为多少万公顷?(2)如果在第5年底,采取植树造林等措施,每年改造0.8万公顷沙漠,那么到第几年底,该地区的沙漠面积能减少到95万公顷?五.解答题(共3小题,满分16分)24.(8分)如图,AB为⊙O的直径,点D为⊙O上的一点,在BD的延长线上取点C,使DC=BD,AC与⊙O 交于点E,DF⊥AC于点F.求证:(1)DF是⊙O的切线;(2)DB2=CF•AB.25.(8分)唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.(1)观察发现再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E.F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为.(2)实践运用如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+A P的最小值.(3)拓展迁移如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.①求这条抛物线所对应的函数关系式;②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)26.如图,在某海域内有三个港口A.D.C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,测得港口C在B处的南偏东75°方向上,此时发现船舱漏水,应立即向最近的港口停靠.(1)试判断此时哪个港口离B处最近,说明理由,并求出最近距离.(2)若海水以每小时48吨的速度渗入船内,当船舱渗入的海水总量超过75吨时,船将沉入海中.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?参考答案一.选择题1.解:的相反数是﹣.故选:B.2.解:∵点A(a+1,b﹣2)在第二象限,∴a+1<0,b﹣2>0,解得:a<﹣1,b>2,则﹣a>1,1﹣b<﹣1,故点B(﹣a,1﹣b)在第四象限.故选:D.3.解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.4.解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.5.解:∵∠C=90°,AC=4,AB=5,∴BC==3,∴tanA==,故选:C.6.解:根据图象和数据可知,当x<0即图象在y轴左侧时,y的取值范围是y<﹣1.故选:D.7.解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选:B.二.填空题(共7小题,满分21分,每小题3分)8.解:13﹣(﹣2)=13+2=15(℃).故答案为:15.9.解:根据题意,知,解得:x≥4,故答案为:x≥4.10.解:9a2﹣12a+4=(3a﹣2)2.11.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.12.解:∵A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,∴离A地的路程y(km)与行驶时间t(h)之间的函数关系式是y=200+120t(t≥0).故答案为:y=200+120t(t≥0).13.解:∵此六边形是正六边形,∴∠1=180°﹣120°=60°,∵AD=CD=BC,∴△BCD为等边三角形,∴BD=AC,∴△ABC是直角三角形又BC=AC,∴∠2=30°,∴AB=BC=CD,同理可得,经过2次后,所得到的正六边形是原正六边形边长()2=3倍,∴经过10次后,所得到的正六边形是原正六边形边长的()10=243倍.故答案为:243.14.解:圆柱沿一条母线剪开,所得到的侧面展开图是一个矩形,它的长是底面圆的周长,即4π,宽为母线长为3cm,所以它的面积为12πcm2.三.解答题(共6小题,满分58分)15.解:(1)设反比例函数的解析式为y=(k 为常数且 k≠0),将x=﹣2,y=代入y=,得 k=﹣1,所以,所求函数解析式为y=﹣;(2)当x=3时,y=﹣;当x=﹣时,y=3.16.解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BCtan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AHsin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.17.解:(1)当方程是一次方程时,方程只有一个实数根,此时2+k=0,解得k=﹣2当k=﹣2时,2k=﹣4≠0,即方程只有一个实数根,k的为:k=﹣2时;(2)若方程有两个实数根,需满足:△=(2k)2﹣4(2+k)(k+1)≥0,且2+k≠0解得:k≤﹣且k≠﹣2;即方程有两个实数根,k的取值范围为:k≤﹣且k≠﹣2;(3)当△<0时,方程无实数根,即(2k)2﹣4(2+k)(k+1)<0,解得:k>﹣.即方程无实数根,k的取值范围为:k>﹣.18.解:本题答案不惟一,下列解法供参考.解法一问题:甲工程队单独完成这项任务需要多少天?(2分)解:设甲工程队单独完成这项任务需要x天,则乙工程队单独完成这项任务需要(x+2)天.根据题意,得(4分),解得x1=4,x2=﹣1(舍去),∴x=4(5分)答:甲工程队单独完成这项任务需要4天.(6分)解法二问题:乙工程队单独完成这项任务需要多少天?(2分)解:设乙工程队单独完成这项任务需要x天,则乙工程队单独完成这项任务需要(x﹣2)天.根据题意,得,(4分)解得x1=6,x2=1(舍去),∴x=6.(5分)答:乙工程队单独完成这项任务需要6天.(6分)19.解:(1)连接OB,∵∠EOD=60°,∵AB=OC,OC=OB=OE,∴∠AOB=∠A,∠OBE=∠E,∵∠OBE=∠A+∠AOB=2∠A,∴∠E=2∠A,∵∠EOD=∠A+∠E,∴3∠A=60°,∴∠A=20°;(2)∵AB=OC=OB,∴∠OBE=2∠A=40°,∵OB=OE,∴∠AEO=∠EBO=40°.20.解:(1)由频率分布表可知,此次调查的样本容量是100;(2)如图:0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5以上合计看电视时间(小时)频数20 25 30 15 10 1001频率0.2 0.25 0.3 0.15 0.1(3)1200×(0.2+0.25+0.3)=1200×=900,即1200名中小学生大约有900学生暑假期间看电视的时间会低于60小时.四.解答题(共3小题,满分24分)21.解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).22.解:实践应用(1)2;.;.(2).拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O自转了=1(周).∴⊙O共自转了(+1)周.(2)∵多边形外角和等于360°∴所做运动和三角形的一样:(+1)周.23.解:(1)设沙漠的面积与时间x的函数关系式为y=kx+b,由题意,得,解得:,解得:y=0.2x+100当x=m时,y=0.2m+100.答:第m年底,该地区的沙漠面积将变为(0.2m+100)万公顷;(2)当x=5时,y=0.2×5+100=101(万公顷).设需要a年,该地区的沙漠面积能减少到95万公顷,由题意,得101﹣0.8a=95,解得:a=7.5.答:需要7.5年,该地区的沙漠面积能减少到95万公顷.五.解答题(共3小题,满分16分)24.证明(1)如图1,连接OD,∵OA=OB,BD=DC,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)如图2,连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∴AD⊥BC,又∵BD=DC,∴AB=AC,∵DF⊥AC,∴∠DFC=90°,∴∠DFC=∠ADC=90°,又∵∠C=∠C,∴△CDF∽△CAD,∴,即:CD2=CF•AC.又∵BD=CD,AB=AC,∴DB2=CF•AB.25.解:(1)在等腰梯形ABCD中,∵AD∥BC,且∠BAD=∠D=120°,∴∠ABC=60°;在△ADC中,AD=CD=2,∠D=120°,所以∠DAC=∠DCA=30°;∴∠BAC=∠BAD﹣∠DAC=120°﹣30°=90°,即△BAC为直角三角形;在Rt△BAC中,∠ABC=60°,∠BCA=90°﹣60°=30°,AB=2,所以AC=AB•tan60°=2;由于B.C关于直线EF对称,根据阅读资料可知BP+AP的最小值为线段AC的长,即2.(2)如图(2),作点A关于直径MN的对称点C,连接BC,则BC与直径MN的交点为符合条件的点P,BC 的长为BP+AP的最小值;连接OA,则∠AON=2∠AMN=60°;∵点B是的中点,∴∠BON=∠AON=30°;∵A.C关于直径MN对称,∴=,则∠CON=∠AON=60°;∴∠BOC=∠BON+∠CON=90°,又OC=OB=MN=,在等腰Rt△BOC中,BC=OB=;即:BP+AP的最小值为.(3)①依题意,有:,解得∴抛物线的解析式:y=x2﹣2x﹣3;②取点C关于抛物线对称轴x=1的对称点D,根据抛物线的对称性,得:D(2,﹣3);连接AD,交抛物线的对称轴于点M,如图(3)﹣②;设直线AD的解析式为y=kx+b,代入A(﹣1,0)、D(2,﹣3),得:,解得∴直线AD:y=﹣x﹣1,M(1,﹣2);∴△ACM的周长最小值:lmin=AC+AD=+3.26.解:(1)连接AC.AD.BC.BD,过B作BP⊥AC于点P.由已知得∠BAD=90°,∠BAC=30°,AB=3×25=75(海里),从而(海里).∵港口C在B处的南偏东75°方向上,∴∠CBP=45°.在等腰Rt△CBP中,(海里),∴BC<AB.∵△BAD是Rt△,∴BD>AB.综上,可得港口C离B点位置最近,为海里.(2)设由B驶向港口C船的速度为每小时x海里,则据题意有,解不等式,得(海里).答:此船应以速度至少不低于每小时海里,才能保证船在抵达港口前不会沉没.。