中断、定时器编程实验
单片机实验-外部中断、计数器定时器
1)用单次脉冲申请中断INT0,在中断处理程序中对输出信号进行反转。
ORG 0000HLJMP STARTORG 0003HLJMP INT0START:CLR P1.0MOV TCON, #01HMOV IE, #81HLJMP $INT0:PUSH PSWCPL P1.0POP PSWRETIEND结果:按一下单脉冲小灯亮,再按一下,小灯灭接线:INT0接单脉冲P1.0接个小灯2)用单次脉冲申请中断INT1,在中断处理程序中实现8个小灯左移点亮1次。
ORG 0000HLJMP STARTORG 0013HLJMP INT1START:MOV TCON,#04HMOV IE,#84HCLR PX1MOV A,#01HSJMP $INT1:MOV R1,#8LOOP:MOV P1,ALCALL DELAYRL ADJNZ R1,LOOPRETIDELAY:MOV R6,#200DELAY1:MOV R7,#125DELAY2:DJNZ R7,DELAY2DJNZ R6,DELAY1RETEND结果:按一下单脉冲,8个小灯左移点亮一次接线:INT1接单脉冲P1口接8个小灯3)将8051计数器T0,按计数器模式和方式1工作,对P3.4(T0)引脚进行单脉冲计数,并将其数值按二进制在P1口驱动LED灯上显示出来。
ORG 0000HSTART:MOV TMOD,#05HMOV TH0,#0MOV TL0,#0SETB TR0LOOP:MOV P1,TL0LJMP LOOPEND结果:P1口与四个小灯相连,按单脉冲的次数在四个小灯上显示接线:(P3.4)T0接单脉冲P1.0到P1.4接4个小灯4)用CPU内部定时器T0中断方式计时,实现每1秒钟输出状态发生一次反转。
ORG 0000HLJMP STARTORG 000BHLJMP INTSTART: MOV TMOD,#01HMOV B,#0AH;即10,设循环次数10次。
定时器中断实验报告
实验三运用定时中断方法控制P1口亮灯实验报告一、实验目的1学习内部定时/计数器的使用2学习定时中断处理程序的编程方法二、实验预备知识1.P1口是准双向口,可以定义为输入,也可以定义为输出2.本实验中延时子程序采用指令循环来实现。
3.延时时间的计算:延时时间=机器周期×指令所需机器周期数×循环次数其中循环次数可以采用多重循环来实现三、实验内容程序如下:一、外部中断选择边沿触发方式控制灯的状态ORG 00HLJMP MAINORG 03HLJMP INTERRUPTORG 30HMAIN: SETB EX0SETB IT0SETB EAMOV A,#00HMOV P1,ASJMP $INTERRUPT: INC AMOV P1,ARETI二、用定时器定时方式控制灯的状态 ORG 0000HLJMP MAINORG 000BHLJMP DISPLAYORG 0030HMAIN:MOV IE,#82HMOV TMOD,#01HMOV P1,#01HMOV TH0,#9EHMOV TL0,#58HMOV R7,#10SETB TR0SJMP$DISPLAY:MOV TH0,#9EHMOV TL0,#58HDJNZ R7,LOOPMOV A,P1RL AMOV P1,AMOV R7,#10LOOP:RETI三、实验心得及体会对于中断的设置用到P3口的第二功能,第一个实验中,我所设置的触发方式为边沿触发,中断输入的管脚应该为P3.2即外部中断0输入,因此给外加脉冲时应该给到P3.2。
第一次因未分清触发所给管脚导致脉冲加入时无反应。
编写中断及初始化程序时,中断地址的开辟要提前在主程序之前给出,以实现执行中断时指针的转移。
做有关定时程序之前要首先弄清楚晶振的大小,以确定一个机器周期的时间,在这次试验中,试验箱所用晶振为6MHZ,一个机器周期的时间为2us,总计数时间可以达到131ms,但是无法满足0.5s的时间要求,所以用R7预置循环次数,显得尤为重要。
中断实验实验报告
中断实验实验报告本实验是关于中断的学习和实验。
我们需要掌握中断的概念、分类、使用方法、实现过程等知识,并通过实际操作来理解中断的工作原理。
实验环境:硬件:STM32F103C8T6开发板、OLED显示屏、按键开关软件:Keil5、ST-LINK调试工具实验过程:1、准备工作首先,我们需要在Keil中新建一个STM32F103C8T6项目,然后将要使用到的头文件和驱动程序添加到项目中。
2、了解中断中断是指当CPU执行某个程序时,由于硬件或软件的干预而打断原来的程序执行,转而执行指定的中断服务程序(ISR),完成相应的工作后再回到被打断的程序。
中断可以提高系统响应速度,增强系统的可靠性和稳定性。
中断可分为外部中断和内部中断。
外部中断是由硬件引脚上的信号产生的中断请求。
内部中断是由软件产生的中断请求,例如软件中断、定时器中断等。
3、编写程序首先,我们要在程序中使能系统滴答定时器(SysTick)。
SysTick是STM32系统内置的一个定时器,可以在一定的时间周期内产生一次中断请求。
在这里,我们将SysTick的中断周期设置为1秒,以便后续实验中查看效果。
然后,我们编写一个中断服务程序,用来处理按键开关产生的中断请求。
当按键按下时,将在OLED屏幕上显示按键按下的次数,并通过串口向PC端发送按键按下的消息。
需要注意的是,为避免中断服务程序中使用延时函数(例如HAL_Delay),我们在程序中使用了定时器来延时。
最后,我们需要在程序中启用外部中断,以便可以检测到按键开关的中断请求。
在此实验中,我们使用了外部中断1,其对应的引脚为PA1。
4、实验结果当按键按下时,OLED屏幕上的数字会自动加1,并通过串口向PC端发送按键按下的消息。
可以看到,此实验中使用的中断机制可以在不占用CPU资源的情况下,实现对按键事件的响应和处理。
通过这次实验,我们对中断有了更深入的认识,了解了中断的工作原理、分类、使用方法和实现过程,掌握了在STM32中使用中断的具体操作方法。
实验五 中断与定时(计数)器实验(Keil)
实验五中断与定时/计数器实验一、实验目的1.了解单片机中断与定时器工作原理,掌握中断与定时器程序结构;2.掌握在µVision环境中调试中断与定时器程序的方法。
二、实验仪器和设备Keil软件;THKSCM-2综合实验装置;三、实验原理及实验内容1.示例及相关设置(1)建立一个文件夹:lx51。
(2)利用菜单File的New选项进入编辑界面,输入下面的源文件,以lx51.asm文件名存盘到lx51文件夹中。
ORG 0000HLJMP MAINORG 0003HMOV P2,ARL ARETIORG 0040HMAIN:MOV SP,#5FHMOV A,#0FEHSETB EASETB EX0SETB IT0SJMP $END(3)在lx51文件夹下建立新工程,以文件名lx51存盘(工程的扩展名系统会自动添加)。
(4)在Project菜单的下拉选项中,单击Opt ions for Target ‘Target1’,在弹出的窗口中要完成一下设置:○1单片机芯片选择A T89C51选择完器件,按“确定”后会弹出一个提示信息框,提示“Copy Startup Code to Project Folder and Add File to Project?”,选择“是”。
○2晶振频率设为11.0592MHz。
○3Output标签下的Create HEX File前小框中要打钩。
○4在Debug标签选择Use Simulator(软件模拟)。
(5)在Project菜单的下拉选项中,单击build Target 选项完成汇编,生成目标文件(.HEX)。
按F5运行程序。
(6)在P3窗口的P3.2位单击鼠标(模拟INT0引脚信号),观察P2窗口变化。
(7)修改程序,使之适合字节数大于8的中断服务情况。
(8)利用单片机最小系统板演示该程序的运行情况。
2.示例及相关设置(1)建立一个文件夹:lx52。
(2)利用菜单File的New选项进入编辑界面,输入下面的源文件,以lx52.asm文件名存盘到lx52文件夹中。
中断及定时器实验报告
一、实验目的1. 理解中断和定时器的基本概念及工作原理。
2. 掌握51单片机中断系统和定时器的配置方法。
3. 学会使用中断和定时器实现特定功能,如延时、计数等。
4. 培养动手实践能力和问题解决能力。
二、实验原理中断是计算机系统中的一种机制,允许CPU在执行程序过程中,暂停当前程序,转去执行另一个具有更高优先级的程序。
51单片机具有5个中断源,包括两个外部中断(INT0、INT1)、两个定时器中断(定时器0、定时器1)和一个串行口中断。
定时器是51单片机内部的一种计数器,可以用于产生定时中断或实现定时功能。
51单片机有两个定时器,即定时器0和定时器1。
定时器可以工作在模式0、模式1、模式2和模式3。
三、实验内容及步骤1. 实验内容一:外部中断实验(1)实验目的:掌握外部中断的使用方法,实现按键控制LED灯的亮灭。
(2)实验步骤:- 使用Keil for 8051编译器创建项目。
- 根据电路原理图连接电路。
- 编写程序,配置外部中断,实现按键控制LED灯的亮灭。
2. 实验内容二:定时器中断实验(1)实验目的:掌握定时器中断的使用方法,实现LED灯闪烁。
(2)实验步骤:- 使用Keil for 8051编译器创建项目。
- 根据电路原理图连接电路。
- 编写程序,配置定时器中断,实现LED灯闪烁。
3. 实验内容三:定时器与外部中断结合实验(1)实验目的:掌握定时器与外部中断结合使用的方法,实现按键控制LED灯闪烁频率。
(2)实验步骤:- 使用Keil for 8051编译器创建项目。
- 根据电路原理图连接电路。
- 编写程序,配置定时器中断和外部中断,实现按键控制LED灯闪烁频率。
四、实验结果与分析1. 外部中断实验:成功实现了按键控制LED灯的亮灭。
当按下按键时,LED灯亮;松开按键时,LED灯灭。
2. 定时器中断实验:成功实现了LED灯闪烁。
LED灯每隔一定时间闪烁一次,闪烁频率可调。
3. 定时器与外部中断结合实验:成功实现了按键控制LED灯闪烁频率。
定时器中断程序设计实验
定时器中断程序设计实验定时器中断程序设计实验简介定时器中断是嵌入式系统中的常见应用之一,通过配置定时器的相关寄存器,可以定时产生中断信号,从而实现定时功能。
本文档将介绍定时器中断的基本概念和在实验中如何设计和实现定时器中断程序。
一、定时器中断的概念定时器中断是通过硬件定时器产生的中断信号,可以用于在嵌入式系统中实现定时功能。
定时器中断的原理是定时器内部的计数器自动递增,并在计数到一个特定值时产生中断信号。
通过配置定时器的相关寄存器,可以设置定时器的计数范围、计数速度和中断触发条件等参数。
二、定时器中断的实验设计步骤以下是一个基本的定时器中断程序设计实验的步骤:1. 确定定时器的类型和工作模式根据实际需求和硬件平台的支持情况,选择合适的定时器类型和工作模式。
常见的定时器类型包括定时器/计数器和看门狗定时器,常见的工作模式包括定时模式和计数模式。
2. 配置定时器的相关寄存器根据定时器的类型和工作模式,配置定时器的相关寄存器。
主要包括计数范围、计数速度和中断触发条件等参数的设置。
3. 初始化中断控制器如果使用的嵌入式系统具有中断控制器,需要初始化中断控制器,并使能相应的中断通道。
4. 编写中断服务程序通过注册中断处理函数,并在其中编写中断服务程序。
中断服务程序主要包括对中断标志位的清除、中断处理、中断函数返回等操作。
5. 启动定时器配置完成后,启动定时器开始计数。
定时器将根据配置的参数自动递增,并在计数到设定的特定值时产生中断信号。
6. 整合定时器中断功能到主程序在主程序中,可以使用定时器中断提供的功能来实现定时任务。
可以通过在中断服务程序中设置标志位,并在主循环中检测该标志位来执行相应的任务。
三、实验注意事项在设计和实现定时器中断程序时,需要注意以下事项:1. 根据实际需求进行定时器的配置,确保定时器的参数设置合理。
2. 在中断服务程序中应尽量减少对全局变量和共享资源的访问,以避免竞态条件和数据不一致等问题的发生。
实验三定时器及外部中断实验
实验三定时器及外部中断实验一、实验目的1)熟悉VC5416的定时器工作原理。
2)掌握VC5416定时器的编程控制方法。
3)学会使用定时器的中断方式来控制程序执行方法。
4)掌握外部中断的编程控制方法,理解DSP对于中断的响应的过程。
5)了解并学习混合编程的实现方法。
二、实验设备1)计算机一套,DSP硬件仿真器一台,实验箱一台。
2)CCS4.1-CCS5.5软件版本。
3)源程序及链接命令文件见:D:\ EXPER\EXP3目录下的.asm 、.cmd、.C 和.lib文件。
三、实验步骤(一)、连接仿真器,将仿真器插接到C5416的JTAG接口上,另一头插接到电脑的USB接口上,因为仿真器是金属外壳,容易和箱子内部的电路触碰造成短路,从而对实验箱造成损坏,这个要特别注意,也不允许在机箱打开电源情况下插拔仿真器。
(二)、实验箱配置及连线:C5416DSP核心板上的SW1的1-6的开始设置为off off off off on on(上电后工做于1/2分频器方式,其它实验也按照此设置不变,我试验过改为PLL*2方式仿真器就连接不上了),SW2设置为on on on on。
将DSP核心板所在试验箱引脚连线区的BCANRX(C54的XF)引脚,与指示灯连线区LAMP的L1连接起来,这样就可以通过XF控制这个L1这个方光管的亮灭了。
将DSP核心板所在试验箱引脚连线区的INT0(C54的外部中断0输入)引脚与单脉冲按键PAULSE的P-(按下输出负脉冲)连接起来,这样按下按键时,就会给DSP的INT0中断引脚发送一个负脉冲。
连线照片见程序目录中的图片文件。
(二)、打开实验箱电源开关。
(三)、使用给定的文件,按照实验一的步骤建立实验项目,例如工作区目录为D:\ exp3 中建立一个exp3的实验项目,添加所有的给定的文件。
(四)、仿真调试方法1、通过菜单Project- Build All 对项目进行编译和链接,如下:如果有错误会出现在problem 窗口中。
定时器计数器中断综合实验
报告成绩:教师签字:批改日期:评语:学生实验报告课程名称单片机原理及接口技术姓名实验名称定时器/计数器、中断综合实验班级实验目的掌握51系列单片机中断系统及定时器的工作原理及使用技巧学号实验日期实验内容(1)P1 口做输出口,接八只发光二极管,高电平点亮,控制一个. 方向循环点亮8只LED,每个LED点亮时间为50ms;(2)在以上基础上加外部中断内容,由外部中断请求时,8只LED全亮(3)P1 口做输出口,接八只发光二极管,高电平点亮,控制一个方向循环点亮8只LED,每个LED点亮时间改为2s实验地点实验组号实验设备计算机 wave6000程序 lab2000p试验箱同组人1.实验电路及连线本次试验不做要求2.程序流程图本次实验无3.源程序(1 ORG 0000H MOV TL0,#58HLJMP MAIN SETB EAORG 0003H SETB ET0ORG 000BH SETB TR0LJMP SER0 SJMP $ORG 1000H SER0:MOV TH0,#9EHMAIN: MOV A,#01H MOV TL0,#58HLOOP: MOV P1,A RL AMOV TMOD,#01H MOV P1,AMOV TH0,#9EH RETIEND(2ORG 0000H SER0:MOV TH0,#9EHLJMP MAIN MOV TL0,#58HORG 0003H RL ALJMP SER1 MOV P1,AORG 000BH RETILJMP SER0 SER1:PUSH ACCORG 1000H PUSH PSWMAIN: MOV A,#01H MOV A,#0FFH LOOP: MOV P1,A MOV P1,AMOV TMOD,#01H LCALL DELAY MOV TH0,#9EH POP PSWMOV TL0,#58H POP ACCSETB EA RETISETB ET0 DELAY:MOV R7,#0FFH SETB TR0 L1:MOV R6,#0FAH SETB EX0 DJNZ R6,$SETB IT0 DJNZ R7,L1SJMP $ RETEND(3 ORG 0000H SETB EALJMP MAIN SETB ET0ORG 000BH SETB TR0LJMP SER0 SJMP $ORG 1000H SER0:MOV TH0,#9EH MAIN: MOV A,#01H MOV TL0,#58H LOOP: MOV P1,A DJNZ R0,EXIT MOV R0,#28H MOV R0,#28HMOV TMOD,#01H RL AMOV TH0,#9EH MOV P1,AMOV TL0,#58H EXIT:RETIEND4.结果记录及分析(1)结果: P1 口做输出口,接八只发光二极管,高电平点亮,控制一个方向循环点亮8只LED,每个LED点亮时间为50ms;分析:用定时器方式0,使用定时功能,定时器以中断方式工作。
51单片机定时器实验内容
51单片机定时器实验内容
51单片机定时器实验的内容可以根据不同的需求和目的进行调整,以下是
一些可能的实验内容:
1. 定时器初始化实验:实验目标是了解如何初始化51单片机的定时器,包括设置定时器的工作模式、计数值、初始值等。
实验中可以编写代码,让定时器在初始化后自动开始计时,并在达到指定时间后产生中断或输出信号。
2. 定时器中断实验:实验目标是了解如何使用51单片机的定时器中断功能,实现定时器在达到指定时间后自动触发中断,并在中断服务程序中执行特定的操作。
实验中可以编写代码,让定时器在达到指定时间后自动进入中断服务程序,并在其中执行特定的操作,如点亮LED灯等。
3. 定时器PWM输出实验:实验目标是了解如何使用51单片机的定时器PWM输出功能,实现定时器输出PWM波形。
实验中可以编写代码,让定时器输出不同占空比的PWM波形,并通过调整占空比来控制LED灯的亮
度等。
4. 定时器与外部事件同步实验:实验目标是了解如何使用51单片机的定时器与外部事件同步,实现定时器在外部事件发生时自动开始计时或停止计时。
实验中可以编写代码,让定时器在外部事件发生时自动开始计时或停止计时,并在达到指定时间后执行特定的操作。
以上是一些常见的51单片机定时器实验内容,通过这些实验可以深入了解51单片机的定时器工作原理和用法,并提高编程技能和硬件控制能力。
实验三使用中断的定时器
实验三使用中断的定时器一、实验目的1、理解C2000芯片的CPU定时器和中断系统的工作原理;2、学会使用TMS320F28027芯片的定时器实现定时;3、掌握CPU定时器和PIE外设中断控制器相关寄存器的配置与使用。
二、概述本实验的程序实现了定时器Timer0定时1秒,对应LED灯D10状态翻转,由亮到灭,在由灭到亮,一致循环下去;定时器Timer1定时2秒,对应LED灯D12状态翻转;定时器Timer2定时4秒,对应LED灯D13状态翻转。
表1 输出引脚硬件配置表3D13GPIO237Timer2对应LED图1 LED灯连接电路图三、实验内容1、按照新建工程项目的方法进行实验(参考实验二)。
2、主函数(程序流程框图见图2所示)#include"DSP28x_Project.h"// Device Headerfile and Examples Include File // Prototype statements for functions found within this file.interrupt void cpu_timer0_isr(void);interrupt void cpu_timer1_isr(void);interrupt void cpu_timer2_isr(void);void InitTimerGpio(void);void main(void){// Step 1.系统初始化Initialize System Control:// PLL, WatchDog, enable Peripheral Clocks// This example function is found in the f2802x_SysCtrl.c file.InitSysCtrl();// Step 2.GPIO初始化 Initalize GPIO:// This example function is found in the f2802x_Gpio.c file and// illustrates how to set the GPIO to it's default state.// InitGpio(); // Skipped for this exampleInitTimerGpio();// Step 3. 清除(关闭)中断并初始化外设中断向量表 Clear all interrupts and initialize PIE vector table:// 关闭CPU中断 Disable CPU interruptsDINT;// Initialize the PIE control registers to their default state.// The default state is all PIE interrupts disabled and flags// are cleared.// This function is found in the f2802x_PieCtrl.c file.InitPieCtrl();// Disable CPU interrupts and clear all CPU interrupt flags:IER = 0x0000;IFR = 0x0000;// Initialize the PIE vector table with pointers to the shell Interrupt// Service Routines (ISR).// This will populate the entire table, even if the interrupt// is not used in this example. This is useful for debug purposes.// The shell ISR routines are found in f2802x_DefaultIsr.c.// This function is found in f2802x_PieVect.c.InitPieVectTable();// Interrupts that are used in this example are re-mapped to// 设置中断向量表 ISR functions found within this file.EALLOW; // This is needed to write to EALLOW protected registers0 = &cpu_timer0_isr;1 = &cpu_timer1_isr;2 = &cpu_timer2_isr;EDIS; // This is needed to disable write to EALLOW protected registers // Step 4. 初始化CPU定时器 Initialize the Device Peripheral. This function can be// found in f2802x_CpuTimers.cInitCpuTimers(); // For this example, only initialize the Cpu Timers#if (CPU_FRQ_60MHZ)//配置CPU定时器 Configure CPU-Timer 0, 1, and 2 to interrupt every second:// 60MHz CPU Freq, 1 second Period (in uSeconds)ConfigCpuTimer(&CpuTimer0, 60, );ConfigCpuTimer(&CpuTimer1, 60, );ConfigCpuTimer(&CpuTimer2, 60, );#endif#if (CPU_FRQ_50MHZ)// Configure CPU-Timer 0, 1, and 2 to interrupt every second:// 50MHz CPU Freq, 1 second Period (in uSeconds)ConfigCpuTimer(&CpuTimer0, 50, );ConfigCpuTimer(&CpuTimer1, 50, );ConfigCpuTimer(&CpuTimer2, 50, );#endif#if (CPU_FRQ_40MHZ)// Configure CPU-Timer 0, 1, and 2 to interrupt every second:// 40MHz CPU Freq, 1 second Period (in uSeconds)ConfigCpuTimer(&CpuTimer0, 40, );ConfigCpuTimer(&CpuTimer1, 40, );ConfigCpuTimer(&CpuTimer2, 40, );#endif// To ensure precise timing, use write-only instructions to write to the entire register. Therefore, if any// of the configuration bits are changed in ConfigCpuTimer and InitCpuTimers (in F2802x_CpuTimers.h), the// below settings must also be updated..all = 0x4001; //Use write-only instruction to set TSS bit = 0.all = 0x4001; // Use write-only instruction to set TSS bit = 0.all = 0x4001; // Use write-only instruction to set TSS bit = 0// Step 5.使能用到的中断 User specific code, enable interrupts:// Enable CPU int1 which is connected to CPU-Timer 0, CPU int13// which is connected to CPU-Timer 1, and CPU int 14, which is connected// to CPU-Timer 2:IER |= M_INT1;IER |= M_INT13;IER |= M_INT14;// Enable TINT0 in the PIE: Group 1 interrupt 7R1.7 = 1;// Enable global Interrupts and higher priority real-time debug events:EINT; // Enable Global interrupt INTMERTM; // Enable Global realtime interrupt DBGM// Step 6. 设置空循环(程序进入运行状态) IDLE loop. Just sit and loop forever (optional):for(;;);}//下面是中断服务程序interrupt void cpu_timer0_isr(void){ EALLOW;ruptCount++;.GPIO0 = 1;.GPIO34 = 1;// Acknowledge this interrupt to receive more interrupts from group 1 K.all = PIEACK_GROUP1;}interrupt void cpu_timer1_isr(void){ EALLOW;ruptCount++;.GPIO1 = 1;// The CPU acknowledges the interrupt.EDIS;}interrupt void cpu_timer2_isr(void){ EALLOW;ruptCount++;.GPIO2 = 1;// The CPU acknowledges the interrupt.EDIS;}// 下面是配置GPIOvoid InitTimerGpio(void){EALLOW;X1.34 = 0;R.34 = 1;X1.0 = 0;R.0 = 1;X1.1 = 0;R.1 = 1;X1.2 = 0;R.2 = 1;EDIS;}四、课外学习任务1、进一步理解实验内容,在实验板上找到GPIO34连接的LED灯,试解读下面的程序代码:X1.34 = 0;R.34 = 1;2、总结实验内容及步骤写出实验报告。
单片机实验3 中断、定时器计数器实验
西南科技大学实验报告课程名称:单片机原理及应用A实验名称:中断、定时器/计数器实验姓名:学号:班级:生医1401指导教师:雷华军西南科技大学信息工程学院制实验题目数码管动态扫描显示驱动、键盘动态扫描驱动一、实验目的1、熟练巩固单片机开发环境KEIL界面的相关操作和PROTUES仿真软件的操作,会使用HEX文件进行单片机的仿真。
2、了解定时器的原理和四种工作方式的使用方法,学习定时器的相关应用,包括产生信号和计数,利用定时器进行延时等。
3、进一步掌握熟练单个数码管以及多位数码管的显示原理,学会将0~1000的数字进行显示。
4、掌握利用单片机产生矩形方脉冲的相关原理。
二、实验原理1、定时器结构和原理图①上图①为定时器T0、T1的结构,其中振荡器经12分频后作为定时器的时钟脉冲,T为外部计数脉冲输入端,通过开关K1选择。
反相器,或门,与门共同构成启/停控制信号。
TH 和TL为加1计数器,TF为中断标志。
每接收到一个脉冲,加1计数器自动加1,当计数器中的数被加为0时产生溢出标志,TF将被置1。
计数器工作方式的选择和功能的实现需要配置相应的寄存器TMOD和TCON。
2、定时器工作方式定时器共有四种工作方式分别为方式0——方式3。
方式0:13位计数器,最大计数值为213个脉冲。
方式1:16位计数器,最大计数值为216个脉冲。
方式2:8位自动重装计数器。
该方式下,TL进行计数工作,TH用于存放计数初值,当产生溢出中断请求时会自动将TH中的初值重新装入TL,以使计数器继续工作。
方式3:仅限于T0计数器,在方式3下,T0计数器被分成两个独立的8为计数器TL0和TH0。
3、定时器间隔1ms产生一个脉冲利用单片机1 P3.0口进行脉冲的输出,通过定时器进行端口定时控制,实现每1ms高低电平变换。
就可以实现一个占空比为50%的矩形脉冲输出。
对于定时器的定时功能实现,需要进行定时器模式选择,定时器初值设定。
4、利用中断进行脉冲的计数将单片机1 P3.0口输出的脉冲连接到单片机2的中断INT0口P3.2,通过脉冲的高低电平变换触发中断0,进行脉冲个数的计数。
PIC实验报告(中断、定时、PWM、AD程序代码)
实验一:定时器1. 实验目的:利用定时器0,定时器1,定时2实现4盏流水灯2. 实验内容 a,程序框图定时器0:/************************************************** 计算公式:(256-X)*K*T=25 000us,定时器延时25ms,预分频为K 为64,利用软件编程实现1s 脉冲输出,RB0作为输出 ************************************************/ #include<pic.h>__CONFIG(0x20F1); __CONFIG(0x3F71); #define T0_25MS 61 char a=0;void interrupt ISR() {if(T0IF==1)定时器1定时500MS定时器0定时50MS 、定时器1定时器2定时50MS时间到? 时间到? 时间到?a 的值加1 led 灯循环左移一位 a 的值加1a=20?a=10?a=0,led 灯循环左移一位 a=0,led 灯循环左移一位开始开始开始T0IF=0;TMR0=T0_25MS;a++;if(a==20) //输出1s脉冲{PORTD=(PORTD<<1);a=0;if(PORTD==0x10)PORTD=0x01;}}}void timer0init(){OPTION=0b10000110; //,预分频器给TMR0,TMR0预分频系数为1:64 INTCON=0b10100000; //GIE,PEIE置1}void main(){timer0init();TRISD=0;PORTD=0x01;while(1);}定时器1:/**************************************************计算公式:(65536-X)*K*T=500 000us,定时器延时500ms,预分频为8,利用软件编程实现1s脉冲输出,RB0作为输出************************************************/#include<pic.h>__CONFIG(0x20F1);__CONFIG(0x3F71);#define T1_500MS 3036void interrupt ISR(){if(TMR1IF==1){TMR1IF=0;TMR1H=T1_500MS>>8;TMR1L=T1_500MS;PORTD=(PORTD<<1);if(PORTD==0x10)PORTD=0x01;}void timer1init(){TMR1H=T1_500MS>>8;TMR1L=T1_500MS;TMR1IE=1;INTCON=0b11000000; //GIE,PEIE置1T1CON=0b00110001;; //TMR1预分频系数为1:8}void main(){timer1init();TRISD=0;PORTD=0x01;while(1);}定时器2:/**************************************************计算公式:(PR2+1)*K1*K2*T=50 000us,定时器延时50ms,预分频为K1为16,后分频器K2为15利用软件编程实现1s脉冲输出,RB0作为输出************************************************/#include<pic.h>__CONFIG(0x20F1);__CONFIG(0x3F71);#define LED RB0char a=0;void interrupt ISR(){if(TMR2IF==1){TMR2IF=0;a++;if(a==10) //1秒到了{PORTD=(PORTD<<1);a=0;if(PORTD==0x10)PORTD=0x01;}}}void timer2init()TMR2IE=1;PR2=207;INTCON=0b11000000; //GIE,PEIE置1T2CON=0B001110111; //TMR2预分频系数为1:16,后分频器为1:15 }void main(){timer2init();TRISD=0;PORTD=0x01;while(1);}实验二:RB0中断1.实验目的:a.利用外部中断RB0实现流水灯左移2.程序框图:开始RB0按下?进入中断,led灯循环左移一位程序:#include<pic.h>__CONFIG(0x20F1);__CONFIG(0x3f71);void delaynms(unsigned int n);void interrupt ISR(void);void main(){OPTION=0b00000000;ANS12=0;WPUB0=1;TRISB=0b00000001;INTCON=0b10010000;TRISD=0b00000000;PORTD=0x01;while(1);}void interrupt ISR(void){if(INTF==1){delaynms(30);INTF=0;PORTD=(PORTD<<1);if(PORTD==0x10)PORTD=0x01;}}void delaynms(unsigned int n){unsigned int j;char k;for(j=0;j<n;j++)for(k=246;k>0;k--)NOP();}实验三:AD转换1.实验目的:利用PIC内部AD转换器,AN0通道口采集模拟数据,通过LCD1602显示结果2.程序框图:程序:#include<pic.h>__CONFIG(0x3F39); __CONFIG(0x20F1); #define RS RD4 #define RW RD5 #define E RD6#define uint unsigned int char QW,BW,SW,GW;//8段共阳LED 显示代码,0位-7位分别控制a -h 段const char LED_CODE[]={0b11000000, 0b11111001,0b10100100,0b10110000,0b10011001, 0b10010010,0b10000010,0b11111000,0b10000000,0b10010000,0b01111111}; uint AD_SUB(char k);void init1602(); //1602初始化 void write_com(char com);//写指令 void write_date(char data);//写数据 void delaynms(unsigned int n); void spiinit();void SPI_WRITE(char ); void displayled(); void display1602(); void BCD(uint R1); void main() {uint y;TRISA=0b00000001;选择AD 通道启动ADGODON E=0?数据送1602显示初始化数据送数码管显示 开始ANSEL=0b11111111; //AN0~AN7为模拟输入,上电默认,可不设TRISD=0; //D口设置为输出PORTD=0;spiinit();init1602();while(1){y=AD_SUB(0); //0表示第0个通道BCD(y);displayled();display1602();delaynms(500); //此不不能忽略}}void BCD(uint R1){QW=0;BW=0;SW=0;GW=0;while(R1>=1000){R1-=1000;QW++;}while(R1>=100){R1-=100;BW++;}while(R1>=10){R1-=10;SW++;}GW=R1;}void displayled(){SPI_WRITE(GW); //先发个位SPI_WRITE(SW); //发十位SPI_WRITE(BW); //发百位SPI_WRITE(10); //发小数点SPI_WRITE(QW); //发千位}void display1602(){write_com(0x80);write_date(0x30+QW);write_date(0x2e); //小数点write_date(0x30+BW);write_date(0x30+SW);write_date(0x30+GW);write_date(0x56); //"V"}void SPI_WRITE(char b){char BUF;BUF=LED_CODE[b];SSPBUF=BUF; //发出数据while(BF==0);BUF=SSPBUF;}void spiinit(){TRISC=0b00010000;SSPEN=1;CKP=1;SSPM3=0;SSPM2=0;SSPM1=0;SSPM0=1;SMP=1;CKE=0;}uint AD_SUB(char k){char i;uint temp;float x;ADCON0=0b01000001; //TAD=8TOSC,ADFM=1; //设置成右对齐ADCON0|=(k<<4);for(i=1;i<5;i++)NOP(); //打开AD通道后延时20us左右GODONE=1; //开始AD转换while(GODONE==1); //等待转换完成ADIF=0;temp=ADRESH<<8;temp|=ADRESL;x=temp/1023.0*5.0;temp=x*1000;return(temp);}void init1602(){delaynms(20); //延时时间大于15mswrite_com(0x03);delaynms(5);write_com(0x03);delaynms(5);write_com(0x03);delaynms(5);write_com(0x02); //归HOME位,此不不可少delaynms(5);write_com(0x28); //工作方式设置,4位数据线,2行字符,5*7字体write_com(0x0c); //显示开关设置,画面开,光标消失,禁止闪烁write_com(0x06); //输入方式设置,AC为加一计数器write_com(0x01); //清屏write_com(0x80); //开始显示位置delaynms(2);}void write_com(char com){RS=0; //写指令RW=0;PORTD&=0xf0; //低四位清0E=1; //有效发送PORTD|=((com>>4)&0x0f);//先发高四位delaynms(5);E=0;PORTD&=0xf0;E=1;PORTD|=(com&0x0f);//再发低四位delaynms(5);E=0;}void write_date(char data){RS=1; //写数据RW=0;PORTD&=0xf0;E=1;PORTD|=((data>>4)&0x0f);//先发高四位delaynms(5);E=0;PORTD&=0xf0;E=1;PORTD|=(data&0x0f); //再发低四位delaynms(5);E=0;RS=0;}void delaynms(unsigned int n){unsigned int j;char k;for(j=0;j<n;j++)for(k=246;k>0;k--)NOP();}实验四:PWM1.实验目的:通过PIC单片机输出PWM不同占空比脉冲波形2.程序流程:程序:#include<pic.h>__CONFIG(0x3f3a);char a;void CSH();void interrupt ISR(void);void delaynms(unsigned int n); void main(){CSH();while(1){if(a==0)开始初始化占空比为0.1RB0是否按下进入中断,a加1a=1,则输出占空比0.1 a=2,则输出占空比0.3a=3,则输出占空比0.6a=4,则输出占空比0.9a=5,则a清0,占空比为0.1CSH();}}void CSH(){TRISC2=0;TRISD=0;PR2=249;CCPR1L=0x32;CCP1CON=0x0c;T2CON=0x05;OPTION=0b00000000;ANS12=0;WPUB0=1;TRISB=0b00000001;INTCON=0b10010000;}void interrupt ISR(void){if(INTF==1){delaynms(30);if(RB0==0){INTF=0;a++;switch(a){case 1:CCPR1L=0x19;PR2=249;CCP1CON=0x0c;T2CON=0x05;break; //占空比0.1 case 2:CCPR1L=0x4b;PR2=249;CCP1CON=0x0c;T2CON=0x05;break; //占空比0.3 case 3:CCPR1L=0x96;PR2=249;CCP1CON=0x0c;T2CON=0x05;break; //占空比0.6 case 4:CCPR1L=0xe1;PR2=249;CCP1CON=0x0c;T2CON=0x05;break;// 占空比0.9 case5:a=0;break;}}}}void delaynms(unsigned int n){unsigned int j;char k;for(j=0;j<n;j++)for(k=246;k>0;k--)NOP();}。
定时器中断实验心得
定时器中断实验心得
定时器中断实验是学习嵌入式系统编程的重要实践环节,它涉及到定时器的工作原理、中断的概念和编程技巧等多方面知识。
通过实验,可以深入了解定时器中断在实际应用中的作用和实现方式,提高自己的代码能力和调试能力。
在进行定时器中断实验时,需要先了解要使用的硬件设备以及相关的编程环境和编程语言。
在进行实验前,可以先模拟一些简单的定时器中断程序,逐步加深对定时器和中断的理解。
在实验过程中,要注意代码的编写规范和错误处理方法,同时结合实际情况灵活调节定时器的时间和中断的优先级,不断优化程序效率。
实验结束后,可以对实验过程中遇到的问题进行总结和分析,掌握更多关于定时器中断实现的技巧和方法。
与其他同学和教师交流经验,互相分享和学习,共同提高技术水平。
单片机定时器中断程序实例
单片机定时器中断程序实例在单片机编程中,定时器是一种非常重要的功能模块。
它可以用来产生精确的时间延迟,实现定时触发事件等功能。
而定时器中断则是利用定时器来实现中断功能的一种方式。
下面是一个单片机定时器中断程序实例,供大家参考。
首先,我们需要初始化定时器。
以51单片机为例,定时器的初始化函数如下所示:void Init_Timer0(void){TMOD |= 0x01; //设置为模式1TH0 = (65536 - 50000) / 256; //设置初值TL0 = (65536 - 50000) % 256;EA = 1; //打开总中断ET0 = 1; //打开定时器0中断TR0 = 1; //启动定时器0}其中,TMOD寄存器用于设置定时器的工作模式。
这里设置为模式1,即16位定时器模式。
TH0和TL0寄存器则是定时器的计数器。
我们需要通过初值来设置定时时间。
在这个例子中,我们设置的定时时间为50ms。
接下来,我们需要编写定时器中断服务程序。
定时器中断服务程序是由中断向量表中的相应位置调用的,用于响应定时器中断。
在这个例子中,我们将定时器中断服务程序命名为Timer0_isr,定义如下:void Timer0_isr(void) interrupt 1{TH0 = (65536 - 50000) / 256;TL0 = (65536 - 50000) % 256;//定时器中断处理代码}在定时器中断服务程序中,我们需要重新设置计数器的初值,以实现定时器的循环工作。
同时,在这个例子中,我们需要在定时器中断处理代码中实现某些功能,例如周期性的输出一个信号、更新某个计数值等等。
最后,在主程序中,我们只需要调用Init_Timer0函数即可开始定时器的工作。
当定时器中断发生时,定时器中断服务程序会被自动调用。
这样,我们就实现了一个简单的单片机定时器中断程序。
定时器及中断实验报告
定时器及中断实验报告定时器及中断实验报告引言在计算机科学领域,定时器和中断是非常重要的概念。
定时器可以用于测量时间、控制程序执行速度等,而中断则可以提高系统的响应能力和处理效率。
本实验旨在通过实际操作,加深对定时器和中断的理解,并验证其在实际应用中的作用和效果。
实验目的1. 理解定时器和中断的概念、原理以及作用。
2. 掌握定时器和中断的编程方法和技巧。
3. 通过实验验证定时器和中断在实际应用中的效果和作用。
实验器材1. 单片机开发板2. 电脑3. USB数据线实验步骤1. 连接单片机开发板和电脑,确保通信正常。
2. 打开开发板的开发环境,创建一个新的工程。
3. 在工程中添加定时器和中断相关的库文件。
4. 编写代码,在主函数中初始化定时器和中断,并设置相应的参数。
5. 编译并下载代码到开发板上。
6. 运行程序,观察定时器和中断的效果。
实验结果通过实验,我们成功实现了定时器和中断的功能,并观察到以下结果:1. 定时器可以精确地测量时间,实现定时功能。
2. 中断可以在特定条件满足时打断程序的执行,提高系统的响应能力。
3. 定时器和中断的结合使用,可以实现更复杂的功能,如周期性任务的执行等。
实验分析定时器和中断是计算机系统中常用的功能模块,其应用广泛。
通过本实验,我们深入理解了定时器和中断的概念和原理,并通过实际操作验证了其在实际应用中的作用和效果。
定时器和中断的结合使用,可以实现更复杂的功能,提高系统的响应能力和处理效率。
结论本实验通过实际操作,加深了对定时器和中断的理解,并验证了其在实际应用中的作用和效果。
定时器和中断是计算机系统中非常重要的功能模块,掌握其编程方法和技巧对于开发和优化系统具有重要意义。
通过进一步学习和实践,我们可以更好地应用定时器和中断,提高系统的性能和可靠性。
参考文献[1] 《嵌入式系统原理与实践》[2] 《单片机原理与应用》[3] 《计算机组成与设计:硬件/软件接口》。
定时器及中断实验报告
定时器及中断实验报告定时器及中断实验报告引言近年来,随着科技的不断发展,计算机技术在各个领域得到了广泛应用。
定时器和中断是计算机系统中非常重要的组成部分,能够帮助我们实现各种功能和任务。
本文将介绍定时器和中断的原理和应用,并结合实验结果进行分析和讨论。
一、定时器的原理和应用定时器是计算机系统中的一种硬件设备,用于计量时间间隔并触发相应的操作。
它通常由一个时钟源和一个计数器组成。
时钟源产生固定的脉冲信号,计数器根据时钟源的信号进行计数,当计数值达到设定的阈值时,定时器会触发一个中断信号,通知处理器执行相应的操作。
定时器在计算机系统中有广泛的应用。
例如,操作系统可以利用定时器来实现任务调度,确保各个任务按照一定的时间片轮转执行。
此外,定时器还可以用于测量时间间隔,计算程序运行时间,以及实现各种定时任务等。
二、中断的原理和应用中断是计算机系统中的一种机制,用于打破程序的顺序性,以响应外部事件或异常情况。
当发生中断事件时,处理器会立即中断当前的执行任务,保存当前的上下文信息,并跳转到中断处理程序来处理中断事件。
处理完成后,再返回到原来的执行任务。
中断可以分为硬件中断和软件中断。
硬件中断由硬件设备触发,例如定时器到达设定阈值、外部设备请求等。
而软件中断则是由程序主动触发,例如调用系统函数、执行软件异常等。
中断在计算机系统中的应用非常广泛。
它可以用于处理外部设备的输入输出,例如键盘、鼠标、打印机等。
同时,中断还可以用于处理各种异常情况,例如除零错误、越界访问等。
通过中断机制,计算机系统能够实现更高效、更灵活的任务处理和异常处理。
三、实验设置和结果分析为了更好地理解定时器和中断的原理和应用,我们进行了一系列的实验。
实验使用的是一款基于8051单片机的开发板,通过编写相应的汇编程序来实现定时器和中断的功能。
首先,我们设置了一个定时器,将时钟源设置为1MHz,计数器的初始值为0,阈值为1000。
然后,我们在中断处理程序中编写了一段代码,用于在定时器触发中断时进行相应的操作。
中断及定时器实验报告
中断及定时器实验报告中断及定时器实验报告引言:中断是计算机系统中一种重要的机制,它可以打破程序的顺序执行,响应外部事件的发生。
中断的引入使得计算机可以同时处理多个任务,提高了系统的效率和可靠性。
定时器是中断的一种常见应用,它可以在一定时间间隔内产生中断信号,实现定时任务的功能。
本实验旨在通过编程实现中断和定时器的功能,并测试其正确性和稳定性。
一、实验目的1. 学习中断的概念和原理;2. 掌握中断的编程方法和中断处理程序的编写;3. 理解定时器的工作原理和应用场景;4. 实现定时器的功能,并测试其正确性和稳定性。
二、实验过程1. 硬件准备在实验中,我们使用了一台基于8051单片机的开发板,通过连接外部电路和开发板的引脚,实现对定时器的控制。
2. 软件编程首先,我们需要在开发板上搭建一个简单的电路,包括一个LED灯和一个按钮。
然后,我们使用汇编语言编写中断处理程序,实现当按钮按下时,LED灯闪烁的功能。
具体的编程步骤如下:(1)设置中断向量表:将中断处理程序的地址存储到中断向量表中,以便系统在中断发生时能够正确地跳转到相应的处理程序;(2)初始化定时器:设置定时器的计数器初值和工作模式;(3)编写中断处理程序:当中断发生时,执行相应的处理程序。
在本实验中,我们编写了一个简单的中断处理程序,当按钮按下时,将LED灯的状态取反;(4)启用中断:使能中断,使得系统能够响应外部事件的发生。
3. 实验测试将编写的程序下载到开发板上,并连接相应的电路。
按下按钮,观察LED灯是否按照预期的频率闪烁。
通过调整定时器的计数器初值和工作模式,可以改变LED灯闪烁的频率。
三、实验结果经过多次实验测试,我们发现中断和定时器的功能正常,LED灯能够按照预期的频率闪烁。
通过改变定时器的计数器初值和工作模式,我们成功地实现了LED灯闪烁频率的调节。
实验结果表明,中断和定时器是一种有效的方法,可以实现对外部事件的及时响应和定时任务的精确控制。
单片机 实验三中断及定时器实验
实验三:中断及定时器实验一、实验目的:1、弄清中断的概念、基本原理,掌握中断技术的应用2、了解中断初始化的方法,中断向量安装和中断服务子程序的设计方法。
3、了解定时/计数器的工作原理及MCS51单片机的定时器内部结构4、掌握时间常数计算方法5、掌握定时器初始化方法和定时中断程序设计方法二、实验内容:定时器实验1、这个是一个电子钟走时程序,利用定时器T0产生50ms中断,中断计数器中断20次为1秒,利用秒信号进行电子钟计时。
先读懂下面程序段,然后编辑、编译程序,并在伟福仿真器上模拟调试该程序。
程序清单如下:COUNT EQU 7FHCOUNT1 EQU 7EHS_MEM EQU 73HM_MEM EQU 72HH_MEM EQU 71HORG 0000HLJMP MAINORG 000BHLJMP INT_T0 ;“*1”MAIN: MOV SP,#2FHMOV TMOD,#BMOV TH0,#03CH ;50毫秒中断时间常数MOV TL0,#0BHMOV IE,#B ;开放T0MOV IP,#0MOV S_MEM,#0MOV M_MEM,#0MOV H_MEM,#0MOV COUNT,#20SETB TR0;______________________________________________________ W AIT:NOPSJMP W AITINT_T0: MOV TL0,#0BHMOV TH0,#3CHDJNZ COUNT,EXT_T0MOV COUNT,#20 ;恢复中断计数器INC S_MEM ;“*2”MOV A,S_MEMCJNE A,60,EXT_T0MOV S_MEM,#0INC M_MEMMOV A,M_MEMCJNE A,#60,EXT_T0MOV M_MEM,#0INC H_MEMMOV A,H_MEMCJNE A,#13,EXT_T0MOV H_MEM,#0EXT_T0: RETI2、按下列要求修改程序或回答问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外部中断及定时器实验
实验目的:1、加深对并行口结构的理解;
2、学习外部中断技术的基本使用方法;
3、学习中断处理的编程方法;
4、学习51单片机内部定时器/计数器的使用和编程方法;实验注意:1、仿真器设置,选好仿真头和汇编器;
2、不要带电接线或插拔器件。
实验内容:
1、(外部中断实验)P1口接八个发光管,初始状态自设。
利用外部中断0,每中断一次,实现P1口状态取反。
1.
ORG 0000H
AJMP MAIN
ORG 0003H
MOV A,P1
CPL A
MOV P1,A
RETI
MAIN:
SETB EA
SETB IT0
SETB EX0
SETB P1
SJMP $
0000H
AJMP MAIN
ORG 000BH
CPL P1.0
RETI
ORG 0100H
MAIN:
MOV TMOD,#02H
MOV TH0,#9CH
MOV TL0,#9CH
SETB TR0
SETB EA
SETB ET0
SETB P1.0
SJMP $
2、(外部中断源的扩展)如图,利用中断和查询相结合编程,在P3.2引脚扩展一个中断源。
正常时K1和K2处于低电平,当任意一个变为高电平时触发中断,在中断服务程序中点亮对应发光管。
利用P3.3引脚中断将灯熄灭。
ORG 0000H
AJMP MAIN
ORG 0003H
AJMP RUPT
ORG 0100H
MAIN:SETB IT0
SETB EX0
SETB EA
ORL P1,#0FFH
MOV A,P1
SJMP $
ORG 0200H
RUPT:
MOV P1,A
JNB P1.0, L
SETB P1.5
L:JNB P1.1,LL
SETB P1.6
LL:RETI
ORG 0000H
AJMP MAIN
ORG 0003H
AJMP RUPT
ORG 0100H
MAIN:SETB IT0
SETB EX0
SETB EA
SJMP $
ORG 0200H
RUPT:
MOV C, P1.0
MOV P1.4,C
MOV C,P1.1
MOV P1.5,C
RETI
END
3、利用计数器T0(P3.4),对外部脉冲信号计数,将其值按二进制数在P1口连接的灯上显示出来。
ORG 0000H
AJMP MAIN
ORG 000BH
RETI
MAIN:MOV TMOD,#06H
MOV TH0,#00H
MOV TL0,#00H
SETB TR0
L:MOV A,TL0
MOV P1,A
SJMP L
5、利用P1.0和定时器T0控制继电器每过1S吸合,再经过1S断开,控制所接灯的循环间隔显示。
(P1.0输出高电平时,继电器工作,常开触电吸合,连触点灯点亮;输出低电平时继电器失电,触点断开灯灭。
)
ORG 0000H
AJMP MAIN
ORG 000BH
AJMP RUPT
ORG 0100H
MAIN:
MOV TMOD,#01H
MOV TH0,#3CH
MOV TL0,#0B0H
MOV R0,#0AH
SETB TR0
SETB EA
SETB ET0
SETB P1.0
SJMP $
ORG 0200H
RUPT:
MOV TH0,#3CH
MOV TL0,#0B0H
DJNZ R0,BACK
MOV R0,#0AH
CPL P1.0
BACK:RETI
6、利用定时器实现数字钟设计,在数码管以时、分、秒显示时间。
ORG 0000H
AJMP MAIN
ORG 000BH
AJMP RUPT
ORG 0100H
MAIN:
MOV TMOD,#01H
MOV TH0,#3CH
MOV TL0,#0B0H
MOV R0,#0AH
MOV R1,#0
MOV R2,#0
SETB TR0
SETB EA
SETB ET0
MOV DPTR,#TAB
MOV A,#0
SJMP $
ORG 0200H
RUPT:
MOV TH0,#3CH
MOV TL0,#0B0H
DJNZ R0,BACK
MOV R0,#0AH
INC R1
CJNE R1,#61,BACK
MOV R1,#0
INC R2
CJNE R2,#61,BACK
MOV R2,#0
BACK:RETI
TAB:DB 3FH,06H,4FH,66H,6DH,7DH,07H,7FH,6FH。