数控机床位置检测与传感器件

合集下载

第3章数控机床的位置检测讲解

第3章数控机床的位置检测讲解

旋转变压器——抗干扰能力强、工作可靠、结构简单、 动作灵敏、信号输出幅度大,对环境无特殊要求,维护方便, 应用广泛。
脉冲编码盘——工作可靠、精度高,结构紧凑、成本低, 是精密数字控制和伺服系统中常用的角位移数字式检测元 器件,但抗污染能力差,易损坏。
激光干涉仪——精度很高,但抗震性、抗干扰能力差, 价格较贵,应用较少。
原理 1)指示光栅与标尺光栅刻度等宽。 2)平行装配,且无摩擦 3)两尺条纹之间有一定夹角 4)当指示光栅与标尺光栅相对运动时,会产生与光栅线 垂直的横向的条纹,该条纹为莫尔条纹,当移动一个栅 距时,摩尔条纹也移动一个纹距
标尺光栅
θ
莫尔条纹
应用较多的干涉条纹式光栅,是利用光的 衍射现象产生莫尔干涉条纹。当两片光栅 互相平行,其刻线相互成一小角度θ时, 两光栅有相对运动就会生明暗相间的干涉 条纹,将光源来的光经透镜变成平行光, 垂直照射在光栅上,经狭缝s和透镜由光 电元件接受,即可得到与位移成比例的电 信号。
第三章 数控机床的位置检测
第三章 数控机床的位置检测
本章主要介绍数控机床的位置检测装置
提 作用及分类,讲解光栅尺和脉冲编码器
的结构、工作原理及其应用。
要 学时:2学时
第三章 数控机床的位置检测

了解数控机床的位置检测装置作用及类型。
掌握光栅和脉冲编码器的结构特点、工作原理

及应用。
第三章 数控机床的位置检测

学生学习本章节,可结合数控中心的 数控机床来了解光栅和脉冲编码器和
等位置检测装置的结构特点、工作原

理。
第一节 概 述
一、位置检测装置的要求
位置检测装置是NC机床重要组成部分,在闭环系 统中其主要作用是检测位移量,并发出反馈信号与数 控装置的指令信号比较,如有偏差,经放大后控制执 行部件,使其朝消除偏差方向运动,直至偏差为零。

4-1 数控机床常用传感器

4-1 数控机床常用传感器
Us = (Um cosα)sin wt Uc = (Um sinα)sin wt
Es = KUs sin(90o −θ ) = KUm sinα sin wt cosθ 感应电势: 感应电势: Ec = KUc sin(−θ ) = −KUm cosα cos wt sinθ
S1 Us C2 Uc S2
光电转换原理。 光电转换原理。
莫尔条纹
P— 栅距 W— 莫尔条纹宽度
3.莫尔条纹性质 3.莫尔条纹性质
i)平行光照射光栅时,莫尔条纹由亮带到暗带,再由暗带 平行光照射光栅时,莫尔条纹由亮带到暗带, 到亮带透过的光强度分布近似于余弦函数。 到亮带透过的光强度分布近似于余弦函数。 ii)放大作用: (W=P/sinθ) ii)放大作用: (W=P/sinθ P/sin iii)均化误差作用 iii)
五.光栅 光栅
位置检测装置. 位置检测装置.将机械位移或者模拟量转变为数字脉 反馈给数控装置,实现闭环控制. 冲,反馈给数控装置,实现闭环控制.
1.结构和种类 1.结构和种类
包括: 包括: 标尺光栅: 标尺光栅:固定在机床活动部件上 指示光栅: 指示光栅:安装在读数头内
光栅读数头示意图
2.原理 2.原理
1. 结构
利用互感原理工作
在结构上与二相线绕式异 步电动机相似, 步电动机相似,由定子和 转子组成。 转子组成。
间接测量角位移
2.基本工作原理 2.基本工作原理
Us
Us = Um sin ω t
S1
S2
U B = KU s sin θ = KU m sin θ sin ω t
θ B2
B1
Z
按工作方式分为鉴相式和鉴幅式
四. 绝对值编码器

数控机床位置检测与传感器件1位置传感器件主要分类1

数控机床位置检测与传感器件1位置传感器件主要分类1

第五部分数控机床位置检测与传感器件1.位置传感器件主要分类(1)直线和角位移传感器:a.直线位移传感器直线位移传感器用于测量工作台的位移,通常装在工作台侧面。

为了使传感器的热膨胀系数与机床床身的相同,要选择传感器的材料,否则会影响测量的准确性。

直线位移传感器还要避免油雾、冷却液和切屑等的污染。

b.角位移传感器是用来测量传动轴的角度位移的。

用角位移传感器测量直线位移时,要求它的测量值与工作台的直线位移有一定的对应关系,通常是将角位移传感器装在带动工作台移动的丝杠的端部。

位移传感器的输出只有两种形式,即模拟式或数字式;直线或角位移传感器也可能是绝对、半绝对或增量位移传感器。

(2)模拟式和数字式位移传感器:模拟传感器——传感器输出信号的强度产生连续的、逐渐的变化。

数字位移传感器——工作台位置变化时,位移传感器以电脉冲的形式产生一个数字式输出信号。

根据机床的最小设定单位,每移动相应的距离就产生一个脉冲。

(3)绝对、半绝对及增量位移传感器:绝对、增量传感器产生的信号,前者是一个绝对的位置数据.后者是相对于上一个位置的增最(相对)数据。

半绝对位移传感器大部分使用绝对角位移传感器测量丝杠的角位移,为了得到工作台的直线位移,需要采用一些附加的方法测定丝杠旋转的圈数。

2.精度的概念精度和分辨率是描述传感器件性能的重要指标。

传感器件的测量精度是其可以一致的、重复测出的最小单位;分辨率是指传感器件能辨别的一个物理量等分后的最小单位。

无论是直线位移传感器还是角位移传感器,精度都是指其测量工作台位移的精度,而不是传感器的分辨率。

另一方面,测量的精度并非工件的加工精度,工件的加工精度受很多因素的影响。

3.光栅位移检测装置光栅位移传感器基于莫尔条纹和光电效应将位移信号转变为电信号,有直线光栅和困光栅两种类型。

光栅位移检测装置的测量精度高,在大量程测长方面其精度仅低于激光式的测量精度;而对要求整困范围内高分辨率的困分度测量来说,光栅式测量装置是精度最高的一种。

数控机床控制系统中的传感器介绍

数控机床控制系统中的传感器介绍

数控机床控制系统中得传感器介绍摘要:由于高精度、高速度、高效率及安全可靠得特点,数控系统在装备制造业中得应用越来越广泛,数控机床就是一种装有程序控制系统得自动化机床,能够根据已编好得程序,使机床动作并加工零件。

它综合了机械、自动化、计算机、测量等最新技术,使用了多种传感器,本文从位移、位置、速度、压力、温度以及刀具磨损监控等方面论述了在数控机床控制系统中用到得传感器。

1、数控系统简介数控系统也称为计算机数控系统(CNC),就是用计算机控制加工功能,实现数值控制得系统。

数控系统由数控程序、输入装置、输出装置、计算机数控装置(CNC装置)、可编程逻辑控制器、主轴驱动装置与进给(伺服)驱动装置(包括检测装置)等组成。

由于使用了计算机,系统具有了软件功能,又用PLC代替了传统得机床电器逻辑控制装置,使系统更小巧,其灵活性、通用性、可靠性更好,易于实现复杂得数控功能,使用、维护也方便,并具有与上位机连接及进行远程通信得功能.该控制系统能够逻辑地处理具有控制编码或其她符号指令规定得程序,并将其译码,从而使机床动作并加工零件。

它综合了机械、自动化、计算机、测量、等新技术,使用了多种传感器 ,本文介绍得就是数控系统中各个部分所用到得传感器。

2、传感器简介传感器就是一种能承受规定得被测量,能够把被测量(如物理量、化学量、生物量等)变换为另一种与之有确定对应关系并且容易测量得量(通常为电学量)得装置。

它就是一种获得信息得重要手段,它所获得信息得正确与否,关系到整个检测系统得精度,因而在非电量检测系统中占有重要地位。

传感器得原理各种各样,其种类十分繁多,分类标准不一样,叫法也不一样.常见得有电阻传感器、电感式传感器、电容式传感器、温度传感器等.作为应用在数控系统中得传感器应满足以下一些要求:(1)传感器应该具有比较高得可靠性与较强得抗干扰性.(2)传感器应该满足数控机床在加工上得精度与速度得要求。

(3)传感器在使用时应该具有维护方便、适合机床运行环境得特点。

数控机床对检测装置的主要要求

数控机床对检测装置的主要要求
=kUmcos(α-θ)sinωt 转子反转时,同理有:
U2=kUmcos(α+θ) sinωt
转子感应电压的幅值随转子的偏转角而变化。测量出 幅值可测出 转角。
6.2 旋转变压器 三、旋转变压器的应用
由角位移如何计主要算内直容线位移?
将旋转变压器安装在数控机床的丝杠上,当θ角从
0°变化到360°时,表示丝杠上的螺母走了一个导程, 就间接地测量了丝杠的直线位移(导程)的大小。
U 2Km U si n tsin
6.2 旋转变压器
使用较广泛的为正余弦旋转变压器
U1s
U1c
定子
主要内容 U 2kU 1ssinkU 1ccos
1c
θ
45°
R U2 转子
1ccos
1ssin
1s
6.2 旋转变压器
1.鉴相工作方式
给定子的两个绕组通以相同幅值、相同频率,但相位
差π/2的交流主激要磁内容电压
6.2 旋转变压器
旋转变压器的分类
按有无电刷分:接触式和无接触式两种;
主要内容
按极对数分:单对极和多对极;
按输出电压与转子转角间的函数关系分:正余弦旋 转变压器、线性旋转变压器、比例式旋转变压器以 及特殊函数旋转变压器等。
6.2 旋转变压器 6.2.1旋转变压器的结构
轴承
2
机壳
3
转子铁心
4
5
定子铁心
3
主要内容
1
8
变压器
5 6 47
数控机床主要使用无刷旋转变压器,无刷旋转变压器具 有输出信号大、可靠性高、寿命长及不用维修等优点。
6.2 旋转变压器
6.2.2 旋转变压器的工作原理
原理:电磁感应主要,内当容 定子加上一定频率的 激磁电压时,通过电 磁耦合,转子绕组产 生感应电势,其输出 电压的大小取决于定 子和转子两个绕组轴 线在空间的相对位置。

数控机床位置检测装置课件

数控机床位置检测装置课件
复合式位置检测装置
结合接触式和非接触式的特点,如激光扫描仪等。特点是 测量范围大、精度高、稳定性好。
数控机床位置检测装置的发展趋势和前景
01
高精度、高稳定性
随着制造业的发展,对数控机床的加工精度要求越来越高,因此位置检
测装置的高精度、高稳定性是未来的发展趋势。
02
智能化、自动化
随着工业4.0的发展,智能化、自动化是未来的发展方向,因此位置检
测装置的智能化、自动化也是未来的发展趋势。
03
多功能、复合化
为了满足复杂加工需求,位置检测装置的多功能、复合化也是未来的发
展趋势。如将长度、角度、表面粗糙度等多参数测量集成于一体,实现
复合化的测量技术。
02
数控机床位置检测装置的工作原理
感应同步器的工作原理及结构
总结词
感应同步器是利用电磁感应原理实现位移测量的装置。
编码器具有体积小、精度高、响 应速度快等优点。
定期检查编码器的电源和信号输 出是否正常,以及与主轴的连接
是否牢固。
若出现故障,应进行检修或更换 编码器。
磁栅尺的维护与检修
01
02
03
04
磁栅尺具有安装方便、价格较 低等优点。
保持磁栅尺的清洁,避免铁屑 、粉尘等杂质的干扰。
定期检查磁栅尺的磁条是否损 坏或脱落,以及信号输出是否
应用案例二:某型数控铣床的位置检测与控制
总结词
该型数控铣床采用了磁栅尺作为位置检测装置,具有高精度、高分辨率、高可靠 性等特点。
详细描述
该数控铣床采用了磁栅尺作为位置检测装置,具有高精度、高分辨率、高可靠性 等特点。磁栅尺通过磁场感应原理,能够实时监测机床的移动量和位置,为数控 系统提供准确的反馈信息,从而实现了高精度的加工和控制。

传感器技术在数控系统上的应用

传感器技术在数控系统上的应用

传感器技术在数控系统上的应用随着工业自动化的发展,数控系统越来越成为工业生产的主要手段。

而在数控系统中,传感器技术的应用也越来越广泛。

传感器可以将物理量转换成电信号,用于控制和监测机器的运行状态。

本文将就传感器技术在数控系统上的应用进行论述。

一、传感器技术在数控系统中的作用传感器技术在数控系统中的作用主要体现在以下几个方面:1、监测工件位置在数控加工中,工件位置的精确度直接影响加工精度。

传感器可以监测工件的位置,从而实现对加工过程的控制。

例如,在数控车床上,通过安装线性位移传感器,可以实时监测刀架的位置,从而保证加工精度。

2、监测工具位置在数控加工中,工具的位置也是非常关键的。

传感器可以监测工具的位置,从而实现对加工过程的控制。

例如,在数控铣床上,通过安装旋转编码器,可以实时监测刀具的位置和转速,从而保证加工精度。

3、监测加工质量在数控加工中,加工质量是非常关键的。

传感器可以监测加工过程中的各种物理量,从而实现对加工质量的控制。

例如,在数控磨床上,通过安装压力传感器,可以实时监测磨削力的大小,从而保证磨削质量。

4、监测机器状态在数控加工中,机器的状态也是非常关键的。

传感器可以监测机器的状态,从而实现对机器的维护和保养。

例如,在数控机床上,通过安装震动传感器,可以实时监测机器的振动情况,从而判断机器是否需要维护。

二、传感器技术在数控系统中的应用案例1、数控车床在数控车床中,传感器技术的应用非常广泛。

例如,通过安装线性位移传感器,可以实时监测刀架的位置,从而保证加工精度。

通过安装角度编码器,可以实时监测工件的角度,从而实现对加工过程的控制。

通过安装温度传感器,可以实时监测机器的温度,从而判断机器是否需要冷却。

2、数控铣床在数控铣床中,传感器技术的应用也非常广泛。

例如,通过安装旋转编码器,可以实时监测刀具的位置和转速,从而保证加工精度。

通过安装力传感器,可以实时监测铣削力的大小,从而保证铣削质量。

通过安装温度传感器,可以实时监测机器的温度,从而判断机器是否需要冷却。

数控机床常用的传感器类型

数控机床常用的传感器类型

数控机床常用的传感器类型
数控机床作为现代制造业中不可或缺的重要设备,其控制系统中涉及到的传感器类型也十分多样化。

以下是数控机床常用的传感器类型:
1. 光电传感器:用于检测工件的位置和运动状态,包括反射式、穿透式和光电开关等。

2. 触发式传感器:常用于测量工件的尺寸和形状,包括机械式和电子式触发器。

3. 温度传感器:用于测量机床各部件的温度,包括热电偶、热敏电阻和红外线温度计等。

4. 压力传感器:用于测量液压系统、气压系统等的压力,包括压阻式、压力变送器和压力开关等。

5. 位移传感器:用于测量工件或工具的位移、速度和加速度等,包括刚度式、光栅式和霍尔式等。

6. 加速度传感器:用于测量机床的振动和冲击,以便进行振动监测和故障诊断。

7. 电流传感器:用于测量机床各部件的电流,包括电感式、霍尔式和磁阻式等。

以上是数控机床常用的传感器类型,它们可以为数控机床的控制系统提供准确的数据,从而实现更精确的加工过程。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五部分数控机床位置检测与传感器件1.位置传感器件主要分类(1)直线和角位移传感器:a.直线位移传感器直线位移传感器用于测量工作台的位移,通常装在工作台侧面。

为了使传感器的热膨胀系数与机床床身的相同,要选择传感器的材料,否则会影响测量的准确性。

直线位移传感器还要避免油雾、冷却液和切屑等的污染。

b.角位移传感器是用来测量传动轴的角度位移的。

用角位移传感器测量直线位移时,要求它的测量值与工作台的直线位移有一定的对应关系,通常是将角位移传感器装在带动工作台移动的丝杠的端部。

位移传感器的输出只有两种形式,即模拟式或数字式;直线或角位移传感器也可能是绝对、半绝对或增量位移传感器。

(2)模拟式和数字式位移传感器:模拟传感器——传感器输出信号的强度产生连续的、逐渐的变化。

数字位移传感器——工作台位置变化时,位移传感器以电脉冲的形式产生一个数字式输出信号。

根据机床的最小设定单位,每移动相应的距离就产生一个脉冲。

(3)绝对、半绝对及增量位移传感器:绝对、增量传感器产生的信号,前者是一个绝对的位置数据.后者是相对于上一个位置的增最(相对)数据。

半绝对位移传感器大部分使用绝对角位移传感器测量丝杠的角位移,为了得到工作台的直线位移,需要采用一些附加的方法测定丝杠旋转的圈数。

2.精度的概念精度和分辨率是描述传感器件性能的重要指标。

传感器件的测量精度是其可以一致的、重复测出的最小单位;分辨率是指传感器件能辨别的一个物理量等分后的最小单位。

无论是直线位移传感器还是角位移传感器,精度都是指其测量工作台位移的精度,而不是传感器的分辨率。

另一方面,测量的精度并非工件的加工精度,工件的加工精度受很多因素的影响。

3.光栅位移检测装置光栅位移传感器基于莫尔条纹和光电效应将位移信号转变为电信号,有直线光栅和困光栅两种类型。

光栅位移检测装置的测量精度高,在大量程测长方面其精度仅低于激光式的测量精度;而对要求整困范围内高分辨率的困分度测量来说,光栅式测量装置是精度最高的一种。

光栅位移传感器具有高分辨率、大量程、抗干扰能力强、宜于动态测量、自动测量及数字显示等特点,是数控机床上理想的位置检测元件。

(1)光栅位移检测装置:包括三大部分:光栅传感器、光栅倍频器、光栅数显表。

a.光栅传感器是一种将位移信号转换为相应电信号的装置。

这部分功能主要由光栅光学系统、相应的机械结构以及初级信号处理与驱动电路来完成。

b.光栅倍频器是为光栅传感器供电并对其输出信号进行辨向和细分等处理的电子装置,输出两路电脉冲信号对应于正反两个移动方向。

c.光栅数显表用来给光栅倍频器供电、对其输出进行记数并转换成位移量以及显示和输出位移量。

最主要的作用是显示位移测量的结果。

(2)光栅传感器的结构和工作原理:a.光栅传感器的结构由主光栅和光栅读数头构成,其中光栅读数由光源、指示光栅及光学系统、光电元件等组成。

主要元件有:(a)光源,要求了解光源的特点及主要参数。

(b)光栅副,由栅距相等的主光栅和指示光栅组成。

指示光栅比主光栅要短,两者的距离λ/2Wd=式中 W——栅距,A——有效光波长。

主光栅和指示光栅的栅线错开一个很小的角度,以得到莫尔条纹。

(c)光电接收元件,把由光栅副形成的莫尔条纹的明暗强弱变化转换为电量输出,一般采用光电池或光敏三极管。

光栅读数头不包括主光栅,测量时它与主光栅做相对位移,可以测得移动件的位移量。

b.光栅传感器的工作原理是本章的重点内容之一。

要求掌握的内容有莫尔条纹的形成原理、莫尔条纹的特点、利用莫尔条纹测量位移的原理。

(3)辨向原理和细分技术:a.辨向原理辨向的目的是当工作台正向移动时将得到的脉冲数累加;反向移动时则从已累加的脉冲数中减去反向移动所得到的脉冲数。

要求掌握辨向原理及辨向电路的结构与时序。

b.细分技术细分技术就是在莫尔条纹变化一周期时不只是输出一个脉冲,而是输出若干个脉冲以提高分辨率。

细分越多则分辨率越高。

最常用的细分方法是直接细分(又称位置细分)。

(4)了解光栅传感器的安装方法及应注意的事项。

4.脉冲发生器脉冲发生器又称角度数字编码器或者码盘,它具有精度高、结构紧凑以及工作可靠等优点,是精密数字控制和伺服系统中常用的角位移数字式检测元器件。

脉冲发生器有增量式和绝对式两种类型。

(1)增量式脉冲发生器:增量式脉冲发生器的结构最为简单,应用很广泛。

但是直接使用增量式角度脉冲发生器进行测量其转换精度并不高;通常采用电子细分提高它的分辨率,其细分原理光栅传感器的完全相同。

增量式脉冲发生器采用两套光电转换装置,令它们在空间的相对位置有一定关系,从而产生相位差90o的两路输出信号:把此两路信号送入与光栅辨向电路相同的辨向电路中,即可鉴别脉冲发生器的旋转方向。

增量式脉冲发生器可用来测量转速,但最高允许测量转速受脉发生器单次脉冲宽度的限制,可用下式计算:()δT N n p /60max =式中 max n ——脉冲发生器最高允许测量转速(r/min);P N ——脉冲发生器每转所产生的脉冲数(r -1);δT ——单次脉冲宽度(s)。

(2)绝对脉冲发生器:绝对式脉冲发生器在任意位置都能给出一个对应于固定点的数字码输出,它不需要基数。

由单个码盘组成的绝对编码器的角位移测量范围为0 o ~360 o ,若要测量大于360 o 的角位移或者轴转数,需要多个码盘。

脉冲发生器的敏感元件可以是非接触式的(如光电式和电磁式),也可以是接触式的。

采用不同的敏感元件,码盘的制造和形式也不同。

最常用的绝对式脉冲发生器有接触式码盘、光学码盘和磁性码盘。

接触式绝对脉冲发生器的优点是在简单的应用中,不需特殊的开关逻辑,只需简单地改变电源就能将每条线上的电压输出调整到需要的电平上。

其缺点是存在着电刷和脉冲发生器的磨损,特别是电刷在导电区和绝缘区的滑动产生的电弧将造成码盘和电刷寿命的降低,并且经不起振动。

a.接触式码盘接触式码盘的特点是敏感元件电刷与码盘上导电区直接接触以检出码盘的位置。

主要组成部分是码盘和电刷。

码盘基体是绝缘体,码道是一组同心圆,其数目决定分辨率。

同心圆的径向距离就是码道宽。

若n 为码道数,则测量每周的分辨角度为360o /2n 。

以这个角度为间隔,在一周内划出2n 个扇形区。

为了供电,码盘上设有一个供电码道,并有供电电刷相连。

为了读出导电区的电位,每个码道上装有一个电刷,每个电刷和一根单独电线相连,作为某一位逻辑电平"1"或"0"的输出。

这样,每一组扇形区对应于一个二进制数。

一般外轨道是低位,内轨道为高位。

这样就能以二进制数表示码盘转过的角度了。

码盘安装时,要求码盘的中心孔和被测体刚性连接,同心度要好并且码盘应和被测轴垂直,以避免了在旋转过程中某个轨道的电刷在相邻轨道间跳动。

为提高绝对式脉冲发生器的精度,降低制作要求,常采用以下几种方法: (a)使用循环码盘直接二进制码盘对码盘的制作和安装要求很严格,否则容易出错,出错的机率多且误差的绝对值较大。

为此通常采用循环码盘,循环码盘的特点是相邻两组数码之间只有一位是变化的。

因此即使制作和安装不准确,产生的误差也不可能超过码盘自身的分辨率。

二进制码转换为循环码的规则是:将某个二进制码右移一位并舍去末位码,然后与原二进制码作不进位加法,即得循环码。

设一个十进制数的n 位循环码为R n R n-1……R 1,它的n 位二进制码为C n C n-1……C l ,则由二进制码转换成循环码可表示为:⎭⎬⎫⊕==+1i i i nn C C R C R 式中 ⊕——不进位加法一般形式为:C n C n-1C n-2……C l 二进制码C n C n-1C n-2……C2 二进制码右移一位的二进制码R1循环码R n R n-1R n-2……(b)采用扫描法最低位码道上安装一个电刷,其他高位码道上安装两个电刷。

一个放在被测位置之前,称超前电刷;另一个放在被测位置的后边,称滞后电刷。

在每个确定位置,最低位电刷输出的电平反映了它真正的值,而高位码道由于有两个电刷,就会输出两种电平。

在某个码道上电刷对真正的输出是"1"时,高一级码道上的真正输出要从滞后电刷上读出。

如果某个码道上电刷对真正的输出是"0"时,高一级轨道上的真正输出要从超前电刷读出。

(c)可以采用几个码盘通过机械传动装置连在一起的码盘组提高分辨率。

b.光电式和电磁式脉冲发生器光电式脉冲发生器的码盘由透明区和不透明区按一定编码规律构成。

由于没有机械磨损,因而允许转速高,使用寿命长,可靠性高。

现有的加工技术可在单个码盘上做18条码道,分辨率为360 o /218,测量精度很高。

是用得较多的一种非接触绝对脉冲发生器。

电磁式脉冲发生器是在导体圆盘上用腐蚀的办法做成一定的编码图形,使导磁体圆盘有的地方厚,有的地方薄;再用一个马蹄形磁心体磁头,磁头上绕两个线圈,原边用正弦电流励磁。

当导磁体的厚区转到磁头下时,磁头的磁导大,二次侧线圈感应电动势大,定义为1,导磁盘的薄区转到磁头下时,磁头的磁导小,二次侧感应电动势小,定义为0,有寿命长,转速高的优点,较有发展前途。

5.感应同步器感应同步器可分为直线感应同步器和圆感应同步器以分别测量直线位移和角位移,并能转换成数字显示。

感应同步器对环境要求低,抗干扰能力强,维护简单,寿命较长,售价低廉,同时具有一定精度,所以应用较广。

(1)感应同步器的结构:直线感应同步器的绕组由定尺和滑尺两部分组成。

定尺上是连续绕组,滑尺上是分段绕组(又称为正、余弦绕组,在空间错开90o电角度,即1/4周期,两组节距相同),均由印制电路绕组做成。

目前标准型定尺节距W2为2mm。

根据不同的运行方式、精度要求、测量范围以及安装条件等,直线式感应同步器可有标准型、窄型、带型以及三重型等不同的尺寸、形状和种类。

(2)感应同步器的使用:应了解感应间步器的安装及感应同步器的接长原理和步骤。

正确的接长可避免或缩小了因接长不善而带来的附加误差,但由于接缝的存在仍将导致接缝误差,它是由接缝处磁密变小造成的,一般在2~4μm;因此,即使单块定尺的精度选得很高,接长后的总精度仍然不会很高。

减小接缝误差就是要消除或减小接缝处磁场的不均匀性,可通过定尺采用非磁性基板或加大绝缘层厚度,在接缝处填充磁性物质,或对靠近接缝处的定尺绕阻采取变节距措施等方法来实现。

(3)感应同步器的工作原理:感应同步器的基本工作原理是基于电磁感应现象。

当励磁绕组用一定频率的正弦电压励磁时,将产生同频率的交变磁通,感应绕组与这个交变磁通鹅合,感应出同频率的交变电动势。

感应电动势随滑尺相对于定尺的移动而周期性变化。

加大励磁电压将获得较大的感应电动势.但过大的励磁电压将引起过大的励磁电流,{吏温升过高而元法正常工作,一般励磁电压选用1~2V 。

相关文档
最新文档