数控机床常用检测装置概要

合集下载

数控机床位置检测与传感器件1位置传感器件主要分类1

数控机床位置检测与传感器件1位置传感器件主要分类1

第五部分数控机床位置检测与传感器件1.位置传感器件主要分类(1)直线和角位移传感器:a.直线位移传感器直线位移传感器用于测量工作台的位移,通常装在工作台侧面。

为了使传感器的热膨胀系数与机床床身的相同,要选择传感器的材料,否则会影响测量的准确性。

直线位移传感器还要避免油雾、冷却液和切屑等的污染。

b.角位移传感器是用来测量传动轴的角度位移的。

用角位移传感器测量直线位移时,要求它的测量值与工作台的直线位移有一定的对应关系,通常是将角位移传感器装在带动工作台移动的丝杠的端部。

位移传感器的输出只有两种形式,即模拟式或数字式;直线或角位移传感器也可能是绝对、半绝对或增量位移传感器。

(2)模拟式和数字式位移传感器:模拟传感器——传感器输出信号的强度产生连续的、逐渐的变化。

数字位移传感器——工作台位置变化时,位移传感器以电脉冲的形式产生一个数字式输出信号。

根据机床的最小设定单位,每移动相应的距离就产生一个脉冲。

(3)绝对、半绝对及增量位移传感器:绝对、增量传感器产生的信号,前者是一个绝对的位置数据.后者是相对于上一个位置的增最(相对)数据。

半绝对位移传感器大部分使用绝对角位移传感器测量丝杠的角位移,为了得到工作台的直线位移,需要采用一些附加的方法测定丝杠旋转的圈数。

2.精度的概念精度和分辨率是描述传感器件性能的重要指标。

传感器件的测量精度是其可以一致的、重复测出的最小单位;分辨率是指传感器件能辨别的一个物理量等分后的最小单位。

无论是直线位移传感器还是角位移传感器,精度都是指其测量工作台位移的精度,而不是传感器的分辨率。

另一方面,测量的精度并非工件的加工精度,工件的加工精度受很多因素的影响。

3.光栅位移检测装置光栅位移传感器基于莫尔条纹和光电效应将位移信号转变为电信号,有直线光栅和困光栅两种类型。

光栅位移检测装置的测量精度高,在大量程测长方面其精度仅低于激光式的测量精度;而对要求整困范围内高分辨率的困分度测量来说,光栅式测量装置是精度最高的一种。

HZNC-3自动编程数控机床的检测装置.

HZNC-3自动编程数控机床的检测装置.

6
二、旋转变压器
旋转变压器是一种常用的转角检测元件,它即可以测角 位移,又可以测角速度。由于它结构简单,工作可靠,精度 又能满足一般要求,所以应用较广。旋转变压器在原理上与 变压器相同,在结构上与发电机相似。它输出的是模拟量
有定子和转子的变 压器的初级绕组3放在定 子上,次级绕组8固联在 转子上,与转子一起转 动。旋转变压器由此得 名。
电相当于极角,
UM相当于
U S i U M sin 电 sin t
U C i U M cos电 sin t
4
二、检测装置的分类
目前,数控机床上使用的检测元件种类很多。 (一)数字式测量和模拟式测量 1.数字式测量 2.模拟式测量 (二)增量式测量和绝对式测量 1.增量式测量 2.绝对式测量 (三)直接测量和间接测量 1.直接测量 2.间接测量
5
一、测速发电机
一般将测速发电机装在司服电动机的轴上,测量电动机 的转速。 测速发电机有交流和直流两种,基本原理是: 发电机发 出的电压与电动机的转速成正比,将这一电压反馈给数控系 统,与指令输入的值进行比较,从而控制电动机的转速。 测速发电机输出的是模拟量——模拟式测量。
§2—5自动编程简介
一、问题的提出 二、自动编程的一般处理过程 自动编程三部分: ①源程序, ②计算机, ③编译软件。
1
二、自动编程的一般处理过程
源程序用数控语言编写 APT(Automatically Programmed Tools) 自动编程的三个组成部分: ①源程序, ②计算机, ③编译软件。
¦ È
k1 = V2
È n¦ i s V1
V
3=
k3
V1 o ¦ Ø t V2 o ¦ È 180o

数控机床各个组成部分的工作原理及结构

数控机床各个组成部分的工作原理及结构

数控机床各个组成部分的工作原理及结构第一节输入装置输入装置是整个数控系统的初始工作机构,它将准确可靠的接收信息介质上所记录的“工程语言"、运算及操作指令等原始数据,转为数控装置能处理的信息,并同时输送给数控装置。

输入信息的方式分手动输入和自动输入。

手动输入简单、方便但输入速度慢容易出错。

现代数控机床普遍采用自动输入,其输入形式有光电阅读机、磁带阅读机及磁盘驱动器以及无带自动输入方式.其它输入方式:1。

无带自动输入方式在高档数控机床上,设置有自动编程系统和动态模拟显示器(CRT).将这些设备通过计算机接口与机床的数控系统相连接,自动编程所编制的加工程序即可直接在机床上调用,无需经制控制介质后再另行输入。

2。

触针接触式阅读机输入方式又称为程控机头或电报机头,结构简单,阅读速度较慢,但输入可靠、价格低廉故在部分线切割机床加工中仍在用。

3。

磁带、磁盘输入方式磁带输入方式进行信息输入,其信息介质为“录音"磁带,只不过录制的不是声音,而是各种数据。

加工程序等数据信息一方面由微机内的磁盘驱动器“写入”磁盘上进行储存,另外也由磁盘驱动器进行阅读并通过微机接口输入到机床数控装置中去。

第二节数控装置数控装置是数控机床的核心,数控机床几乎所有的控制功能(进给坐标位置与速度,主轴、刀具、冷却及机床强电等多种辅助功能)都由它控制实现。

因此数控装置的发展,在很大程度上代表了数控机床的发展方向。

数控装置的作用是接收加工程序等送来的各种信息,并经处理分配后,向驱动机构发出执行的命令,在执行过程中,其驱动、检测等机构同时将有关信息反馈给数控装置,经处理后,发出新的命令。

一、数控装置的组成1、数字控制的信息1)几何信息——是指通过被加工零件的图样所获得的几何轮廓的信息。

这些信息由数控装置处理后,变为控制各进给轴的指令脉冲,最终形成刀具的移动轨迹。

几何信息的指令,由准备功能G具体规定。

2)工艺信息———通过工艺处理后所获得的各种信息。

数控原理与系统之位置检测装置

数控原理与系统之位置检测装置
1000
1111
图6-6 a葛莱码盘
08
1 0000 1000
9
0001
1001
3 0011
11 1011
2 0010
1010 10
6 0110
1110 15
7 0111
1111 14
0101
1101
5
0100 1100
13
4 12
b 四位二进制码盘非单值性误差
第二节 光电编码器
图6-6为葛莱码盘,其各码道的数码不同时改变,任 何两个相邻数码间只有一位是变化的,每次只切换一位 数,把误差控制在最小范围内。二进制码转换成葛莱码 的法则是:将二进制码右移一位并舍去末位的数码,再 与二进制数码作不进位加法,结果即为葛莱码。
第二节 光电编码器
光电式脉冲编码器,它由光源、聚光镜、光电盘、 圆盘、光电元件和信号处理电路等组成(图6-1)。光电盘是用 玻璃材料研磨抛光制成,玻璃表面在真空中镀上一层不透光的铬, 然后用照相腐蚀法在上面制成向心透光窄缝。透光窄缝在圆周上 等分,其数量从几百条到几千条不等。圆盘也用玻璃材料研磨抛 光制成,其透光窄缝为两条,每一条后面安装有一只光电元件。 光电盘与工作轴连在一起 ,光电盘转动时,每转过一个缝隙就发 生一次光线的明暗变化,光电元件把通过光电盘和圆盘射来的忽 明忽暗的光信号转换为近似正弦波的电信号,经过整形、放大、 和微分处理后,输出脉冲信号。通过记录脉冲的数目,就可以测 出转角。测出脉冲的变化率,即单位时间脉冲的数目,就可以求 出速度。
第二节 光电编码器
光电脉冲编码器用于数字脉冲比较伺服系统(图6-4) 的工作原理如下:光电脉冲编码器与伺服电机的转轴连接,随着 电机的转动产生脉冲序列,其脉冲的频率将随着转速的快慢而升 降。若工作台静止,指令脉冲和反馈脉冲都为零,两路脉冲送入 数字脉冲比较器中进行比较,结果输出也为零。因伺服电机的速 度给定为零,工作台依然不动。随着指令脉冲的输出,指令脉冲 不为零,在工作台尚未移动之前,反馈脉冲仍为零,比较器输出 指令信号与反馈信号的差值,经放大后,驱动电机带动工作台移 动。电机运转后,光电脉冲编码器将输出反馈脉冲送入比较器, 与指令脉冲进行比较,如果偏差不为零,工作台继续移动,不断 反馈,直到偏差为零,即反馈脉冲数等于指令脉冲数时,工作台 停在指令规定的位置上。

数控机床电气控制第六章

数控机床电气控制第六章

第六章 检测装置
6.5 光栅 6.5.1 光栅结构与工作原理 无论是长光栅或圆光栅,主要由标尺光栅和光栅读数头两部分组成。通常,标尺光栅固定在机床活动部 件(如工作台或丝杠)上,光栅读数头安装在机床的固定部件(如机床底座)上,两者由于工作台的移动而 雨相对移动。在光栅读数头中,有一个指示光栅,它可以随光栅读数头在标尺光栅上移动,因此,在光栅安 装时,必须严格保证标尺光栅和指示光栅的平行度要求以及二者之间的间隙(通常取 0.05mm 或 0.lmm)要 求。 1 结构 (1)光栅尺 标尺光栅和指示光栅,统称光栅尺,采用真空镀膜方法光刻上均匀密集线纹的透明玻璃板或长条形金属 镜面。对于长光栅,这些线纹相互平行、距离相等,该间距被称为栅距。对于圆光栅,这些线纹是等栅距角 的向心条纹。栅距和栅距角是决定光栅光学性质的基本参数。常见的长光栅的线纹密度为每毫米 25 条、50 条、 条、 条、 条。 100 125 250 对于圆光栅, 如果直径为 70mm, 一周内的刻线 100~768 条; 如果直径为 110mrn, 一周内的刻线 600~1024 条。但是对于同一光栅元件,其标尺光栅和指示光栅的线纹密度必须相同。
Hale Waihona Puke 第六章 检测装置图 6-3 绝对式光电编码器的结构图 由于绝对式光电编码器转过的圈数由 RAM 保存,所以断电后机床的位置即使断电或断电后又移动过也 能够正常工作。
第六章 检测装置
6.3 感应同步器 6.3.1 感应同步器结构与工作原理 1.结构特点 直线式感应同步器由定尺和滑尺组成,相当于一个展开式的多极旋转变压器,其结构如图 6-4 所示。定 尺和滑尺的基板由与机床线胀系数相近的钢板制成,钢板上用绝缘粘接剂贴有钢箔,利用照相腐蚀的办法做 成图示的印刷线路绕组。感应同步器定尺绕组是一个单向均匀的连续绕组;滑尺有两个绕组,其位置相距绕 组节距(2 )的 1/4,分别称为正弦绕组和余弦绕组。定尺和滑尺绕组的节距相等,均为 2 ,这是衡量感 应同步器精度的主要参数,工艺上要保证其节距的精度。一块标准型感应同步器定尺长度为 250mm,节距 为 2mm,其绝对精度可达 2.5 m,分辨率为 0.25 m。

第五章 数控机床的位置检测装置 曼初宏

第五章 数控机床的位置检测装置 曼初宏

第四节 光栅测量装置
2.光栅读数头 (1)分光读数头 如图5-15所示,从光源Q发出的光,经过透镜L1照 射到光栅G1和G2上形成莫尔条纹。 (2)垂直入射读数头 这种读数头主要用于每毫米25~125条刻线的 玻璃透射光栅测量装置,如图5-16所示。
图5-15 分光读数头
第四节 光栅测量装置
(3)反射读数头
图5-26 鉴相式测量检测电路框图
2.鉴幅式测量检测电路
第六节 编码器测量装置
一、光电式编码器的结构 光电式编码器是一种光电脉冲发生器,其最初结构就是一种光电 盘。它由光源、聚光镜、光电盘、分度狭缝、光电元件、数模转 换和方向辨别电路及数字显示装置等组成,如所示。
图5-27 光电式编码器测量装置
第六节 编码器测量装置
第五节 磁栅测量装置
图5-20 带状磁尺
第五节 磁栅测量装置
(4)圆形磁尺
图5-22 圆形磁尺
第五节 磁栅测量装置
2.磁头
图5-23 单磁头结构
第五节 磁栅测量装置
图5-24 双磁头结构
第五节 磁栅测量装置
三、磁栅测量装置的工作方式 磁栅测量是模拟测量,必须和检测电路配合才能实施检测。根据检 测方法的不同,磁栅测量可分为鉴相式测量和鉴幅式测量两种工作 方式,其中以鉴相式测量方式应用较多。 1.鉴相式测量检测电路
第一节 位置检测装置概述
2.按检测信号的选取形式不同分类 (1)数字式测量装置 该装置将被测位移量转换为脉冲个数,即数字 形式来表示。 (2)模拟式测量装置 该装置将被测位移量转换为连续变化的模拟电 量来表示,如电压变化、相位变化等,因此可直接对被测量进行检 测,无需量化处理;在小量程内可实现较高精度的测量,可用于直 接测量和间接测量。 3.按测量的绝对值不同分类 (1)增量式测量装置 它只测量相对位移量(位移增量),即每移动一 个测量单位就发出一个测量信号。 (2)绝对式测量装置 对于被测量的任意点的位置,均由一个固定的 零点计算起,每一被测点都有一个相应的测量值。

第5章 数控机床的检测装置要点

第5章 数控机床的检测装置要点
差π/2的交流激磁电压 U1s=Umsinωt
U1c=Um(sinωt+π/2)=Umcosωt 当转子正转时,这两个激磁电压在转子绕组中产生的 感应电压经叠加,得到转子的感应电压U2为
U 2 = kU1s sin + kU1c cos
CNC
5.2 旋转变压器
U2=kUmsinωtsinθ+kUmcosωtcosθ
CNC
5.4 光栅
通常意义上讲,光栅按用途分有两大类:
物 理光 栅(衍 射光栅 ): 200~ 500 条/㎜,栅距 0.002~0.005㎜,主要是利用光的衍射原理,用于 光谱分析和光波波长的测定。
相同但幅值不同。
Vs = Vm sin sin t
Vc = Vm cos sin t
则在定尺绕组产生的总感应电压为
V2 = KVm sin sin t cos KVm cos sin t sin
= KV m sin ( )sin t
若电气角α已知,只要测出V2幅值,便能求出与位移对应 的角度θ。实际测量时,不断调整α ,让幅值为零。α 的变化量则代表θ对应的位移量,就可测得机械位移。
激磁
t
U2
输出
t
U 2 = KU m sin t sin
CNC
U 1c
5.2 旋转变压器
使用较广泛的为正余弦旋转变压器
U 1s
U 2 = kU1s sin + kU1c cos
主要内容
定子 1c
1ccos
θ
5° 4
1ssin
R
U 2 转子
1s
CNC
5.2 旋转变压器
1.鉴相工作方式 给定子的两个绕组通以相同幅值、相同频率,但相位

第四章-数控机床的驱动与控制系统-伺服系统与位置检测概要PPT课件

第四章-数控机床的驱动与控制系统-伺服系统与位置检测概要PPT课件

ii). 鉴幅式
励磁电压:
Us =(Umsin)sinwt Uc =(Umcos)sinwt
q q 感应电势: E = K U m sinsin w tc o s K U m c o ssin w tsin = K U m sin w tsin ( q)
当改变α ,使U=0,则θ=α, 而α为已知量,同旋转变压器有:
只需要测出转子感应电压的相位,就知道转轴的角度。
11.01.2021
6
第一节 常用的位置检测装置
ii).鉴幅式
通过对旋转变压器转子绕组中感应电 势幅值的检测来实现位移检测的。
励磁电压:
Us =(Umcos)sinwt
S1
Uc =(Umsin)sinwt
感应电势: E s=K U ssin(90q)=K U msinsinw tcosq E c=K U csin( q)=K U mcoscosw tsinq
例如,二进制码1101对应的葛莱码为1011,其演算过程 如下:
1101 (二进制码) 1101(不进位相加,舍去末位)
1011 (葛莱码)
11.01.2021
16
第一节 常用的位置检测装置
五、光栅
位置检测装置.将机械位移或者模拟量转变为数字脉冲, 反馈给数控装置,实现闭环控制.
1.结构和种类
包括: 标尺光栅 固定在机床活动部件上 指示光栅 安装在读数头内
第四章 数控机床的位置检测与伺服控制
第一节 常用的位置检测装置 第二节 数控机床的伺服系统概述 第三节 步进电机及其驱动装置 第四节 交流伺服系统
11.01.2021
1
第一节 常用的位置检测装置
作用:
检测位移和速度,并发出反馈信号,构成 闭环或半闭环控制。

第9章 数控机床的检测装置

第9章 数控机床的检测装置
旋转编码器是一种旋转式测量装置, 旋转编码器是一种旋转式测量装置,通常安装在被测 轴上,随被测轴一起转动, 轴上,随被测轴一起转动,可将被测轴的角位移转换 成增量脉冲形式或绝对式的代码形式, 成增量脉冲形式或绝对式的代码形式,所以有增量式 和绝对式两种类型.按其结构又可分为光电式, 和绝对式两种类型.按其结构又可分为光电式,接触 式和电磁感应式. 式和电磁感应式.
图9-2 增量式光电编码器结构示意图
输出波形如图9-3所示. 输出波形如图 所示. 所示
图9-3 增量式光电编码器输出波形
当光电码盘正转时, 信号超前 信号90° 信号超前B信号 当光电码盘正转时,A信号超前 信号 °,当光电 码盘反转时, 信号超前 信号90° 信号超前A信号 码盘反转时,B信号超前 信号 °,数控系统正是利用 这一相位关系来判断方向的. 这一相位关系来判断方向的. 光电编码器的输出信号A, 光电编码器的输出信号 ,和B,为差动信号.差 ,为差动信号. 动信号大大提高了传输的抗干扰能力.在数控系统中, 动信号大大提高了传输的抗干扰能力.在数控系统中, 常对上述信号进行倍频处理,以进一步提高分辨率. 常对上述信号进行倍频处理,以进一步提高分辨率. 此外,在光电码盘的里圈还有一条透光条纹C, 此外,在光电码盘的里圈还有一条透光条纹 ,用以 每转产生一个脉冲, 每转产生一个脉冲,该脉冲信号又称一转信号或零标 志脉冲,作为测量基准. 志脉冲,作为测量基准.
直线玻璃透射式光栅和金属反射式光栅检测装置分别如 图9-12和图 和图9-13所示. 所示. 和图 所示
图9-12 透射式光栅检测装置
图9-13 反射式光栅检测装置
玻璃透射式光栅是在透明的光学玻璃表面制成感光涂 层或金属镀膜,经过涂敷, 层或金属镀膜,经过涂敷,蚀刻等工艺制成间隔相等 的透明与不透明线纹, 的透明与不透明线纹,线纹的间距和宽度相等并与运 动方向垂直,线纹之间的间距称为栅距. 动方向垂直,线纹之间的间距称为栅距.常用的线纹 密度为25条/㎜,50条/㎜,100条/㎜,250条/㎜.条 密度为 条 ㎜ 条㎜ 条㎜ 条㎜ 数越多,光栅的分辨率越高. 数越多,光栅的分辨率越高. 圆光栅是在玻璃圆盘的圆环端面上, 圆光栅是在玻璃圆盘的圆环端面上,制成透光与不透 光相间的条纹,条纹呈辐射状,相互间的夹角相等. 光相间的条纹,条纹呈辐射状,相互间的夹角相等.

08数控机床电气控制题库

08数控机床电气控制题库

LU 「T耐IEB C三、 判断题 低压断路器的额立电流和额定电压应小于或等于设备的正常工作电压和工作电流。

(X ) 低压断路器的极限通断能力就大于或等于电路的最大短路电流。

(/) 数控机床中一般采用时间继电器来进行时间控制。

(X )在电动机启动短时间短路时,热继电器不会动作。

(V ) 继电器的触点额定电压应大于或等于被控制电路的电压。

(J ) 热继电器是一种利用电流的碱效应工作的保护电器。

(X ) 直流稳压电源的功能是将非稳左交流电源变成稳立直流电源。

(J )8、 行程开关是根据运动部件位置而切换电路的自动控制电器。

(丁) 9、 行程开关、限位开关和终端开关不是同一种开关。

(X )10、 急停和应急断开操作按钮应使用绿色。

(X )四、 简答题1、 为什么说低压断路器短路保护要比使用熔断器优越?使用低压断路器实现短路保护要比使用熔断器优越。

因为当电路短路时,若采用熔断 器保护。

很有可能只有一相电源的熔断器熔断,造成缺相运行。

对于低压断路器来说.只要 短路都会使开关跳闸.将三相电源同时切断。

2、 中间继电器的主要用途是什么?中间继电器主要用途是当其他继电器的触点数或触点容量不够时,可借助中间继电器来 扩大它们的触点数或触点容量,起到中间转换的作用。

3、 机床控制变压器的用途是什么?数控机床中控制变压器常作为%类机床、机械设备中一般电器的控制电源和步进驱动 器、局部照明及指示灯的电源。

4、 导线和电缆的载流容量由哪两个因素来确左?导线和电缆的载流容量由下而两个因素来确定。

A ——正常条件下,通过最大的稳态电 流或间歇负载的热等效均方根值电流时导线的最高允许温度;——短路条件下,允许的短时极限温度。

5、 热继电器和熔断器保护功能有什么不同之处?热继电器是利用测量元件被加热到一宦程度而动作的一种继电器,它在电路中用做电动 机或负载的过载和断相保护。

熔断器是低压线路及电动机控制电路中起短路保护作用的电 器。

数控机床的位置检测装置

数控机床的位置检测装置
模拟式测量 将被测量用连续的变量(如相位 变化、电压幅值变化)来表示的。在数控机床 上模拟式测量主要用于小量程的测量,例如 感应同步器的一个线距内信号相位变化等。
二、位置检测装置的分类(3)
直接测量和间接测量
直接测量 将检测装置直接安装在执行部件上。测量 直线位移量,常用光栅,感应同步器等检测装置。其 优点是直接反映工作台的直线位移量,测量精度高。 缺点是检测装置要和行程等长,这对大型数控机床是 一个很大的限制。
间接测量 通过测量与工作台直线运动相关联的回转 运动间接地测量工作台的直线位移,检测装置常用旋 转变压器等。间接测量使用可靠方便,无长度限制, 其缺点是测量信号加入了直线运动转变为回转运动的 传动链误差,从而影响测量精度。
三、常见位置检测装置结构及工作原理(1)
光电脉冲编码器(1)
光电脉冲编码器是一种常用角位移传感器, 属间接测量元件。它通常与驱动电动机同轴 连接。光电编码器随着电动机轴旋转,可以 连续发出脉冲信号。数控系统通过对该信号 的接收、处理和计数,即可得到电动机的旋 转角度,从而算出当前工作台的位移。
直线感应同步器的结构图例
三、常见位置检测装置结构及工作原理(6)
旋转变压器的结构与工作原理(1)
旋转变压器是一种控制用的微电机,它将机械转角变 换成电信号输出。在结构上与两相式异步电动机相似, 由定子和转子组成。定子绕组为变压器的初级,转子 绕组为变压器的次级,励磁电压接到定子绕组上。旋 转变压器结构简单,动作灵敏,对环境无特殊要求, 维护方便,抗干扰性强,工作可靠,因此在数控机床 上广泛应用。
光电脉冲编码器原理图图例
三、常见位置检测装置结构及工作原理(3)
光电脉冲编码器(3)
光电编码器的指示光栅(固定不动)上有两段条纹组A和B, 每组条纹的间距(称为节距)与圆光栅相同,而A组与B组的 条纹彼此错开1/4节距,两组条纹相对应的光电元件所感应的信 号的相位彼此相差90º。当电动机正转时,A信号超前B信号90º, 当电动机反转时B信号超前A信号90º。数控装置正是利用这一 相位关系判断电动机的转动方向,同时利用A信号(或B信号) 的脉冲数计算电动机的转角。因此采用光电编码器所构成的位 置闭环控制的分辨率主要取决于圆光栅一圈的条纹数。

第三节 数控机床的位置检测装置

第三节 数控机床的位置检测装置

直线型
长光栅、激光干涉仪 长光栅、
编码尺
绝对值式磁尺
20:40:43
一、旋转变压器 旋转变压器是一种角度测量装置,它是一种小型交流电动机。 旋转变压器是一种角度测量装置,它是一种小型交流电动机。 1.旋转变压器的结构及其特点 1.旋转变压器的结构及其特点 结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰 结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大, 工作可靠,广泛应用于数控机床上。 强,工作可靠,广泛应用于数控机床上。 旋转变压器在结构上和两相线饶式异步电动机相似,由定子和转子组成。定子 旋转变压器在结构上和两相线饶式异步电动机相似, 定子和转子组成。 组成 绕组为变压器的一次绕组,转子绕组为变压器的二次绕组。 绕组为变压器的一次绕组,转子绕组为变压器的二次绕组。 接线方式: 接线方式: 定子绕组通过固定在壳体上的接线柱直接引出。 定子绕组通过固定在壳体上的接线柱直接引出。 转子绕组有两种不同的引出方式。根据转子绕组两种不同的引出方式, 转子绕组有两种不同的引出方式。根据转子绕组两种不同的引出方式,旋转变 压器分有有刷式和无刷式两种结构。 压器分有有刷式和无刷式两种结构。
20:40:43
若 θ机
与转子绕组平行, 当 与转子绕组平行,即没有磁力线穿 θ 过转子绕组,因此感应电压为0, 垂直于转子绕组平面时, 过转子绕组,因此感应电压为 ,当磁通φ 垂直于转子绕组平面时,即( 机 - θ电 = ±90 ) 转子绕组中感应电压最大。在实际应用中,根据转子误差电压的大小, 时,转子绕组中感应电压最大。在实际应用中,根据转子误差电压的大小,不断修正定 即励磁幅值), ),使其跟踪 变化。 子励磁信号 θ电 (即励磁幅值),使其跟踪 θ 机 变化。 由上式可知,感应电压 E2 是以ω 为角频率的交变信号,其幅值为U msin(θ 机 − θ电) 为角频率的交变信号, 由上式可知, 已知, 的幅值, 的值, 若电气角 θ电 已知,那么只要测出 E2 的幅值,便可以间接地求出 θ 机 的值,即可以测 出被测角位移的大小。当感应电压的幅值为0时 出被测角位移的大小。当感应电压的幅值为 时,说明电气角的大小就是被测角位移 θ 的大小。旋转变压器在鉴幅工作方式时, 让感应电压的幅值为0, 电 的大小。旋转变压器在鉴幅工作方式时,不断调整 ,让感应电压的幅值为 ,用 θ电 θ电 θ机 的测量, 可通过具体电子线路测得。 代替对 的测量, 可通过具体电子线路测得。

数控机床常用检测装置

数控机床常用检测装置

详细描述
旋转变压器与砂轮的驱动电机连接,实时监 测砂轮的转速和角度信息。旋转变压器将监 测到的信号转化为电信号,传输给数控系统 。数控系统根据接收到的信号,精确控制砂 轮的转速和磨削深度,确保磨削过程的稳定 性和精度。
THANKS
感谢观看
故障二
测量数据不准确
排除方法
对检测装置进行校准,检查测量元件是否正常,如 有需要更换测量元件。
机械运动不顺畅
故障三
排除方法
对机械部分进行润滑,检查机械结构是否正常,如有需 要调整或更换机械部件。
05
CATALOGUE
数控机床检测装置的应用案例分析
应用案例一:光电编码器在数控车床中的应用
总结词
光电编码器在数控车床中主要用于检测 主轴的转速和位置,实现精确的切削控 制。
特点
不同类型的检测装置具有不同的特点和应用范围,需要根据具体需求进行选择。接触式检测装置具有 较高的测量精度和可靠性,但易受环境影响;非接触式检测装置具有非接触、高精度、高速度等优点 ,但价格较高,对环境要求较高。
检测装置的发展趋势
发展趋势
随着数控技术的不断发展,数控机床检测装置正朝着高精度、高速度、智能化、集成化等方向发展。未来,随着 传感器技术、计算机技术和人工智能技术的不断进步,数控机床检测装置将更加智能化、自动化和高效化。
01
直线光栅尺是一种高精度的测量传感器,用于测量直线位 移,其测量精度可达±1μm。
02
它由标尺光栅和读数头两部分组成,标尺光栅固定在直线 导轨的一端,读数头与导轨滑块联接并随之运动。
03
当滑块移动时,与读数头相联的指示光束通过标尺光栅的缝隙 部分,在光电元件上形成位移量,该位移量通过后续电路的处

数控车床出厂前的检测项目及内容

数控车床出厂前的检测项目及内容

数控车床出厂前的检测项目及内容数控车床作为一种先进的机械设备,在生产制造过程中扮演着至关重要的角色。

在数控车床出厂前的检测项目及内容中,包含了一系列严格的检测标准和流程,以确保车床的质量和性能能够满足用户的需求和标准。

这些检测项目和内容涵盖了机械、电气、控制系统等多个方面,旨在保证数控车床在投入使用前能够正常运行、精准加工,并且具有长久的稳定性和可靠性。

首先,在数控车床出厂前的检测项目中,机械结构是首要考虑的部分之一。

操作平台、主轴、导轨、丝杠等机械结构部件的精度和稳定性是数控车床加工精度和稳定性的关键保障。

在检测项目中,需要对这些机械结构部件的尺寸、形状、表面粗糙度等进行严格检测,以确保其符合设计要求和标准。

同时,还需要对机械结构部件进行动静态刚度、耐磨性、冲击耐久性等方面的测试,以验证其在长时间工作中的性能和可靠性。

其次,电气系统在数控车床中同样起着至关重要的作用。

电控柜、电机、传感器、操作面板等电气设备的质量和性能直接影响数控车床的运行效果和安全性。

在检测项目中,需要对电气设备进行电流、电压、功率、绝缘电阻等方面的测试,以确保其在正常工作情况下不会发生电气故障或损坏。

此外,还需要对电气系统进行电磁兼容性、防雷击、防电磁干扰等方面的测试,以保证数控车床在复杂电磁环境下能够正常工作和稳定运行。

除了机械和电气系统,控制系统也是数控车床中不可或缺的一部分。

控制器、编程软件、驱动器等控制系统设备的性能和稳定性直接影响数控车床的加工精度和速度。

在检测项目中,需要对这些控制系统设备进行速度、精度、稳定性、响应速度等方面的测试,以保证数控车床在各种加工情况下都能够高效、稳定地工作。

同时,还需要对控制系统进行编程逻辑、故障诊断、自动化控制等方面的测试,以确保数控车床具有良好的智能化水平和自动化加工能力。

总的来说,在数控车床出厂前的检测项目中,机械结构、电气系统和控制系统是三个关键的检测方面。

通过对这些方面的严格检测和测试,可以保证数控车床在出厂前具有优秀的质量和性能,能够满足用户的加工需求和标准。

《数控机床结构原理与应用》第2章 数控机床检测装置

《数控机床结构原理与应用》第2章 数控机床检测装置
上一页 下一页 返回
2.1 概述
数控机床中测量传感器按形状一般有直线型和旋转型两种。 直线型测量工作台的直线位移。其测量精度主要取决于测量 元件的精度,不受机床传动精度的影响。旋转型测量与工作 台直线运动相关联的回转运动,间接测量工作台的直线位移。 其测量精度取决于测量元件和机床传动链两者的精度。
上一页 下一页 返回
2.2 编码器(码盘)
绝对式光电编码器转过的圈数则由RAM保存,断电后由后备 电池供电,保证机床的位置即使断电或断电后又移动过也能 够正确的记录下来。因此采用绝对式光电编码器进给电动机 的数控系统只要出厂时建立过机床坐标系,则以后就不用再 做回参考点的操作,而保证机床坐标系一直有效。绝对式光 电编码器与进给驱动装置或数控装置通常采用通讯的方式, 反馈位置信息。
1.增量式测量与绝对式测量 按照检测装置的编码方式可分为增量式测量和绝对式测量。 (1)增量式测量 增量式测量是只测量位移增量,即工作台每移动一个基本单
位长度单位,测量装置便发出一个测量信号,此信号通常是 脉冲形式。
上一页 下一页 返回
2.1 概述
其优点是检测装置比较简单,能做到高精度,任何一个对中 点均可作为测量起点,其缺点是一旦计数有误,此后结果全 错。发生故障时,事故排除后,再也找不到正确位置。典型 的增量式测量装置有光栅和增量式光电编码器。
上一页 下一页 返回
2.1 概述
3.数字式测量与模拟式测量 (1)数字式测量 数字式测量以量化后的数字形式表示被测的量。其特点是测
量装置简单,信号抗干扰能力强;被测量量化后转换成脉冲 个数,便于显示处理;测量精度取决于测量单位,与量程基 本无关。典型的数字式测量装置有光电编码器、接触式编码 器和光栅。 (2)模拟式测量 模拟式测量是将被测的量用连续的变量表示,如用电压变化、 相位变化来表示。在大量程内作精确的模拟式检测,在技术 上有较高的要求,数控机床中模拟式测量主要用于小量程测 量且实现高精度测量。其特点是直接对被测量进行检测,无 需量化;在小量程内可以实现高精度测量;可用于直接检测 和间接检测。典型的模拟式测量装置有旋转变压器、感应同 步器和磁栅。

数控机床的检测装置

数控机床的检测装置
另外,在转子每转1周时,转子的输出电压将随旋转 变压器的极数不同而不止一次地通过零点,必须在线路 中加相敏检波器来辨别转换点和区别不同的转向。
旋转变压器
• 此外,还可以用3个旋转变压器按1:1、10:1和100:1 的比例相互配合串接,组成精、中、粗3级旋转变压 器测量装置。如果转子以半周期直接与丝杠耦合(即 “精”同步),结果使丝杠位移10mm,则“中”测 旋转变压器工作范围为100mm,“粗”测旋转变压 器的工作范围为1000mm。
转子正转时, U1s、U1c在转子绕组中产生感应 电压,经叠加,得转子感应电压U2
旋转变压器
转子正转时的感应电压: U2=kUmsinωtsinθ+kUmcosωtcosθ=lt;1; θ—相位角,转子偏转角。
转子反转时的感应电压:
U2=kUmcos(ωt+θ) (ωt+θ) ~ θ严格对应关系, 检测出(ωt+θ),可得θ ,可得被测轴的角位移。
如果将旋转变压器安装在数控机床的丝杠上,
当θ角从0°变化到360°时,表示丝杠上的螺母走
了一个导程,这样就间接地测量了丝杠的直线位 移(导程)的大小。
旋转变压器
当测全长时,由于普通旋转变压器属于增量 式测量装置,如果将其转子直接与丝杠相联,转子转动 一周,仅相当于工作台1个丝杠导程的直线位移,不能反 映全行程,因此,要检测工作台的绝对位置,需要加一 台绝对位置计数器,累计所走的导程数,折算成位移总 长度。
增量式检测方式测量位移增量,移动一个测量单位 就发出一个测量信号。 优点:检测装置较简单,任何一个对中点均可作为测量 起点;轮廓控制常采用 缺点:对测量信号计数后才能读出移距,一旦计数有误, 此后的测量结果将全错;发生故障时(如断电、断刀等) 不能再找到事故前的正确位置,必须将工作台移至起点 重新计数。

伺服系统中的常用检测装置

伺服系统中的常用检测装置
其原、副绕组分别放置在定、转子上,原、副绕组之间的 电磁耦合程度与转子的转角有关。
当它的原绕组施加单相交流电压励磁时,副绕组输出电压 的幅值将与转子转角有关。
2024/4/7
9
分类方法:
(1)若按有无电刷来分,可分为接触式和无接触式两种; (2)若按极对数来分,可分为单对极和多对极; (3)若按用途来分,可分为计算用旋转变压器和数据传输
22
感应同步器作为检测元件有如下的优点:
(1)精度高
因为定尺的节距误差有平均自补偿作用,所以尺子本身的精 度能做得较高。
直线感应同步器对机床位移的测量是直接测量,不经过任何 机械传动装置,测量精度主要取决于尺子的精度
(2)测量长度不受限制 当测量长度大于250mm时,可以采用多块定尺接长,相邻定
直线式由定尺和滑尺两部分组成; 而圆形感应同步器由定子和转子组成。 感应同步器的这两部分绕组相当于旋转变压器的初级和次
级线圈,它们都是利用交变磁场和互感原理工作的。 为了辨向和细分,在滑尺上制作两个彼此相差τ/2的绕组,
这两个绕组分别为正弦绕组和余弦绕组。
2024/4/7
21
2024/4/7
2024/4/7
35
5.4 光栅
光栅是利用光的反射、透射和干涉现象制成,有物理光栅和 计量光栅。
物理光栅两刻线之间距离在0.002-0.005 mm之间,常用于光谱 分析和光波波长的测定;
计量光栅栅距在0.004-用较多的一种检测装置
(6)使用经济。
成本低、寿命长。
2024/4/7
6
5.1.2 分类
分类
增量式
绝对式
位移 传感器
回转型--脉冲编码器、自整角机 、多极旋转变压器 、绝对脉冲编 旋转变压器、圆感应同步器 、光 码器 绝对值式光栅 、 三速圆 栅角度传感器 、圆光栅、圆磁栅 感应同步器 、磁阻式多极旋转
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/8/31 1
5.1 检测装置简介





系统分辨率的提高,对加工精度有一定的影响,但也 不宜过小,分辨率的选取通常和脉冲当量的选取方法 一样,数值也相同,均按机床加工精度的1/3~1/10选取。 数控机床对检测装置的主要要求有: 工作可靠,抗干扰性能强。 使用维护方便,适应机床的工作环境。 满足精度和速度的要求。 易于实现高速的动态测量、处理的自动化。 成本低。



感应同步器的这两部分绕组相当于旋转变压器的初级和 次级线圈,它们都是利用交变磁场和互感原理工作的。
2018/8/31
8
5.3.1 感应同步器的结构和种类
2018/8/31
9
5.3.2 感应同步器的工作原理(1)


如图5-8所示,滑尺上具有在空间上相差1/4节距的正弦绕组 和余弦绕组,且定尺与滑尺节距相同。 当滑尺励磁绕组与定尺感应绕组间发生相对位移时,由于电 磁耦合的作用,感应绕组中的感应电压随位移的变化而呈周 期性地变化,感应同步器就是利用这一特点来检测滑尺相对 定尺的位置的。 2
2018/8/31 16
5.4.2 计量光栅的工作原理(3)
2018/8/31
17
5.4.2 计量光栅的工作原理(4)
(2)光电转换 光栅检测系统的光电转换转 由光栅读数头完成。最基本 的光栅读数头由光源、聚光 镜、指示尺光栅和硅光电池 组成,如图5-12 a所示。 为了便于说明其工作原理, 以光闸莫尔光栅为例,说明 当光栅移动一个栅距时,其 输出波形和两块光栅相互位 置变化的关系。
2018/8/31
ud KVm sin( t
x 2 ) 2
12
5.3.4 感应同步器测量系统
(2)鉴幅测控系统

鉴幅工作方式是根据感应输出电压的幅值变化来检测位 移的。在这种工作方式下,滑尺的两个正余弦绕组分别 供以频率和相位相同,幅值不同正弦电压,即
Vs Vm sin sint Vc Vm cos sint
第5章 数控机床常用检测装置



5.1 检测装置简介 检测元件的精度主要包括系统精度和系统分辨率两项。 系统精度 是指在一定长度或转角范围内测量积累误差的 最大值,目前一般长度位置检测精度均已达到 ±0.002mm/m以内,回转角测量精度达到±10″/360°; 系统分辨率 是测量元件所能正确检测的最小位移量,目 前长度位移的分辨率多数为1μm,高精度系统分辨率可达 0.1μm,回转分辨率为2″。 不同类型数控机床对检测装置的精度和使用速度要求是 不同的。

光栅是利用光的反射、透射和干涉现象制成,有物理光栅 和计量光栅。 物理光栅两刻线之间距离在 0.002-0.005 mm之间,常用于 光谱分析和光波波长的测定; 计量光栅栅距在0.004-0.025mm之间,常用于高精度位移的 检测,是数控系统中应用较多的一种检测装置


5.4.1 计量光栅的种类
2
E
定尺 滑尺 正弦绕组
Es Ec
余弦绕组
2018/8/31
图5–8 直线感应同步器的结构
10
5.3.2 感应同步器的工作原理(2)





当定尺绕组与滑尺绕组之一相重合时,如 图5-9的A点,这时定尺输出的感应电压最 大; 当滑尺绕组相对于定尺绕组平行移动时, 感应电压逐渐减小,到达1/4节距的位置B 时,由于各滑尺线圈磁场在定尺各线圈中 产生的电压方向相反,所以定尺线圈输出 电压为零; 如果滑尺继续向C点移动,则滑尺磁场在 定尺中产生的电压在负方向上逐渐增大, C点达到最大; 当滑尺再向D点移动时,定尺电压又逐渐 变为零。 当移动一个节距,到达E点时,又与A点的 情况相同。 2018/8/31

按照不同的分类方法,计量光栅可分为:直线光栅和圆形 光栅;逶射光栅和反射光栅 ;增量式光栅和绝对式光栅 等。
2018/8/31 14
5.4.2 计量光栅的工作原理(1)
2018/8/31
15
5.4.2 计量光栅的工作原理(2)
莫尔条纹有以下几个重要特性: 1)平均效应 莫尔条纹是由大量的光栅线纹共同作用产生的,对光栅的 线纹误差有平均作用。从而可以在很大程度上消除光栅线 纹的制造误差。光栅越长,参加工作的线纹越多,这种平 均效应就越大。 2)对应关系 如图5-11所示,当光栅移动一个栅距d,摩尔条纹也相应移 动一个纹距W,其光强变化近似正弦波形;若移动方向相 反,则摩尔条纹移动的方向也相反。 3)放大作用
ES KVm sin sint cos EC KVm cos sint sin
2018/8/31

2 x0 2
u d E s Ec 2 KVm sin( x) sin t 2 KVm sin t sin
( x 0 x)
13
5.4 光栅
2018/8/31 18
5.4.2 计量光栅的工作原理(5)





当两块光栅的刻线重合时,透光最多,光电池输出的电压 信号最大; 当光栅1向右移动半个栅距时,两块光栅的暗线纹将明线纹 遮住,透光近似于0,光电池输出最小; 再移动半个栅距,则两块光栅的刻线又重合,光电池输出 又达到最大值。 这种光栅的遮光作用与光栅的移动距离成线性关系,所以 光电池的光接收量也与光栅的移动距离成线性关系,即光 电池的输出电压波形也近似于三角形。 但这是一种理想的状态,只有在两块光栅的夹角为0,刻线 质量极好,而且刻线宽度均匀一致才能达到。
2018/8/31
6
5.2.2 旋转变压器的应用(3)
2018/8/31
7
5.3 感应同步器
5.3.1 感应同步器的结构和种类

按结构可分为直线感应同步器和圆形感应同步器两种, 直线式用于测量直线位移,而圆形感应同步器用于检测 角位移。 直线式由定尺和滑尺两部分组成;而圆形感应同步器由 定子和转子组成。
图5-9
感应同步器工作原理
11
5.3.4 感应同步器测量系统
感应同步器也有:鉴相测量系统和鉴幅测量系统。 (1)鉴相测量系统 给感应同步器滑尺的两个正余弦绕组分别供以频率和幅值 相同,相位差为90°的励磁信号:
则滑尺二绕组在定尺绕组中分别产生的感应电动势为:
u d E C E S KVm sin( t )
2018/8/31
2
5.2 旋转变压器
5.2.1 旋转变压器的结构和工作原理 (1)旋转变压器的结构
图5-1 旋转变压器 a) 有刷结构 b) 无刷结构
2018/8/31 3
5.2.1 旋转变压器的结构和工作原理
2018/8/31
4
5.2.2 旋转变压器的应用(1)
2018/8/31
5
5.2.2 旋转变压器的应用(2)
相关文档
最新文档