一次函数测试 (8)
北师大版一次函数测试题
一、填空题1.已知函数1231xy x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x +=-,当x=2时,y=_________.3.在函数23x y x -=-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数.5.已知82)3(-+=m x m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________.9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.(1)点A 在y 轴右侧,距y 轴6个单位长度,距x 轴8个单位长度,则A 点的坐标是 ,A 点离开原点的距离是 。
(2)点(-3,2),(a ,1+a )在函数1-=kx y 的图像上,则______,==a k(3)正比例函数的图像经过点(-3,5),则函数的关系式是 。
(4)函数25+-=x y 与x 轴的交点是 ,与y 轴的交点是 ,与两坐标轴围成的三角形面积是 。
( 5)已知y 与4x-1成正比例,且当x=3时,y=6,写出y 与x 的函数关系式 。
(6)写出下列函数关系式①速度60千米的匀速运动中,路程S 与时间t 的关系②等腰三角形顶角y 与底角x 之间的关系③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y (升)与汽车行驶路程x (千米)之间的关系④矩形周长30,则面积y 与一条边长x 之间的关系在上述各式中, 是一次函数, 是正比例函数(只填序号)(7)正比例函数的图像一定经过点 。
一次函数能力测试卷(培优题)
一次函数能力测试卷(培优题)一、选择题(共10小题,每小题3分,共30分)1.一本数学错题笔记本的售价为6元,若小青买x本共付y元,则x和6分别是()A.常量,变量B.变量,常量C.常量,常量D.变量,变量2.函数y的自变量x的取值范围是()A.0x且2x≠D.2x>x≠B.0x≡C.23.下列曲线中不能表示y是x的函数的是()A.B.C.D.4.已知函数y kx b=+的图象如图所示,则函数y bx k=-+的图象大致是()A.B.C.D.5.已知点(1,)=-的图象上,则点A的坐标为()y xA a在一次函数25A.(1,3)B.(1,3)--D.(1,3)--C.(1,3)6.下表是研究弹簧长度与所挂物体质量关系的实验表格:则弹簧不挂物体时的长度为()A.4cm B.6cm C.8cm D.10cm7.下列关于一次函数22=-+的图象的说法中,错误的是()y xA.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当0y<x>时,2D.y的值随着x值的增大而减小8.已知将一次函数21=+,则下y x=-的图象向上平移2个单位长度后得到y kx b列关于一次函数y kx b=+的图象说法正确的是()A.经过第一、二、四象限B.与x轴交于点(1,0)C.与y轴交于点(0,1)D.y随着x的增大而减小9.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B .轿车行驶1.3小时时进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等10.如图,直线22y x =-+与x 轴y 轴分别交于A ,B 两点,射线AP AB ⊥于点A ,若点C 是射线AP 上一动点,点D 是x 轴上的一动点,且以C ,D ,A 为定点的三角形与AOB ∆全等,则OD 的长为( )A .1+ 3 B .3 C 1 D 1-或3二、填空题(共5小题,每小题3分,共15分)11.若函数2y kx k =+-为正比例函数,则k 的值为 .12.请写出一个图象经过(0,2)的一次函数解析式 .13.已知1(1,)A y -,2(2,)B y 是一次函数3y x b =-的图象上的两点,则1y 2y (填“>”、“<”或“=”).14.请选择一个你喜欢的数值m ,使关于x 的一次函数(21)2y m x =-+的y 值随着x 值的增大而增大,m 的值可以是 .15.如图1,在平行四边形ABCD 中,动点P 从点B 出发,沿B C D A →→→运动至点A 停止,设运动的路程为x ,ABP ∆的面积为y ,且y 与x 之间的关系如图2所示,则平行四边形ABCD 的周长为 .三、解答题(共8小题,共75分)16.(8分)已知2y -与x 成正比例,且当2x =-时,4y =-.(1)写出y 与x 之间的函数关系式;(2)当4x =时,求y 的值;(3)求函数图象与x 轴的交点坐标.17.(8分)已知函数(21)3y m x m =++-,(1)若函数图象经过原点,求m 的值;(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.18.(8分)已知一次函数y kx b =+,当2x =时y 的值为1,当1x =-时y 的值为5-.(1)在所给的平面直角坐标系中画出一次函数y kx b =+的图象;(2)求k ,b 的值;(3)直接写出函数图象与x 轴,y 轴的交点坐标.19.(9分)在平面直角坐标系中,一次函数(0)y kx b k =+≠的图象由函数12y x =的图象向下平移2个单位长度得到.(1)求这个一次函数的解析式;(2)若一次函数与x 轴交于点A ,与y 轴交于点B ,求点A ,点B 的坐标;(3)当2x >-时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,请直接写出m的取值范围.20.(9分)为了积极助力脱贫攻坚工作,如期打赢脱贫攻坚战,某驻村干部带领村民种植草莓,在每年成熟期都会吸引很多人到果园去采摘.现有甲、乙两家果园可供采摘,这两家草莓的品质相同,售价均为每千克30元,这两家果园的采摘方案不同.甲果园:每人需购买20元的门票一张,采摘的草莓按6折优惠;乙果园:不需要购买门票,采摘的草莓按售价付款不优惠.设小明和爸爸妈妈三个人采摘的草莓数量为x千克,在甲、乙果园采摘所需总费用分别为y甲、y乙元,其函数图象如图所示.(1)请分别求出y甲、y乙与x之间的函数关系式;(2)请求出图中点A的坐标并说明点A表示的实际意义;(3)请根据函数图象,直接写出小明一家选择哪家果园采摘更合算.21.(9分)小美打算在“母亲节”买一束百合和康乃馨组合的鲜花送给妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且康乃馨不多于9支,设买康乃馨x支,买这束鲜花所需总费用为w元.①求w与x之间的函数关系式;②请你帮小美设计一种使费用最少的买花方案,并求出最少费用.22.(12分)在如图的平面直角坐标系中,直线n过点(0,2)A ,且与直线l交于点(3,2)B,直线l与y轴交于点C.(1)求直线n的函数表达式;(2)若ABC∆的面积为9,求点C的坐标;(3)若ABC∆是等腰三角形,求直线l的函数表达式.23.(12分)如图,在平面直角坐标系内,(3,4)A-,(3,2)B,点C在x轴上,AD x⊥轴,垂足为D,BE x=,⊥轴,垂足为E,线段AB交y轴于点F.若AC BC ACD CBE∠=∠.(1)求点C的坐标;(2)如果经过点C的直线y kx b=+与线段BF相交,求k的取值范围;(3)若点P是y轴上的一个动点,当||-取得最大值时,求BP的长.PA PC。
一次函数测试题(最新人教版)
《一次函数》测试题一、选择题1.若正比例函数的图象经过点(—1,2),则这个图象必经过点…………………【 】 A. (1,2) B. (—1,—2) C. (2,—1) D. (1,—2)2.一次函数2y x =+的图象不经过………………………………………………【 】 A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限3.如果关于x 的一次函数1y kx k =+-的图角经过第一、三、四象限,则K 的取值范围【 】 A. k >0 B. k <0 C. 0 <k <1 D.k >14.将直线y=2x 向上平移2个单位后所得的直线的解析式………【 】 A. 22y x =+ B. 22y x =- C. 2(2)y x =+ D. 2(2)y x =-5.下列图象中分别给出了变量x 与y 之间的对应关系,其中表示y 是x 的函数的是【 】6.函数y ax b y bx a =+=+与的图象在同一坐标系内的大致位置是……………………【 】7.过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B。
该一次函数的解析式是【 】A. 23y x =+B. 3y x =-C.1322y x =-D. 3y x =-+ 8.函数y=2x 和y=ax+4的图象相交于点A (m ,3A . x >32B .x <3C .x <32D .x >3二、填空题9.已知函数3y mx m =+-是正比例函数,则m=________; 10.将直线162y x =-向左平移2个单位,得到直线是___________ x xyxy O33211.若关于x 的函数44y mx m =+-的图象经过点(1,3),则m=__________; 12.若直线L 平行于直线34y x =+,且过点(1,—2),则直线L 的解析式是____________ 13.若一次函数(4)21y m x m =++-的图象与y 轴的交点在x 轴的下方,则m 的取值范围是______ 14.如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P ,则这个正比例函数的表达式是 ______________15.已知关于x 的一次函数3y kx =+的图象如图所示,则不等式30kx +<的解集是________ 16.已知,函数y=3x 的图象经过点A (-1,y 1),点B (-2,y 2),则y 1 y 2 17.如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 . 18.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x (小时)之间的函数关系如图所示,小明父亲出发 小时时,行进中的两车相距8千米. 三、解答题1.已知一次函数的图象经过M (1,3)和N (—2,12)两点。
一次函数测试题(附答案)
一次函数练习一、选择题:1、下列函数中,是正比例函数的是( )A 、y=2π B 、y=2x C 、y=2x D 、y=2π2、在函数y=23x +-,y=22x +,y=x+8中,一次函数有( ) A 、1个 B 、2个 C 、3个 D 、4个3、函数y=(m+1)m x +2是一次函数, m 的值为( )A 、m=±1B 、m=-1C 、m=1D 、m≠-14、已知直线y=2x 与直线y=kx+3互相平行,则k 的值为 ( )A 、k=-2B 、k=2C 、k=±2D 、无法确定k 的值5、一次函数y=kx+b,若k+b=1,则它的图象必经过点 ( )A 、(-1,-1)B 、(-1,1)C 、(1,-1)D 、(1,1)6、下列各组函数中,与y 轴的交点相同的是( )A 、y=5x 与y=2x+3B 、y=-2x+4与y=-2x-4C 、y=2x +3与y=-2x+3 D 、y=4x-1与y=x+1 7、已知函数y=(2m +2)x ,y 随x 增大而( )A 、增大B 、减小C 、与m 有关D 、无法确定8、若一次函数y=(1-2m)x+3的图象经过A (1x ,1y )和B(2x ,2y ),当1x <2x 时,1y <2y ,则m 的取值范围是( )A 、m <0B 、m >0C 、m <12 D 、m >12 9、已知直线y=a c x b b+中,若ab >0,ac <0,那么这条直线不经过( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限10、直线y=-2x+b 与两坐标轴围成的三角形的面积为4,则b 的值为( )A 、4B 、-4C 、±4D 、±2二、填空题:1、一次函数y=2x+6的图象与y 轴相交,则交点坐标为________2、已知一次函数y=kx+b 的图象经过(-1,1)、(2,3)两点,则这个一次函数的关系式为______3、将直线y=3x-1向上平移3个单位,得直线______________4、一次函数的图象经过点P (1,3),且y 随x 的增大而增大,写出一个满足条件的函数关系式______________5、已知点A (1,a )在直线y=-2x+3上,则a=________6、已知点P 在直线y=143x -+上,且点P 到y 轴的距离等于3个单位长度,则点P 的坐标为_________. 7、某个一次函数y=kx+b 的图象位置大致如下图(1)所示,则k 的取值范围为_____,b 的取值范围为________.(图1) (图2)8、如图(2),一次函数y=x+5的图象经过P(a,b)和Q (c,d ),则a(c-d)-b(c-d)的值为_______.9、已知y 是x 的一次函数,下表中列出了部分对应值,则m=_________.10、点A (2,a )在一次函数y=-x+3的图象上,且一次函数的图象与y 轴的交点为B ,则△AOB 的面积为_________.三、解答题:1、直线1y =kx+b 与y 轴的交点和直线2y =2x+3与y 轴的交点相同,直线1y 与x 轴的交点和直线2y 与x 轴的交点关于原点对称,求:直线1y 的关系式.2、已知y=1y +2y ,1y 与x+2成正比,2y 是x+1的2倍,并且当x=0时,y=4,试求函数y 与x 的关系式.3、已知直线y=-x+4与直线y=2x-2相交于点A,且直线y=-x+4与y 轴相交于点B, 直线y=2x-2与x 轴相交于点C ,求四边形ABOC 的面积.4、已知一次函数y=kx+b的自变量x的取值范围是-1≤x≤5,相对应的函数值范围为-6≤y≤0,求此函数的关系式.5、为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量x(吨)与应付水费(元)的函数关系如图所示。
《一次函数》基础测试卷及答案
一次函数一、选择题(每小题4分,共12分)1.下列函数:(1)y=-8x,(2)y=3.8,(3)y=9x2,(4)y=5x+8,其中是一次函数的有( )A.0个B.1个C.2个D.3个2.若y+2与2x-3成正比例,则y是x的( )A.正比例函数B.一次函数C.没有函数关系D.以上答案均不正确3.某山山脚的气温是10℃,此山高度每上升1km,气温下降6℃,设比山脚高出x km处的气温为y℃,y与x之间的函数解析式为( )A.y=10-6xB.y=10+6xC.y=6-10xD.y=6x-10二、填空题(每小题4分,共12分)4.下列函数:①y=-3x2+4;②y=x-2;③y=错误!未找到引用源。
x+3;④y=错误!未找到引用源。
+1;⑤y=-错误!未找到引用源。
x,其中是一次函数的有(只写序号).5.已知函数y=(k+2)x+k2-4,当k 时,它是一次函数.当k=_________时,它是正比例函数.6.某企业对自己生产的某种产品进行市场调查,得出这种产品的市场需求量y(千件)和单价x(元)之间的关系式是y=15-3x.(1)单价为2元时,市场需求量是千件.(2)如果单价为5元,那么可能出现的情况是.三、解答题(共26分)7.(8分)已知函数y=(k-2)错误!未找到引用源。
+b+1是一次函数,求k和b的取值范围.8.(8分)(2012·广州中考)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20t,按每吨1.9元收费.如果超过20t,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为xt,应收水费为y元.(1)分别写出每月用水量未超过20t和超过20t,y与x之间的函数解析式.(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨? 【拓展延伸】9.(10分)生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗共2000棵,种植A,B两种树苗的相关信息如表:成活率95%设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数解析式.(2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?答案解析1.【解析】选C.(1)y=-8x符合一次函数的定义,故是一次函数.(2)y=3.8,自变量次数为0,故不是一次函数.(3)y=9x2,自变量次数为2,故不是一次函数.(4)y=5x+8,符合一次函数的定义,故是一次函数.综上可得(1)(4)是一次函数,共2个.2.【解析】选B.由题意可设y+2=k(2x-3)(k≠0),整理得,y=2kx-3k-2,其中2k 与-3k-2都是常数且2k≠0,所以y是x的一次函数.3.【解析】选A.根据气温=山脚的气温-下降的气温可得:y=10-6x.4.【解析】①中自变量的次数是2,④中自变量的次数不是1;所以①④不是一次函数,②③⑤均符合一次函数的定义.答案:②③⑤5.【解析】根据一次函数的定义得,k+2≠0,解得k≠-2.函数y=(k+2)x+k2-4是正比例函数,则k+2≠0,k2-4=0,解得k=2.答案:≠-2 26.【解析】(1)当x=2时,y=15-3×2=9.(2)当x=5时,y=15-3×5=0,说明当单价为5元时,这种产品的市场需求量为0,可能会因定价过高而造成产品大量积压.答案:(1)9 (2)产品大量积压7.【解析】根据题意得:k2-3=1,且k-2≠0,∴k=-2或k=2(舍去),∴k=-2.b是任意的常数.8.【解析】(1)当x≤20时,y=1.9x;当x>20时,y=1.9×20+(x-20)×2.8=2.8x-18.(2)用水量如果未超过20t,按每吨1.9元收费.因为5月份水费平均为每吨2.2元,所以用水量超过了20t.所以2.8x-18=2.2x,解得x=30.答:该户5月份用水30t.9.【解析】(1)y=(15+3)x+(20+4)(2000-x)=-6x+48000.(2)由题意可得:0.95x+0.99(2000-x)=1960.x=500,y=-6×500+48000=45000.所以造这片林的总费用需45000元.。
《一次函数》能力测试题
匕 余 的费用 y 元 ) t分 ) 间的关 系是 所 ( 与 ( 之
1 3
.
— —
函 Y 吨 +b 自变量 的取值范围是 一 < 一 ,函数值 Y的 数 = 当 3 < 1
良 范围是 1 Y<0 则 a 值 < , b= .
;
‘
1 4 15
l , 口 直线 z z的交 点 P的坐标可 以看 作方程 组 图 12 ,
车1 好后 , 嗲 因怕耽 误上课 , 比修 车前加 快 了骑车 f 电
f时 ( ) 习f分 的函数 图像 , 那 、 合这个 同学 行驶 情 的 图像 大致 是 ( 符 况
S
0
厂一
t
0
t
0
t
0
N
D
.
A.
二
B.
C.
茸 空题 ( 每题 3分 。 3 共 0分 ) 线 Y= x+b和直线 Y=一 x+8平行 , k 3 且过 点 ( ,2 , 此直 线 的解 析式 为 0 - )则
题 得
号 分
总
分
题 ( 3分 , 3 每是 匣 共 0分 )
一
次 函娄 Y=k 曼 l x+b的图像如 图所 , k b的符 号是 ( 示 则 ,
0. ( b> )
、
) .
,
B. k>0. b<0
C. k<0, b>0
/
,
D. k< 0 , b<0
: ( Байду номын сангаас) .
\y
\
.
/ /
/ /
y/
) /
D.
\
A.
一次函数测试题(含答案)
一次函数测试题(考试时间为90分钟,满分100分)一、选择题(每题3分,共30分)1.直线x y 39-=与x 轴交点的坐标是________,与y 轴交点的坐标是_______.2.把直线121-=x y 向上平移21个单位,可得到函数__________________.3.若点P 1(–1,3)和P 2(1,b )关于y 轴对称,则b= .4.若一次函数y =mx-(m-2)过点(0,3),则m= .5.函数y =x 的取值范围是 .6.如果直线b ax y +=经过一、二、三象限,那么ab ____0 (“<”、“>”或“=”).7.若直线12-=x y 和直线x m y -=的交点在第三象限,则m 的取值范围是________.8.函数y= -x+2的图象与x 轴,y 轴围成的三角形面积为_________________.9.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10立方米的,按每立方米m 元水费收费;用水超过10立方米的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为___________立方米.10.有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2、3、4…的等边三角形(如图).根据图形推断每个等边三角形卡片总数S 与边长n 的关系式 .二、选择题(每题3分,共18分) 11.函数y =x-2x+2的自变量x 的取值范围是( ) A.x ≥-2 B.x >-2 C.x ≤-2 D.x <-212.一根弹簧原长12cm ,它所挂的重量不超过10kg ,并且挂重1kg 就伸长1.5cm ,写出挂重后弹簧长度y (cm )与挂重x (kg )之间的函数关系式是( )A.y =1.5(x+12)(0≤x ≤10) B.y =1.5x+12 (0≤x ≤10) C.y =1.5x+10 (0≤x) D.y =1.5(x -12) (0≤x ≤10)13.无论m 为何实数,直线m x y 2+=与4+-=x y 的交点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 14.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图), 并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面 高度h 随水流出的时间t 变化的图象大致是( )15.已知函数22y x=-+,当-1<x≤1时,y的取值范围是()A.5322y-<≤B.3522y<< C.3522y<≤ D.3522y≤<16.某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟B.48分钟C.46分钟D.33分钟三、解答题(第17—20题每题10分,第21题12分,共52分)17.观察图,先填空,然后回答问题:(1)由上而下第n行,白球有_______个;黑球有_______个.(2)若第n行白球与黑球的总数记作y, 则请你用含n的代数式表示y,并指出其中n的取值范围.18.已知,直线y=2x+3与直线y=-2x-1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.19.旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y(元)可以看成他们携带的行李质量x(千克)的一次函数为561-=x y .画出这个函数的图象,并求旅客最多可以免费携带多少千克的行李?20.某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后药量y 与时间t 之间近似满足如图所示曲线: (1)分别求出21≤t 和21≥t 时,y 与t 之间的函数关系式; (2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,第一次服药为7:00,那么服药后几点到几点有效?21. 某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为Q 1吨,加油飞机的加油油箱的余油量为Q 2吨,加油时间为t 分钟,Q 1、Q 2与t 之间的函数关系如图.回答问题:(1) 加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2) 求加油过程中,运输飞机的余油量Q 1(吨)与时间t (分钟)的函数关系式;(3) 运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?请通过计算说明理由.四、附加题(做对另加10分,若整卷总分超过100分以100分计算)22.将长为30cm ,宽为10cm 的长方形白纸,按如图所示的方发粘合起来,粘合部分的宽为3cm.设x 张白纸粘合后的总长度为ycm,参考答案)1.(3,0)(0,9)2.y=0.5x-0.53. 34.–15.x≥56. >7. m <-18. 29. 13 10. 2s n =11. B 12. B 13. C 14. A 15. D 16. A 17.(1) n,2n-1; (2) y= 3n-1 (n 为正整数)18. (1) A (0,3),B (0,-1); (2) C(-1,1); △ABC 的面积=13+112⨯⨯()=219.(1)y=12x (0≤21≤t );y=-0.8x+6.4 (21≥t ) (2) 若y≥4时, 则133x ≤≤,所以7:00服药后,7:20到10:00有效20. 函数561-=x y (x≥30)的图象如右图所示. 当y =0时,x =30.所以旅客最多可以免费携带30千克的行李.21.(1) 30吨油,需10分钟(2) 设Q 1=kt +b ,由于过(0,30)和(10,65)点,可求得:Q 1=2.9t +36(0≤t ≤10) (3) 根据图象可知运输飞机的耗油量为每分钟0.1吨,因此10小时耗油量为10×60×0.1=60(吨)<65(吨),所以油料够用22. y=27x+3, 当x=20时,y=543.。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
一次函数经典测试题及解析
30x+15x=30-10
x= ,
当两人相遇后,相距10km时,
30x+15x=30+10,
解得x=
15x-(30x-30)=10
得x=
∴④错误.
选C.
【点睛】
本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.
【详解】
过点D作DE⊥BC于点E
.
由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..
∴AD=a.
∴ DE•AD=a.
∴DE=2.
当点F从D到B时,用 s.
∴BD= .
Rt△DBE中,
BE= ,
∵四边形ABCD是菱形,
∴EC=a-1,DC=a,
Rt△DEC中,
a2=22+(a-1)2.
本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是( ,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.
5.正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )
A. B. C. D.
2.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A. B.2C. D.2
【答案】C
【解析】
【分析】
通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD= ,应用两次勾股定理分别求BE和a.
一次函数经典测试题附答案解析
一次函数经典测试题附答案解析一、选择题1.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B【解析】【分析】 作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C【解析】 【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案.【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0.故答案为:x >2.故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小4.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k <0,b>0时图象在一、二、四象限.5.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大【答案】B【解析】【分析】根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+4)(0<m<4),根据矩形的周长公式即可得出C矩形CDOE=8,此题得解.【详解】解:设点C 的坐标为(m ,-m+4)(0<m <4),则CE=m ,CD=-m+4,∴C 矩形CDOE =2(CE+CD)=8.故选B .【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C 的坐标是解题的关键.6.已知正比例函数y=kx (k≠0)经过第二、四象限,点(k ﹣1,3k+5)是其图象上的点,则k 的值为( )A .3B .5C .﹣1D .﹣3【答案】C【解析】【分析】把x=k ﹣1,y=3k+5代入正比例函数y=kx 解答即可.【详解】把x=k ﹣1,y=3k+5代入正比例函数的y=kx ,可得:3k+5=k (k ﹣1),解得:k 1=﹣1,k 2=5,因为正比例函数的y=kx (k≠0)的图象经过二,四象限,所以k <0,所以k=﹣1,故选C .【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.7.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+B .2133y x =+C .1y x =+D .5342y x =+ 【答案】D【解析】【分析】由已知点可求四边形ABCD 分成面积()113741422B AC y =⨯⨯+=⨯⨯=;求出CD 的直线解析式为y=-x+3,设过B 的直线l 为y=kx+b ,并求出两条直线的交点,直线l 与x 轴的交点坐标,根据面积有1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪+⎝⎭⎝⎭,即可求k 。
初二奥数一次函数测试题及答案
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。
国际数学奥林匹克作为⼀项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育⽔平,难度⼤⼤超过⼤学⼊学考试。
奥数对青少年的脑⼒锻炼有着⼀定的作⽤,可以通过奥数对思维和逻辑进⾏锻炼,对学⽣起到的并不仅仅是数学⽅⾯的作⽤,通常⽐普通数学要深奥⼀些。
下⾯是为⼤家带来的初⼆奥数⼀次函数测试题及答案,欢迎⼤家阅读。
⼀.选择题(每⼩题3分,共30分) 1.函数y= 中,⾃变量x的取值范围是()A.x>2B.x<2C.x≠2D.x≠-2 2.关于函数y=-2x+1,下列结论正确的是()A.图形必经过点(-2,1)B.图形经过第⼀、⼆、三象限C.当x>时,y<0D.y随x的增⼤⽽增⼤ 3.如图,⼀次函数y=kx+b(k≠0) 的图象经过A,B两点,则关于x的不等式kx+b<0的解集是()A.m>-1B.m<1C.-1<m<1D.-1≤m≤1 4.直线y=-2x+m与直线y=2x-1的焦点在第四象限,则 m的取值范围是()A.m>-1B.m<1C.-1<m<1D.-1≤m≤1 5.若⼀次函数y=(1-2m)x+m的图象经过点A( , )和点B( , ),当<时,<,且与y轴相交于正半轴,则 m的取值范围是()A.m>0B.m<C.0<m<D. .m> 6.若函数y= 则当函数值y=8时,⾃变量x的值是() A. B.4C. 或4D.4或- 7.⼀艘轮船在同⼀航线上往返于甲、⼄两地,已知轮船在静⽔中的速度为15㎞/h,⽔流速度为5 ㎞/h,轮船先从甲地顺⽔航⾏到⼄地在⼄地停留⼀段时间后,⼜从⼄地逆⽔航⾏返回甲地,设轮船从甲地出发所⽤时间为 t(h),航⾏的路程s(㎞),则s与t 的函数图象⼤致是() 8.⼀次函数y=kx+b的图象如图所⽰,当x<1时,y的取值范围是()A.-2<y<0B. -4<y<0C. y<-2D. y<-4 9.将直线y=-2x向右平移2个单位所得直线的解析式为()A.y=-2x+2B.y=-2(x+2)C.y=-2x-2D.y=-2(x-2) 10.如图,⼩亮在操场上玩,⼀段时间内沿M→A→B→M的路径匀速散步,能近似刻画⼩亮到出发点M的距离y与x之间关系的函数图象是() ⼆. 填空题(每⼩题3分,共24分) 11.将直线y=-2x+3向下平移2个单位得到的直线为。
八年级下学期一次函数单元测试题(含答案)
一次函数测试题一、选择1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四C .一、二、四D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( );10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、填空11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)-17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、解答21.根据下列条件,确定函数关系式:(1)y+1与x-2成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).566-2xy1234-2-15-14321O22.一次函数y=kx+b 的图象如图所示:(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少 (3)当y=12时,•x 的值是多少23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少(2)降价前他每千克土豆出售的价格是多少(3)降价后他按每千克元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元通话7分钟呢25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料米,可获利50元;做一套N 型号的时装需用A 种布料米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围;②当M 型号的时装为多少套时,能使该厂所获利润最大最大利润是多答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.16xy1234-2-1CA-14321O16.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=17/7x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②元;③45千克24.①当0<t≤3时,y=;当t>3时,y=.②元;元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[+0.•6(80-x)]米,共用B种布料[+(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.:。
一次函数基础测试题及答案解析
一次函数基础测试题及答案解析一、选择题1.如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为()A.-5,-4,-3 B.-4,-3 C.-4,-3,-2 D.-3,-2【答案】B【解析】【分析】根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x的不等式-x+m>nx+5n>0的解集为-5<x<-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.2.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.32C.52D.7【答案】C【解析】【分析】把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得m=12×3+1=52. 故选C. 【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.3.一次函数y=ax+b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C 【解析】 【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置. 【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小4.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b >0时图象在一、二、四象限.5.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x <<【答案】D 【解析】 【分析】根据一次函数的性质即可得答案. 【详解】∵一次函数1y x =--中10k =-<, ∴y 随x 的增大而减小, ∵123y y y <<, ∴123x x x >>. 故选:D . 【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6.正比例函数y =kx 与一次函数y =x ﹣k 在同一坐标系中的图象大致应为( )A .B .C .D .【答案】B 【解析】 【分析】根据图象分别确定k 的取值范围,若有公共部分,则有可能;否则不可能. 【详解】 根据图象知:A 、k <0,﹣k <0.解集没有公共部分,所以不可能;B 、k <0,﹣k >0.解集有公共部分,所以有可能;C 、k >0,﹣k >0.解集没有公共部分,所以不可能;D 、正比例函数的图象不对,所以不可能. 故选:B . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b 的图象的四种情况是解题的关键.7.函数ky x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】C 【解析】 【分析】分k>0和k<0两种情况确定正确的选项即可. 【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误, 故选:C. 【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.8.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定【答案】C 【解析】 【分析】求关于x 的不等式12k x b k x +>的解集就是求:能使函数1y k x b =+的图象在函数2y k x =的上边的自变量的取值范围.【详解】解:能使函数1y k x b =+的图象在函数2y k x =的上边时的自变量的取值范围是1x <-. 故关于x 的不等式12k x b k x +>的解集为:1x <-.【点睛】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y ax b=+的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y kx b=+在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.9.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-12,故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.10.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【答案】B【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=1x是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()(cm )A .y=0.5x+12B .y=x+10.5C .y=0.5x+10D .y=x+12【答案】A 【解析】分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y (cm )与所挂重物x (㎏)之间的函数关系式.详解:由表可知:常量为0.5;所以,弹簧总长y (cm )与所挂重物x (㎏)之间的函数关系式为y=0.5x+12. 故选A .点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.13.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+C .22y x =+D .22y x =-【答案】A 【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4, 故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.14.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是( )A .B .C .D .【答案】A 【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,∴不等式3x+b>ax-3的解集为:x>-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.15.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:砝码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.【答案】B【解析】【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案. 【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x +b ,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x +2.显然当y=7.5时,x =275,故选B. 【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.16.对于一次函数24y x =-+,下列结论正确的是( ) A .函数值随自变量的增大而增大 B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4 【答案】C 【解析】 【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解. 【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确; B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x , 故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确. 故选:C . 【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.17.下列函数:①y x =;②4zy =;③4y x=,④21y x =+其中一次函数的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据一次函数的定义条件进行逐一分析即可.【详解】①y=x 是一次函数,故①符合题意; ②4z y =是一次函数,故②符合题意; ③4y x=自变量次数不为1,故不是一次函数,故③不符合题意; ④y=2x+1是一次函数,故④符合题意.综上所述,是一次函数的个数有3个, 故选:C .【点睛】此题考查了一次函数的定义,解题关键在于掌握一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:3y x =-将点A '的横坐标为4y =-即点A '的坐标为4)-∵点A 向右平移6个单位得到点A '∴B '的坐标为(046)2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m 【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m ,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.20.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+B .2133y x =+ C .1y x =+D .5342y x =+ 【答案】D【解析】【分析】由已知点可求四边形ABCD 分成面积()113741422B AC y =⨯⨯+=⨯⨯=;求出CD 的直线解析式为y=-x+3,设过B 的直线l 为y=kx+b ,并求出两条直线的交点,直线l 与x 轴的交点坐标,根据面积有1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪+⎝⎭⎝⎭,即可求k 。
8年级数学上册一次函数测试题-八年级一次函数测试题(共18页)
8年级数学上册一次函数测试题|八年级一次函数测试题[模版仅供参考,切勿通篇使用]努力做八年级数学试题就是光,成功就是影。
没有光哪儿来影?下面XX给大家分享一些8年级数学上册一次函数测试题,大家快来跟XX一起看看吧。
8年级数学上册一次函数试题一、选择题1.下列函数关系中表示一次函数的有①y=2x+1 ②③④s=60t ⑤y=100﹣25x.个个个个2.下列函数中,图象经过原点的为=5x+=﹣5x﹣=﹣ =3.如图,点A的坐标为,点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为4.若y=x+是正比例函数,则m的取值是﹣2C.±2D.任意实数5.如图,线段AB对应的函数表达式为=﹣ x+=﹣ x+2=﹣ x+=﹣ x+20,点P2是一次函数y=﹣4x+3图象上的两个点,且x1y2.故选A.【点评】本题考查了一次函数的增减性,比较简单.7.已知函数y=3x+1,当自变量x增加m时,相应函数值增加+﹣1【考点】一次函数的定义.【分析】将x+m作为x代入函中时,则函数值为y=3×+1,与原函数相比较可得出答案.【解答】解:∵当自变量为x时,函数值为y=3x+1∴当自变量为x+m时,函数值为y=3×+1∴增加了3×+1﹣=3m故选B.【点评】本题需注意应先给定自变量一个值,然后让自变量增加x,让相应的函数值相减即可.8.两条直线y1=ax+b与y2=bx+a在同一坐标系中的图象可能是下列图中的A. B. C. D.【考点】一次函数的图象.【分析】首先设定一个为一次函数y1=ax+b的图象,再考虑另一条的a,b的值,看看是否矛盾即可.【解答】解:A、如果过第一二四象限的图象是y1,由y1的图象可知,a0;由y2的图象可知,a0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y1,由y1的图象可知,a0;由y2的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y1,由y1的图象可知,a0;由y2的图象可知,a0,b>0,两结论相矛盾,故错误.故选A.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b0时,函数y=kx+b的图象经过第一、二、四象限;④当k0。
(完整版)初中一次函数测试题及答案
八年级一次函数测试题1、直线y=kx+2过点(-1,0),则k的值是()A.2 B.-2 C.-1 D.12.直线6y关于y轴对称的直线的解析式为=x2-( )A.6=xy C.6-2+2+=xy B.62-y=xy D.62--=x3、直线y=kx+2过点(1,-2),则k的值是()A.4 B.-4 C.-8 D.84、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()5.点P关于x轴对称的点是(3,-4),则点P关于y轴对称的点的坐标是_______.6.若1-x,则x的取值范围为__________________.(0=)77.已知一次函数1-y,请你补充一个条件______________,使函=kx数图象经过第二、三、四象限.8、0(1)π-= .9、在函数2-=xy中,自变量x的取值范围是______.10、把直线y=23x+1向上平移3个单位所得到的解析式为______________。
11、已知y与x成正比例,且当x=1时,y=2,那么当x=3时,y =_______。
12、在平面直角坐标系中.点P(-2,3)关于x轴的对称点13.(9分)已知一次函数的图象经过(3,5)和(-4,-9)两点.求这个一次函数的解析式;(2)若点(a,2)在这个函数图象上,求a的值.14.如图,直线y=-2x+4分别与x轴、y轴相交于点A和点B,如果线段CD两端点在坐标轴上滑动(C点在y轴上,D点在x轴上),且CD=AB.当△COD和△AOB全等时,求C、D两点的坐标;15、已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.16、如图,直线1l 与2l 相交于点P ,1l 的函数表达式y=2x+3,点P 的横坐标为-1,且2l 交y 轴于点A(0,-1).求直线2l 的函数表达式.17、已知如图,一次函数y=ax+b 图象经过点(1,2)、点(-1,6)。
2019-2020初中数学八年级上册《一次函数》专项测试(含答案) (808)
当 x=20 时,y=1600,当 x=30 时,y=2000. (1)求 y 与 x 之间的函数解析式; (2)如果有 50 名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多
少元?
27.(6 分)若 y 是 x 的一次函数,当 x=2 时,y=2,当 x=一 6 时,y=6. (1)求这个一次函数的关系式; (2)当 x=8 时,函数 y 的值; (3)当函数 y 的值为零时,x 的值; (4)当 1≤y<4 时,自变量 x 的取值范围.
∵ y = y1 + y2 ,∴ y = (k1 + k2 )x + (k1 − k2 ) ,令 k1 + k2 = a , k1 − k2 = b ,∴ y = ax + b .
由题意,得
2a + b = 9 3a + b = 14
,解得
a=5 b = −1
,∴所求的函数解析式是
y
=
5x
−1
.
22.(1) y = x + 2 (2)AP⊥PB 时,P1(1,O);AP⊥AB 时,P2(4,0) (3) a −2或
20.(3 分)在加油站,加油机显示器上显示的某一种油的单价为每升 4.75 元,总价从 0 元
开始随着加油量的变化而变化,总价 y(元)与加油量 x(升)的函数解析式是
.
评卷人 得分
三、解答题
21.(6 分)已知 y1 与 x +1成正比, y2 与 x −1成正比, y = y1 + y2 . 当 x=2 时,y =9;当 x=3
A.y=-2x 一 1
B.y=-2x+1
5.(2 分)函数 y=3x-6 的图象是( )
八年级数学:一次函数单元测试题(含解析)
八年级数学:一次函数单元测试题(含解析)(时间:90分钟 分值:100分)一、选择题(每小题2分,共24分)1.若正比例函数的图像经过点(-1,2),则这个函数的图像必经过点( D ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2)解析:设正比例函数的表达式为y =kx (k ≠0),因为正比例函数y =kx 的图像经过点(-1,2),所以2=-k ,解得k =-2,所以y =-2x .把这四个选项分别代入y =-2x 中验证,易得这个图像必经过点(1,-2).故选D.2.已知点(-4,y 1),(2,y 2)都在直线y =-x +2上,则y 1,y 2的大小关系是( A ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能比较 解析:-1<0,∴函数值y 随x 的增大而减小. 又∵-4<2,∴y 1>y 2.故选A.3.若k ≠0,b <0,则y =kx +b 的图像可能是下图中的( B )解析:b <0时,直线与y 轴交于负半轴.故选B.4.若一次函数y =2mx +(m 2-2m )的图像经过坐标原点,则m 的值为( A ) A .2 B .0 C .0或2 D .无法确定 解析:由2m ×0+(m 2-2m )=0,得m =0或m =2.由2m ≠0,得m ≠0.故m =2.故选A.5.已知直线y =kx +b 经过点(k,3)和(1,k ),则k 的值为( B ) A. 3 B .± 3 C. 2 D .± 2 解析:由⎩⎨⎧k 2+b =3,k +b =k ,得⎩⎨⎧k 2=3,b =0,∴k =± 3.故选B.6.下列各点中,在函数y =-12x +5的图像上的点是( C )A .(2,5)B .(-2,4)C .(4,3)D .(-4,9)解析:当x=4时,y=-12×4+5=3,故点(4,3)在图像上.故选C.7.在平面直角坐标系中,函数y=-x+1的图像经过( D )A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限解析:根据题意有a<0,c>0,∴函数y=ax+c的图像经过第一、二、四象限.故选D.8.(2017·大庆)对于函数y=2x-1,下列说法正确的是( D )A.它的图像过点(1,0) B.y值随着x值增大而减小C.它的图像经过第二象限D.当x>1时,y>0解析:把x=1代入关系式得到y=1,即函数图像经过(1,1),不经过点(1,0),故A选项错误;函数y=2x-1中,k=2>0,则该函数图像y值随着x值增大而增大,故B选项错误;函数y =2x-1中,k=2>0,b=-1<0,则该函数图像经过第一、三、四象限,故C选项错误;当x>1时,2x -1>1,则y>1,故y>0正确,故D选项正确.故选D.9.直线y=43x+4与x轴交于点A,与y轴交于点B,则△AOB的面积为( B )A.12 B.6 C.3 D.4解析:A(-3,0),B(0,4),S△AOB=12×3×4=6.故选B.10.已知一次函数y1=kx+b与y2=x+a的图像如图,则下列结论:①k<0;②a>0;③当x<3时,y1<y2,其中正确的有( B )A.0个 B.1个 C.2个 D.3个解析:因为y1=kx+b的图像从左到右是下降的,所以k<0.因为y2=x+a的图像与y轴的交点在x轴的下方,所以a<0.因为当x<3时,y2的图像在y1的下方,所以y2<y1,所以正确的只有①.故选B.11.一次函数y=kx+2过点(1,1),那么这个一次函数是( B )A.y随x的增大而增大B.y随x的增大而减小C.图像经过原点D.图像不经过第二象限解析:由k+2=1,得k=-1.∵-1<0,∴y随x的增大而减小.故选B.12.在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是( A )A.将l1向右平移3个单位长度 B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度 D.将l1向上平移4个单位长度解析:∵将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,∴-2(x+a)-2=-2x+4,解得:a=-3,故将l1向右平移3个单位长度.故选A.二、填空题(每小题3分,共18分)13.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是x=2.解析:2×2+b=0,b=-4.∵2x+b=0,∴2x-4=0,∴x=2.14.一次函数y=12x+5的图像经过第一、二、三象限.解析:图像过(0,5),且从左到右上升,∴图像经过第一、二、三象限.15.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限.若点B在直线y=kx+3上,则k的值为-2.解析:∵点A (-1,1),正方形ABCD 的对称中心与原点重合,由对称点,可知B (1,1). ∵点B 在直线y =kx +3上,∴1=k +3.解得k =-2.16.直线y =-2x +m 与直线y =2x -1的交点在第四象限,则m 的取值范围是-1<m <1.解析:解⎩⎨⎧y =-2x +m ,y =2x -1,得⎩⎪⎨⎪⎧x =m +14,y =m -12.解⎩⎪⎨⎪⎧m +14>0,m -12<0.得-1<m <1.17.已知一次函数y =2x +a 与y =-x +b 的图像都经过点A (-3,0),且与y 轴分别交于B ,C 两点,则△ABC 的面积为272.解析:将A (-3,0)代入y =2x +a ,得a =6,∴B (0,6);将A (-3,0)代入y =-x +b ,得b =-3,∴C (0,-3),∴S △ABC =12×9×3=272.18.如图所示,直线m 的函数关系式为y =x ,点A 的坐标是(-1,0),点B 是直线m 上的一个动点,连接AB ,当线段AB 最短时,点B 的坐标是⎝ ⎛⎭⎪⎫-12,-12.解析:当线段AB 最短时,AB ⊥m ,垂足为B ,过点B 作BC ⊥x 轴,垂足为C ,则△AOB 与△BOC 都是等腰直角三角形,则OC =BC =12OA =12,所以点B ⎝ ⎛⎭⎪⎫-12,-12.三、解答题(共58分)19.(6分)已知函数y =(m -1)x +m +2,则当m 为何值时,这个函数是一次函数,并且图像经过第二、三、四象限?解:由y =(m -1)x +m +2是一次函数,并且图像经过第二、三、四象限,得⎩⎨⎧m -1<0,m +2<0,解得m <-2.20.(7分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y (米)和所经过的时间x (分钟)之间的函数图像如图所示.请根据图像回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多长时间? (2)小敏几点几分返回到家?解:(1)速度为3 00010=300(米/分钟),逗留时间为30分钟. (2)设返回家时,y 与x 的函数表达式为y =kx +b ,把(40,3 000),(45,2 000)代入,得 ⎩⎨⎧3 000=40k +b ,2 000=45k +b ,解得⎩⎨⎧k =-200,b =11 000,∴函数表达式为y =-200x +11 000,当y =0时,x =55,∴返回到家的时间为8:55. 21.(7分)如果用x 表示鞋子的“码数”,用y 表示厘米数,那么y 是x 的一次函数.已知34码的鞋厘米数为22,40码的鞋厘米数为25.(1)求y 与x 的函数表达式;(2)一个人的鞋子为38码时,厘米数为多少? 解:(1)设y 与x 的函数表达式为y =kx +b ,∴⎩⎨⎧34k +b =22,40k +b =25.解得⎩⎨⎧k =12,b =5.∴y 与x 的函数表达式为y =12x +5.(2)当x =38时,y =12×38+5=24.22.(8分)小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段y 1,y 2分别表示小东、小明离B 地的距离y (km)与所用时间x (h)的关系.(1)试用文字说明:交点P 所表示的实际意义; (2)试求出A ,B 两地之间的距离.解:(1)交点P 所表示的实际意义是:经过2.5 h 后,小东与小明在距离B 地7.5 km 处相遇.(2)设y 1=kx +b ,又∵y 1经过点P (2.5,7.5),(4,0), ∴⎩⎨⎧2.5k +b =7.5,4k +b =0,解得⎩⎨⎧b =20,k =-5,∴y 1=-5x +20, 当x =0时,y 1=20.故A ,B 两地之间的距离为20 km.23.(8分)如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13.(1)求点B 的坐标.(2)若△ABC 的面积为4,求直线l 2的关系式.解:(1)在Rt △AOB 中,OA 2+OB 2=AB 2,∴22+OB 2=(13)2. ∴OB =3.∴点B 的坐标是(0,3).(2)∵S △ABC =12BC ·OA ,∴12BC ×2=4.∴BC =4.∴C (0,-1).设l 2:y =kx +b .把A (2,0),C (0,-1)代入,得⎩⎨⎧2k +b =0,b =-1,∴⎩⎨⎧k =12,b =-1.∴直线l 2的关系式是y =12x -1.24.(10分)某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的数量为y 甲(棵),乙班植树的数量为y 乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x (小时).y 甲、y 乙关于x 的部分函数图像如图所示.(1)当0≤x ≤6时,分别求y 甲、y 乙与x 之间的函数关系式;(2)如果甲、乙两班均保持前6个小时的工作效率,那么当x =8时,甲、乙两班植树的总数量能否超过260棵?(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当x =8时,两班植树的总数量相差20棵,求乙班增加人数后平均每小时植树多少棵?解:(1)设y 甲=k 1x ,把(6,120)代入y 甲=k 1x , 解得k 1=20,∴y 甲=20x . 当x =3时,y 甲=y 乙=60.设y 乙=k 2x +b ,把(0,30),(3,60)代入y 乙=k 2x +b , 得⎩⎨⎧ b =30,3k 2+b =60.解得⎩⎨⎧k 2=10,b =30.∴y 乙=10x +30.(2)当x =8时,y 甲=8×20=160,y 乙=8×10+30=110. ∵160+110=270>260,∴当x =8时,甲、乙两班植树的总数量能超过260棵. (3)设乙班增加人数后平均每小时植树a 棵.当乙班比甲班多植树20棵时,有6×10+30+2a -20×8=20. 解得a =45.当甲班比乙班多植树20棵时,有20×8-(6×10+30+2a )=20. 解得a =25.∴乙班增加人数后平均每小时植树45棵或25棵.25.(12分)(2017·衡阳)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y (元)与骑行时间x (小时)之间的函数关系,根据图像回答下列问题:(1)求手机支付金额y (元)与骑行时间x (小时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算?解:(1)当0≤x <0.5时,y =0,当x ≥0.5时,设手机支付金额y (元)与骑行时间x (时)的函数关系式是y =kx +b , ⎩⎨⎧0.5k +b =0,1×k +b =0.5,计算得出⎩⎨⎧k =1,b =-0.5.即当x ≥0.5时,手机支付金额y (元)与骑行时间x (时)的函数关系式是y =x -0.5, 由上可得,手机支付金额y (元)与骑行时间x (时)的函数关系式是y =⎩⎨⎧0≤x <0.5,x -0.5x ≥0.5.(2)设会员卡支付对应的函数关系式为y =ax , 则0.75=a ×1,得a =0.75,即会员卡支付对应的函数关系式为:y =0.75x , 令0.75x =x -0.5,得x =2,由图像可以知道,当x >2时,会员卡支付便宜. 答:当0<x <2时,李老师选择手机支付比较合算, 当x =2时,李老师选择两种支付一样, 当x >2时,李老师选择会员卡支付比较合算.。
一次函数单元测试题(附答案)
一次函数单元测试题(附一、填空(30分)1. 已知函数y=(k –3)x k -8是正比例函数,则k=________.2. 函数表示法有三种,分别是_________ , _________ , _________.3. 函数y=x -2自变量x 的取值范围是_________. 4. 已知一次函数经过点(–1 , 2)且y 随x 增大而减小,请写出一个满足上述条件的函数关系式______________________________. 5. 已知y+2和x 成正比例,当x=2时,y=4且y 与x 的函数关系式是____________________________________. 6. 直线y=3x+b 与y 轴交点(0 ,–2),则这条直线不经过第____象限. 7.直线y=x –1和y=x+3的位置关系是_________,由此可知方程组y =x -1y =x +3⎧⎨⎩解的情况为__________________. 8. 一次函数图象经过第二、三、四象限,那么它的表达式是_________(只填一个).9. 已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a 、b 的大小关系是a____b.10. 从A 地向B 地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,若通话时间七分钟(t ≥3且t 是整数),则付话费y 元与t 分钟函数关系式是__________________.二、 选择(30分)1. 下列函数,y 随x 增大而减小的是( )A .y=xB .y=x –1C .y=x+1D .y=–x+1 2. 若点A(2 , 4)在直线y=kx –2上,则k=( ) A .2 B .3 C .4 D .03. y=kx+b 图象如图则( )A .k>0 , b>0B .k>0 , b<0C .k<0 , b<0D .k<0 , b>04. 已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( C )A .k ≠2B .k>2C .0<k<2D .0≤k<2 5. 函数x 取值范围是( C )A .x ≥3B .x>3C .x ≤3D .x<3 6. y=kx+k 的大致图象是( A )A B C D7. 函数y=kx+2,经过点(1 , 3),则y=0时,x=( A )A .–2B .2C .0D .±2 8. 直线y=x+1与y=–2x –4交点在( C )A .第一象限B .第二象限C .第三象限D .第四象限 9. 函数y=2x+1的图象经过( B )A .(2 , 0)B .(0 , 1) C. (1 , 0) D .(12, 0)10. 正确反映,龟兔赛跑的图象是( D )ABCD三、(8分)已知函数y=(2m–2)x+m+1①m为何值时,图象过原点.②已知y随x增大而增大,求m的取值范围.③函数图象与y轴交点在x轴上方,求m取值范围.④图象过二、一、四象限,求m的取值范围.四、(8分)已知一次函数图象经过点(3 , 5) , (–4,–9)两点.①求一次函数解析式.②求图象和坐标轴交点坐标.③求图象和坐标轴围成三角形面积.④点(a , 2)在图象上,求a的值.五、(8分)已知某一次函数自变量x的取值范围是0≤x≤10,函数y的取值范围,10≤y≤30 , 求此函数解析式.六、(8分)直线y=2x+m和直线y=3x+3的交点在第二象限,求m的取值范围. 七、(12分)等腰三角形周长40cm.①写出底边长ycm与腰xcm的函数关系式.②写出自变量取值范围.③画出函数图象八、(8分)甲、乙两人分别骑自行车和摩托车从甲地到乙地(1)谁出发较早,早多长时间?谁到达乙地早?早多长时间(2)两人行驶速度分别是多少?(3)分别求出自行车和摩托车行驶过程的函数解析式?九、(8分)某地拔号入网有两种收费方式,A计时制3元/时,B全日制54元/月,另加通信费1.2元/时,问选择哪种上网方式省钱?参考答案: 一、填空1、92、解析法、列表法、图象法3、x ≥1且x ≠24、y=-x+1等5、y=3x-26、一7、平行,无解 8、y=-x-1等 9、< 10、y=x-0.6 二、1~5题:DBACC ,6~10题:AACBD三、1、m=-1 2、m>1 3、m>-1 4、-1<m<1 四、1、y=2x-1 2、(0,-1)(21,0) 3、41 4、a=23五、y=2x+10或y=-2x+30 六、2<m<3七、1、y=40-2x 2、10<x<20 3、略 八、1、甲,3小时,乙,3小时2、甲10千米/时,乙40千米/时3、y 甲=10x y 乙=40x-120 九、y A =3x y B =1.2x+54每月上网时间30小时,两种方式一样,每月上网时间大于30小时,B 方式省钱,每月上网时间少于30小时,A 方式省钱。
《一次函数》能力测试题
最 可 怕 的 事 莫过 于行 动 中的 无 知 。— — 伊 拉 斯 谟
/
,
,
F o l l o w y o u r o w n e o l l r s e, a n d l e t p e o p l e t a l k .
/
一 一 一 一 ~ 一 一 , ,
一 一 一 一 ~ 一 一
1
,
31 U f
走 你 自 己的 路 . 让 人 家去 说 吧 。— — 但 丁
,
,
《 一 次 函 数 》 能 力 测 试 题
。1 6 . 有这 样 的一 道题 目: “ 已知 , 一 次 函数 Y= +6的 图像 经过 点 A( 0, &) , ( 一 1 , # ) , 则 AAO B
l l l 求: ( 1 ) 求 。的值 ; ( 2 ) 求 一 次函数 的解析 式.
- -
3 2
、 、、 、
、 一 一 一 一 一 一 一 一 一 ~ 一 一 一
Do
一
— —
t o ot hers as
— — — — — — —
ou y
—
w ou
一 ~
l dh a ve t h em d o
— — — — — —
t o
— —
ou y
— 一
_
一
一
一
—
—
一
一
一
一
一
~
一
一
一
一
一
一
一
一
一
一
一
一
一
一
一
2 2 . 矩 ( 1 ( 2
( 3
《一次函数》测试题
天材月考测试题《一次函数》(时间:100分钟 满分:100分)1、下列函数中,一次函数的个数是 ①y= x ②y=-2+5x ③y= -④y=(2x-1)2+2 ⑤ y=x-2 ⑥y=2πxA 、5个B 、4个C 、3个D 、1个 2、下列语句不正确的是A 、所有的正比例函数都是一次函数B 、一次函数的一般形式是y=kx+bC 、正比例函数和一次函数的图象都是直线D 、正比例函数的图象是一条过原点的直线 3、若y=(m-2)x+(m 2-4)是正比例函数,则m 的取值是A 、2B 、-2C 、±2D 、任意实数 4、若直线y=kx+b 中,k <0,b >0,则直线不经过A 、 第一象限B 、第二象限C 、第三象限D 、第四象限 5、如图,直线y=kx+b 与x 轴交于点(-4,0),则当y >0时, x 的取值范围是A 、x >-4B 、x >0C 、x <-4D 、x <0 6、关于直线y=-2x+1,下列结论正确的是A 、图象必过点(-2,1)B 、图象经过第一、二、三象限C 、当x >时,y <0 D 、y 随x 的增大而增大7、某村办工厂,今年前五个月生产某种产品的总量C (件)与时间t (月)的函数图象如图所示,则该厂对这种产品来说A 、1月至3月每月生产量逐月增加,4、5两月生产量逐月减小B 、1月至3月每月生产量逐月增加,4、5两月生产量与3月持平C 、1月至3月每月生产量逐月增加,4、5两月均停止生产D 、1月至3月每月生产量不变,4、5两月均停止生产 8、均匀地向一个容器里注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示,则这个容器A 、是一个上下一样粗的容器B 、是一个上粗下细的容器C 、是一个上细下粗的容器D 、是一个圆锥形的容器二、填空题(每小题4分,共32分)9、已知正比例函数的图象经过点(-3,4),则该函数的表达式为 。
10、当 m 时,一次函数y=(m+1)x+6的函数值随x 的增大而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数单元测试
1、函数23y x =-,当1x =时,y 的值是( )
A 、1
B 、0
C 、-1
D 、-5 2.下列函数中,y 是x 的一次函数的是( )
①y=x-6;②y=x 2;③y=8
x ;④y=7-x 2
;⑤y=-x 2+(x +1)(x -2)
A 、①③④
B 、②③⑤
C 、①③⑤
D 、①②③⑤ 3、下列函数中,既是一次函数,又是正比例函数的是( )
A 、215y x =
B 、()25y x x x =--
C 、1
2y x = D 、51y x =-
4、如果()2
213m y m x -=-+是一次函数,则m 的值是( )
A 、1
B 、-1 C
5、下列一次函数中,y 的值随x 值的增大而减小的是( )
A 、y=3
2
x-8 B 、y=-x+3 C 、y=2x+5 D 、y=7x-6
6、在一次函数()15y m x =++中,y 的值随x 值的增大而减小,则m 的取值范围是( ) A 、1m <- B 、1m >- C 、1m =- D 、1m <
7、若一次函数b kx y +=的图象经过一、二、三象限,则b k ,应满足的条件是:
A.0,0>>b k
B.0,0<>b k
C.0,0><b k
D.0,0<<b k
8.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的长度为y(cm)与燃烧时间x (小时)的函数关系用图象表示为下图中的( )
9、一次函数y=ax+b,若a+b=1,则它的图象必经过点( )
A.(-1,-1)
B. (-1, 1)
C. (1, -1)
D. (1, 1)
填空
1、已知函数y =-1
2
x +1,当x =-2时,y =____;当y =0时,x =____。
2.已知一次函数y=90x+5,则当x=2时, y= ;当y =365时, x= 。
3.函数 y =2x 、y =2x +1与y =2x -2.三条图像的关系是
4、一辆汽车以60km/h 的速度行驶,设行驶的路程为s (km ),行驶的时间为t (h ),则s 与t 的
关系式为
5、若1吨民用自来水的价格为2.8元,则所交水费金额y (元)与使用自来水的数量x (吨)之
间的函数关系式为__________________________.
6、一幢商住楼底层为店面房,底层高为4米,底层以上每层高3米,则楼高h 与层数n 之间的函
数关系式为 ,其中可以将 看成自变量, 是因变量.
A 、
B 、
C 、
解答题
1、画出直线y =-2x +3,借助图象找出: (1)写出图像与x 轴,y 轴的交点坐标
(2) 直线上横坐标是2的点A ;直线上纵坐标是-3的点B ; (3)y 值大于0的点对应的横坐标什么范围? (4)求出图像与坐标轴围成的三角形的面积.
2.函数y=kx+b,当x=1时,y=1;当x=2时,y= -5。
(1)、求k 、b 的值。
(2)、当x=0时,求函数值y ; (3)、当x 取何值时,函数值y 为0?
3. 利用一次函数的图象解二元一次方程组⎩⎨⎧=-=+324
2y x y x
4、已知函数y =(m 2
-4)x +(m -2),当m 时,它是一次函数;当m 时它是正比例函数.
5、已知函数1+=kx y 与b x y +-=5.0图像交于点(2,5)。
求k 、b 的值.
6.学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如图所示.(15分))
根据图象回答:
(1)乙复印社的每月承包费是多少? (2)当每月复印多少页时,两复印 社实际收费相同?
(3)如果每月复印页数在1200页左右, 那么应选择哪个复印社?。