推挽、开漏、强上拉、弱上拉、强下拉、弱下拉输出
gpio的类别

gpio的类别
GPIO(General Purpose Input/Output,通用输入/输出)的类别或模式可以根据不同的应用和设计需求进行划分。
以下是一些常见的GPIO类别或模式:
1、输入模式(Input Mode):GPIO端口将读取外部设备发出的信号。
2、输出模式(Output Mode):GPIO端口将向外部设备发出信号。
3、复用模式(Multiplexing Mode):GPIO端口可以同时实现输入和输出功能。
4、高阻模式(High Impedance Mode):GPIO端口被设置为高阻模式,输入端口的输入信号会被抑制。
5、推挽输出模式(Push-Pull Output Mode):GPIO端口可以在输出模式时使用推挽输出模式。
6、中断模式(Interrupt Mode):GPIO端口可以捕捉到外部设备发出的信号。
7、测试模式(Test Mode):GPIO端口可以用于测试外部设备。
8、热插拔模式(Hot-Plugging Mode):GPIO端口可以实现热插拔功能。
9、此外,在Cortex-M3等处理器中,GPIO的配置种类可能还包括模拟输入(AIN)、浮空输入(IN_FLOATING)、下拉输入(IPD)、
上拉输入(IPU)、开漏输出(Out_OD)等。
请注意,这些模式并非全部,具体的GPIO类别或模式可能会因处理器、芯片或开发板的不同而有所差异。
因此,在实际应用中,需要参考相关的硬件文档或数据手册以获取准确的GPIO类别和配置信息。
推挽输出与开漏输出的区别

推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma 以内).推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector)门电路.是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。
输出既可以向负载灌电流,也可以从负载抽取电流。
/////////////////////////////////////////////////////////////////////开漏电路特点及应用在电路设计时我们常常遇到开漏(open drain)和开集(open collector)的概念。
本人虽然在念书时就知道其基本的用法,而且在设计中并未遇的过问题。
但是前两天有位同事向我问起了这个概念。
我忽然觉得自己对其概念了解的并不系统。
近日,忙里偷闲对其进行了下总结。
所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。
同理,开集电路中的“集”就是指三极管的集电极。
开漏电路就是指以MOSFET的漏极为输出的电路。
一般的用法是会在漏极外部的电路添加上拉电阻。
完整的开漏电路应该由开漏器件和开漏上拉电阻组成。
如图1所示:组成开漏形式的电路有以下几个特点:1. 利用外部电路的驱动能力,减少IC内部的驱动。
当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。
IC内部仅需很下的栅极驱动电流。
如图1。
2. 可以将多个开漏输出的Pin,连接到一条线上。
形成“与逻辑” 关系。
如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。
这也是I2C,SMBus等总线判断总线占用状态的原理。
GPIO的8种工作模式

GPIO的8种⼯作模式1、推挽输出模式#define GPIO_MODE_OUTPUT_PP 0x00000001U / *!<输出推拉模式* /推挽结构⼀般是指两个三极管分别受两个互补信号的控制,总是在⼀个三极管导通的时候另⼀个截⽌。
这种结构既可以输出⾼电平,也可以输出低电平,可以⽤于连接数字器件。
推挽电路是两个参数相同的三极管或MOSFET,以推挽⽅式存在于电路中,各负责正负半周的波形放⼤任务,电路⼯作时,两只对称的功率开关管每次只有⼀个导通,所以导通损耗⼩,效率⾼。
输出既可以向负载灌电流,也可以从负载抽取电流。
推拉式输出级既提⾼电路的负载能⼒,⼜提⾼开关速度。
2、开漏输出模式#define GPIO_MODE_OUTPUT_OD 0x00000011U / *!<输出开漏模式* /如果外部不接上拉电阻时,只能输出低电平,所以要想输出⾼电平必须要外接上拉电阻。
i、⼀般来说,开漏是⽤来连接不同电平的器件,匹配电平⽤的,因为如果外部不接上拉电阻时,只能输出低电平,所以要想输出⾼电平必须要外接上拉电阻。
很好的⼀个优点是通过改变上拉电源的电压,便可以改变传输电平,⽤于不同电压的系统之间的通信。
⽐如加上上拉电阻就可以提供TTL/CMOS电平输出等。
(上拉电阻的阻值决定了逻辑电平转换的速度。
阻值越⼤,速度越低功耗越⼩,所以负载电阻的选择要兼顾功耗和速度。
)ii、利⽤外部电路的驱动能⼒,减⼩内部电流,当IC内部MOSFET导通时,驱动电流是从外部的VCC流经上拉电阻、MOSFET到GND。
内部只需要很⼩的栅极驱动电流。
iii、开漏输出提供了灵活的输出⽅式,但是也有其弱点,就是带来上升沿的延时,通信的速度也受到上拉电阻阻值的影响。
因为上升沿是通过外接上拉⽆源电阻对负载充电,所以当电阻选择⼩时延时就⼩,通信速度可以很快,但功耗⼤;反之延时⼤通信速度变慢功耗⼩。
所以如果对延时有要求,则建议⽤下降沿输出。
51单片机IO端口的四种输入输出模式

51单片机IO端口的四种输入输出模式(by wuleisly)单片机I O口的使用对所有单片机玩家来说都是“家常便饭”,但是你真的了解I O 口吗?你真的能按你的需要配置I O口吗?一、准双向口输出准双向口输出类型可用作输出和输入功能而不需重新配置口线输出状态。
这是因为当口线输出为1时驱动能力很弱,允许外部装置将其拉低。
当引脚输出为低时,它的驱动能力很强,可吸收相当大的电流。
(准双向口有3个上拉晶体管适应不同的需要)准双向口读外部状态前,要先锁存为…1‟,才可读到外部正确的状态.二、强推挽输出推挽输出配置的下拉结构与开漏输出以及准双向口的下拉结构相同,但当锁存器为1时提供持续的强上拉。
推挽模式一般用于需要更大驱动电流的情况。
三、仅为输入(高阻)输入口带有一个施密特触发输入以及一个干扰抑制电路。
四、开漏输出配置(若外加上拉电阻,也可读)当口线锁存器为0时,开漏输出关闭所有上拉晶体管。
当作为一个逻辑输出时,这种配置方式必须有外部上拉,一般通过电阻外接到V c c。
如果外部有上拉电阻,开漏的I/O口还可读外部状态,即此时被配置为开漏模式的I/O口还可作为输入I/O口。
这种方式的下拉与准双向口相同。
开漏端口带有一个施密特触发输入以及一个干扰抑制电路。
关于I/O口应用注意事项:1.有些是I/O口由低变高读外部状态时,读不对,实际没有损坏,软件处理一下即可。
因为1T的8051单片机速度太快了,软件执行由低变高指令后立即读外部状态,此时由于实际输出还没有变高,就有可能读不对,正确的方法是在软件设置由低变高后加1到2个空操作指令延时,再读就对了.有些实际没有损坏,加上拉电阻就OK了有些是外围接的是NP N三极管,没有加上拉电阻,其实基极串多大电阻,I/O口就应该上拉多大的电阻,或者将该I/O口设置为强推挽输出.2.驱动L E D发光二极管没有加限流电阻,建议加1K以上的限流电阻,至少也要加470欧姆以上做行列矩阵按键扫描电路时,实际工作时没有加限流电阻,实际工作时可能出现2个I/O口均输出为低,并且在按键按下时,短接在一起,我们知道一个C MOS电路的2个输出脚不应该直接短接在一起,按键扫描电路中,此时一个口为了读另外一个口的状态,必须先置高才能读另外一个口的状态,而8051单?片机的弱上拉口在由0变为1时,会有2时钟的强推挽高输出电流输出到另外一个输出为低的I/O口,就有可能造成I/O口损坏.建议在其中的一侧加1K限流电阻,或者在软件处理上,不要出现按键两端的I/O口同时为低.一种典型三极管控制电路:如果用弱上拉控制,建议加上拉电阻R1(3.3K~10K),如果不加上拉电阻R1(3. 3K~10K),建议R2的值在15K以上,或用强推挽输出。
上拉输入、下了输入、推挽输出、开漏输出、复用开漏输出、复用推挽输出以及、浮空输入、模拟输入区别

上拉输入、下了输入、推挽输出、开漏输出、复用开漏输出、复用推挽输出以及、浮空输入、模拟输入区别上拉输入、下了输入、推挽输出、开漏输出、复用开漏输出、复用推挽输出以及、浮空输入、模拟输入区别有关上拉输入、下了输入、推挽输出、开漏输出、复用开漏输出、复用推挽输出以及、浮空输入、模拟输入区别最近在网上看见一些人对STM32的八种方式的解释,说了一大堆,最后看完了也不知道讲了什么,为了方便大家一目了然,本人总结如下,希望对大家有帮助。
1、上拉输入:上拉就是把电位拉高,比如拉到Vcc。
上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!弱强只是上拉电阻的阻值不同,没有什么严格区分。
2、下拉输入:就是把电压拉低,拉到GND。
与上拉原理相似。
3、浮空输入:浮空(floating)就是逻辑器件的输入引脚即不接高电平,也不接低电平。
由于逻辑器件的内部结构,当它输入引脚悬空时,相当于该引脚接了高电平。
一般实际运用时,引脚不建议悬空,易受干扰。
通俗讲就是让管脚什么都不接,浮空着。
4、模拟输入:模拟输入是指传统方式的输入.数字输入是输入PCM数字信号,即0,1的二进制数字信号,通过数模转换,转换成模拟信号,经前级放大进入功率放大器,功率放大器还是模拟的。
5、推挽输出:可以输出高,低电平,连接数字器件; 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。
高低电平由IC的电源低定。
6、开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).7、复用开漏输出、复用推挽输出:可以理解为GPIO口被用作第二功能时的配置情况(即并非作为通用IO口使用)。
在STM32中选用IO模式,下面是参考网上的总结一下。
(1)浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX(2)带上拉输入_IPU——IO内部上拉电阻输入(3)带下拉输入_IPD——IO内部下拉电阻输入(4)模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电(5)开漏输出_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。
推挽-强弱上拉-强弱下拉

强上(下)拉:上(下)拉电阻阻值比较小;弱上(下)拉:上(下)拉电阻阻值比较大;推挽输出:可以输出高,低电平,连接数字器件;推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于CO-MS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC(集电极开路)门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1. 驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计时应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
什么是开漏输出、推挽输出、开集输出、OC、OD、线或线与逻辑

所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOSFET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。如图1所示:
5. 标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能力。
应用中需注意:
1. 开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。例如,某输入Pin要求由开漏电路驱动。则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。如图3。
at91rm9200 GPIO 模拟I2C接口时注意!!
一.什么是OC、OD
集电极开路门(集电极开路 OC 或源极开路OD)
open-drain是漏极开路输出的意思,相当于集电极开路(open-collector)输出,即ttl中的集电极开路(oc)输出。一般用于线或、线与,也有的用于电流驱动。
顺便提示如果不是 OC 或 OD 芯片的输出端是不可以连在一起的, 总线 BUS 上的双向输出端连在一起是有管理的, 同时只能有一个作输出, 而其他是高阻态只能输入.
三什么是推挽结构
一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector)门电路 .如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem-pole)输出电路(可惜,图无法贴上)。当输出低电平时,也就是下级负载门输入低电平时,输出端的电流将是下级门灌入T4;当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 T3、D1 拉出。这样一来,输出高低电平时,T3 一路和 T4 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。供你参考。
单片机IO口推挽、开漏输出、准双向IO详解

单片机IO口推挽、开漏输出、准双向IO详解加入论坛的方式:在公众号对话框内,输入数字“1”,即可进入论坛,无需注册,就是这么简单。
诚邀您的加入。
在学单片机和选用逻辑器件的时候我们常别人说这款芯片是推挽输出驱动能力强,这个引脚是开漏输出需要加上拉电阻。
是不是有时候感觉一头雾水?今天就详解一下推挽和开漏,以后你买芯片的时候就可以和别人大声理论了。
1. 什么是推挽输出推挽输出既可以输出低电平,也可以输出高电平,可以直接驱动功耗不大的数字器件。
2. 推挽输出电路的结构推挽电路是由两个三极管或MOSFET,以推挽方式存在于电路中,电路工作时,两只对称的开关管每次只有一个导通,所以导通损耗小、效率高、既提高电路的负载能力,又提高开关速度。
其示意结构如下图所示:1. 当内部输出1电平时,上边的MOS管导通同时下边的MOS管截至,IO口输出高电平;2. 当内部输出0电平时,上边的MOS管截至同时下边的MOS管导通,IO口输出低电平;3. 什么是开漏输出开漏输出只能输出低电平,如果要输出高电平必须通过上拉电阻才能实现。
就类似于三极管的集电极输出。
4. 开漏输出电路的结构如上图:1. 内部输出1时MOS管截止,输出与地断开,这时候IO口其实是没有驱动能力的,需要外部连接上拉电阻才能输出高电平,才能驱动数字器件;2. 内部输出0时MOS管导通,输出低电平,所以开漏能输出低电平;5. 准双向IO在学51单片机的时候老师告诉我们,51单片机的IO口是准双向的,什么是准双向的?示意如下:其结构类似于开漏输出,只不过是把上拉电阻集成到了单片机内部。
6. IO口如何应用对于推挽输出的IO口可以直接输出高低电平驱动功耗较小的数字器件,但对于开漏输出的话必须要在外部接上拉电阻才行。
比如说LPC11C14单片机的片上I2C资源就是开漏输出的,如果要使用这两个引脚做输出就必须加上拉电阻,如下图所示:进入论坛的方式:在公众号对话框内,输入数字“1”,即可进入论坛,无需注册,就是这么简单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lilei 6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑 以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理 对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素: 1. 驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计时应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时 ,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4. 频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻的设定应考虑电路在这方面的需求。
下拉电阻的设定的原则和上拉电阻是一样的 OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V (高电平门限值)。
选上拉电阻时:500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。
如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V 即可。
当输出高电平时,忽略管子的漏电流,两输入口需200uA 200uA x15K=3V 即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。
选10K 可用。
COMS门的可参考74HC系列设计时管子的漏电流不可忽略,I/O口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:输出高电平时 要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了) 在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。
1.电阻作用: 1.接电组就是为了防止输入端悬空 减弱外部电流对芯片产生的干扰 保护cmos内的保护二极管,一般电流不大于10mA 上拉和下拉、限流 改变电平的电位,常用在TTL-CMOS匹配 2.在引脚悬空时有确定的状态 3.增加高电平输出时的驱动能力。
4.为OC门提供电流 那要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。
如果有上拉电阻那它的端口在默认值为高电平你要控制它必须用低电平才能控制如三态门电路三极管的集电极,或二极管正极去控制把上拉电阻的电流拉下来成为低电平。
尤其用在接口电路中,为了得到确定的电平,一般采用这种方法,以保证正确的电路状态,以免发生意外,比如,在电机控制中,逆变桥上下桥臂不能直通,如果它们都用同一个单片机来驱动,必须设置初始状态.防止直通! 2、定义: 上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理! 上拉是对器件注入电流,下拉是输出电流 弱强只是上拉电阻的阻值不同,没有什么严格区分 对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
3、为什么要使用拉电阻: 一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定! 一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I /O端口的输出类似与一个三极管的C,当C通过一个电阻和电源连接在一起的时候,该电阻成为上拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平.比如:当一个接有上拉电阻的端口设为输如状态时,他的常态就为高电平,用于检测低电平的输入。
上拉电阻是用来解决总线驱动能力不足时提供电流的。
一般说法是拉电流,下拉电阻是用来吸收电流的。
Push- Pull输出就是一般所说的推挽输出,在CMOS电路里面应该较CMOS输出更合适,因为在CMOS里面的push-pull输出能力不可能做得双极那么大。
输出能力看IC内部输出极N管P管的面积。
和开漏输出相比,push-pull的高低电平由IC的电源低定,不能简单的做逻辑操作等。
push-pull是现在CMOS电路里面用得最多的输出级设计方式。
一.什么是OC、OD 集电极开路门(集电极开路 OC 或源极开路OD) open-drain是漏极开路输出的意思,相当于集电极开路(open-collector)输出,即ttl中的集电极开路(oc)输出。
一般用于线或、线与,也有的用于电流驱动。
open-drain是对mos管而言,open-collector是对双极型管而言,在用法上没啥区别。
开漏形式的电路有以下几个特点: 1.利用外部电路的驱动能力,减少IC内部的驱动。
或驱动比芯片电源电压高的负载. 2. 可以将多个开漏输出的Pin,连接到一条线上。
通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。
这也是I2C,SMBus等总线判断总线占用状态的原理。
如果作为图腾输出必须接上拉电阻。
接容性负载时,下降延是芯片内的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度慢。
如果要求速度高电阻选择要小,功耗会大。
所以负载电阻的选择要兼顾功耗和速度。
3.可以利用改变上拉电源的电压,改变传输电平。
例如加上上拉电阻就可以提供TTL/CMOS 电平输出等。
4.开漏Pin不连接外部的上拉电阻,则只能输出低电平。
一般来说,开漏是用来连接不同电平的器件,匹配电平用的。
5.正常的CMOS输出级是上、下两个管子,把上面的管子去掉就是OPEN-DRAIN了。
这种输出的主要目的有两个:电平转换和线与。
6.由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。
这样你就可以进行任意电平的转换了。
7.线与功能主要用于有多个电路对同一信号进行拉低操作的场合,如果本电路不想拉低,就输出高电平,因为OPEN-DRAIN上面的管子被拿掉,高电平是靠外接的上拉电阻实现的。
(而正常的CMOS输出级,如果出现一个输出为高另外一个为低时,等于电源短路。
) 8.OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。
因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。
所以如果对延时有要求,则建议用下降沿输出。
二.什么是线或逻辑与线与逻辑? 在一个结点(线)上, 连接一个上拉电阻到电源 VCC 或 VDD 和 n 个 NPN 或 NMOS 晶体管的集电极 C 或漏极 D, 这些晶体管的发射极 E 或源极 S 都接到地线上, 只要有一个晶体 因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS), 晶体管就会饱和, 所以这些基极或栅极对这个结点(线)的关系是或非 NOR 逻辑. 如果这个结点后面加一个反相器,就是或 OR 逻辑. 注:个人理解:线与,接上拉电阻至电源。
(~A)&(~B)=~(A+B),由公式较容易理解线与此概念的由来 ; 如果用下拉电阻和 PNP 或 PMOS 管就可以构成与非 NAND 逻辑, 或用负逻辑关系转换与/或逻辑. 注:线或,接下拉电阻至地。
(~A)+(~B)=~(AB); 这些晶体管常常是一些逻辑电路的集电极开路 OC 或源极开路 OD 输出端. 这种逻辑通常称为线与/线或逻辑, 当你看到一些芯片的 OC 或 OD 输出端连在一起, 而有一个上拉电阻时,这就是线或/线与了, 但有时上拉电阻做在芯片的输入端内. 顺便提示如果不是 OC 或 OD 芯片的输出端是不可以连在一起的, 总线 BUS 上的双向输出端连在一起是有管理的, 同时只能有一个作输出, 而其他是高阻态只能输入. 三.什么是推挽结构 一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止,要实现线与需要用OC(open collector)门电路。
如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem- pole)输出电路(可惜,图无法贴上)。
当输出低电平时,也就是下级负载门输入低电平时,输出端的电流将是下级门灌入T4;当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 T3、D1 拉出。
这样一来,输出高低电平时,T3 一路和 T4 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。
又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。
因此,推拉式输出级既提高电路的负载能力,又提高开关速度。
供你参考。
推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小 效率高。
输出既可以向负载灌电流,也可以从负载抽取电流。
其他资料: 推挽电路是两不同极性晶体管输出电路无输出变压器(有OTL、OCL等)。
是两个参数相同的功率 BJT 管或 MOSFET 管,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小 效率高。
推挽输出既可以向负载灌电流,也可以从负载抽取电流。
如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem-pole)输出电路。
当输出低电平时,也就是下级负载门输入低电平时,输出端的电流将是下级门灌入T4;当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 T3、D1 拉出。