【精编】2014-2015学年安徽省宿州市七年级(下)期末数学试卷(解析版)

合集下载

宿州市七年级数学试卷七年级苏科下册期末练习题(及答案)

宿州市七年级数学试卷七年级苏科下册期末练习题(及答案)

宿州市七年级数学试卷七年级苏科下册期末练习题(及答案)一、幂的运算易错压轴解答题1.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为 ________ .(只要写出一个即可)(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值②若三个实数x,y,z满足2x×4y÷8z= ,x2+4y2+9z2=44,求2xy-3xz-6yz的值2.我们知道,同底数幂的乘法法则为: (其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)= 请根据这种新运算填空:(1)若h(1)= ,则h(2)=________.(2)若h(1)=k(k≠0),那么 ________(用含n和k的代数式表示,其中n为正整数)3.综合题(1)已知4m=a,8n=b,用含a,b的式子表示下列代数式:①求:22m+3n的值②求:24m﹣6n的值(2)已知2×8x×16=223,求x的值.二、平面图形的认识(二)压轴解答题4.如图①,将两个边长为1的小正方形分别沿对角线剪开,拼成正方形ABCD.(1)正方形ABCD的面积为________,边长为________,对角线BD=________;(2)求证:;(3)如图②,将正方形ABCD放在数轴上,使点B与原点O重合,边AB落在x轴的负半轴上,则点A所表示的数为________,若点E所表示的数为整数,则点E所表示的数为________5.如图,直线CB和射线OA,CB//OA,点B在点C的右侧.且满足∠OCB=∠OAB=100°,连接线段OB,点E、F在直线CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠BOE(2)当点E、F在线段CB上时(如图1),∠OEC与∠OBA的和是否是定值?若是,求出这个值;若不是,说明理由。

安徽省宿州市七年级下学期数学期末考试试卷

安徽省宿州市七年级下学期数学期末考试试卷

安徽省宿州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共12小题,每小题2分,共24分) (共12题;共24分)1. (2分)(2012·湛江) 下列运算中,正确的是()A . 3a2﹣a2=2B . (a2)3=a5C . a3•a6=a9D . (2a2)2=2a42. (2分) (2017七下·大石桥期末) 如图,有下列判断①∠1与∠3是对顶角②∠1与∠4是内错角③ ∠1与∠2 是同旁内角④∠3与∠4是同位角,其中不正确的是()A . ①B . ②C . ③D . ④3. (2分)(2017·深圳模拟) 下列是杀毒软件的四个logo,其中是轴对称图形又是中心对称图形的是A .B .C .D .4. (2分)某校在一次学生演讲比赛中,共有7个评委,某学生所得分数为:9.7,9.6,9.5,9.6,9.7,9.5,9.6,那么这组数据的众数与中位数分别是()A . 9.6,9.6B . 9.5,9.6C . 9.6,9.58D . 9.6,9.75. (2分) (2018七下·市南区期中) 下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A .B .C .D .6. (2分) (2020八上·柯桥开学考) 下列分解因式正确的是()A . -a+a3=-a(1+a2)B . 2a-4b+2=2(a-2b)C . a2-4=(a-2)2D . a2-2a+1=(a-1)27. (2分) (2019八上·重庆期末) 若是完全平方式,与的乘积中不含的一次项,则的值为()A . -4B . 16C . 4或16D . -4或-168. (2分)下列分解因式中,完全正确的是()A . x3-x=x(x2-1)B . 4a2-4a+1=4a(a-1)+1C . x2+y2=(x+y)2D . 6a-9-a2=-(a-3)29. (2分)(2019·天台模拟) 下列计算正确的是()A . a3+a4=a7B . a4•a5=a9C . 4m•5m=9mD . a3+a3=2a610. (2分)(2017·湖州模拟) 如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于()A . 130°B . 140°C . 150°D . 160°11. (2分) (2019八下·南岸期中) 按如图所示的运算程序,能使输出的结果为﹣1的是()A . x=3,y=3B . x=2,y=﹣4C . x=﹣4,y=﹣2D . x=4,y=212. (2分)(2020·呼伦贝尔模拟) 正方形、正方形如图放置,点在同一条直线上,点P在边上,,且,连结交于,有下列结论:① ;② ;③ ;④ ;⑤ .以上结论正确的个数有()A . 5个B . 4个C . 3个D . 2个二、填空题(共6小题,每小题3分,共18分) (共6题;共18分)13. (3分) (2018七下·市南区期中) 多项式(mx+4)(2-3x)展开后不含x项,则m=________.14. (3分) (2017七下·嘉兴期中) 在二元一次方程x+3y=8的解中,当x=2时,对应的y的值是________.15. (3分)一个角是20°10′,则它的余角是________16. (3分)(2012·资阳) 某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、C三个级别,其中A级30棵,B级60棵,C级10棵,然后从A、B、C三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是________千克.苹果树长势A级B级C级随机抽取棵数(棵)361所抽取果树的平均产量(千克)80757017. (3分)如图,已知△ABC的周长为a,A1B1 , B1C1 , A1C1是△ABC的三条中位线,它们构成了△A1B1C1 ,△A2B2C2是由△A1B1C1的三条中位线A2B2 , B2C2 , A2C2构成的……如此进行下去,得到△AnBnCn ,则△A1B1C1的周长为________,△A2B2C2的周长为________,△A3B3C3的周长为________,△AnBnCn的周长为________.18. (3分)甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k)个,乙每次摸5个或(5-k)个(k是常数,且0<k<3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球________个三、解答题(本大题共8题,共58分) (共8题;共58分)19. (8分) (2020七下·玄武期中) 因式分解:(1) a3﹣a;(2) 4ab2﹣4a2b﹣b3;(3) a2(x﹣y)﹣9b2(x﹣y);(4)(y2﹣1)2+6 (1﹣y2)+9.20. (6分) (2017七下·抚宁期末) 解方程组21. (6分)先化简,再求值:(a+b)(a-b)+(a-b)2-(2a2-ab),其中a,b是一元二次方程x2+x-2=0的两个实数根.22. (6分)如图,AB∥CD,点P在CD上,且AP⊥BP,∠ABP=25°,则∠APC=________度.23. (6分) (2019七下·卧龙期末) 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,O,M也在格点上.①画出△ABC先向右平移5个单位长度,再向下平移5个单位长度得到的△A'B'C';②画出△ABC关于直线OM对称的△A1B1C1;③画出△ABC绕点O按顺时针方向旋转90°后所得的△A2B2C2;④△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是轴对称图形,请画出对称轴.24. (8分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部a85b s初中2高中部85c100160(1)根据图示计算出a、b、c的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s2初中,并判断哪一个代表队选手成绩较为稳定.25. (8分) (2020七上·永春期末) 某商场计划用900元从生产厂家购进50台计算器,已知该厂家生产三种不同型号的计算器,出厂价分别为A种每台15元,B种每台21元,C种毎台25元.(1)商场同时购进两种不同型号的计算器50台,用去900元.①若同时购进A、B两种时,则购进A、B两种计算器各多少台?;②若同时购进A、C两种时,则购进A、C两种计算器各多少台?;(2)若商场销售一台A种计算器可获利5元,销售一台B种计算器可获利8元,销售一台C种计算器可获利12元,在同时购进两种不同型号的计算器方案中,为了使销售时获利最多,你选择哪种方案?26. (10分) (2020七下·龙岩期中) 已知在平面直角坐标系中,点满足,轴于点.(1)点的坐标为________,点的坐标为________;(2)如图1,若点在轴上,连接,使,求出点的坐标;(3)如图2,是线段所在直线上一动点,连接,平分,交直线于点,作,当点在直线上运动过程中,请探究与的数量关系,并证明.参考答案一、选择题(共12小题,每小题2分,共24分) (共12题;共24分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(共6小题,每小题3分,共18分) (共6题;共18分) 13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(本大题共8题,共58分) (共8题;共58分)19-1、19-2、19-3、19-4、20-1、21-1、22-1、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、第11 页共11 页。

宿州七年级下册数学期末试卷测试卷(含答案解析)

宿州七年级下册数学期末试卷测试卷(含答案解析)

宿州七年级下册数学期末试卷测试卷(含答案解析)一、解答题1.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD . (1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.2.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB .(1)如图1,若∠OPQ =82°,求∠OPA 的度数;(2)如图2,若∠AOP =43°,∠BQP =49°,求∠OPA 的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由. 3.如图,已知//AB CD ,CN 是BCE ∠的平分线. (1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.4.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.5.已知AB ∥CD ,∠ABE 与∠CDE 的角分线相交于点F .(1)如图1,若BM 、DM 分别是∠ABF 和∠CDF 的角平分线,且∠BED =100°,求∠M 的度数;(2)如图2,若∠ABM =13∠ABF ,∠CDM =13∠CDF ,∠BED =α°,求∠M 的度数;(3)若∠ABM =1n ∠ABF ,∠CDM =1n∠CDF ,请直接写出∠M 与∠BED 之间的数量关系二、解答题6.已知:三角形ABC 和三角形DEF 位于直线MN 的两侧中,直线MN 经过点C ,且BC MN ⊥,其中A ABC CB =∠∠,DEF DFE ∠=∠,90∠+∠=︒ABC DFE ,点E 、F 均落在直线MN 上.(1)如图1,当点C 与点E 重合时,求证://DF AB ;聪明的小丽过点C 作//CG DF ,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程. (2)将三角形DEF 沿着NM 的方向平移,如图2,求证://DE AC ;(3)将三角形DEF 沿着NM 的方向平移,使得点E 移动到点E ',画出平移后的三角形DEF ,并回答问题,若DFE α∠=,则∠=CAB ________.(用含α的代数式表示) 7.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.8.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.(1)当点P 在N 右侧时:①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;(2)若镜像PQ CD ⊥,求BMQ ∠的度数.9.如图,已知//AB CD P ,是直线AB CD ,间的一点,PF CD ⊥于点F PE ,交AB 于点120E FPE ∠=︒,.(1)求AEP ∠的度数;(2)如图2,射线PN 从PF 出发,以每秒40︒的速度绕P 点按逆时针方向旋转,当PN 垂直AB 时,立刻按原速返回至PF 后停止运动:射线EM 从EA 出发,以每秒15︒的速度绕E 点按逆时针方向旋转至EB 后停止运动,若射线PN ,射线EM 同时开始运动,设运动间为t 秒.①当20MEP ∠=︒时,求EPN ∠的度数; ②当 //EM PN 时,求t 的值.10.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.三、解答题11.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍.(1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么?(3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数.12.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)13.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 14.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC . (1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小; (3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .15.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.【参考答案】一、解答题1.(1)证明见解析;(2);(3). 【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒. 【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE , CFDE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠, BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE , CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒, F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠, ABC F BCF ∴∠-∠=∠, CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE , GM DE ∴,MGN DFG ∴∠=∠,BH 平分ABC ∠,FN 平分CFD ∠, 11,22ABH AB D C CF DFG ∴∠=∠∠∠=,由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGHBGD GF MGNC∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.2.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ =∠ORQ . 【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.3.(1)90°;(2)见解析;(3)不变,180° 【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据解析:(1)90°;(2)见解析;(3)不变,180° 【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解. 【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠,12BCN BCE ∴=∠,12BCM BCD ∠=∠,180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒;(2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠, 2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠, ⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 4.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG =∠GCF =25°,再根据PQ ∥CE ,即可得出∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF =4x -3x =x ,分两种情况讨论:①当点G 、F 在点E 的右侧时,②当点G 、F 在点E 的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB =100°,AB ∥CD ,∴∠ECQ =80°,∵∠PCF =∠PCQ ,CG 平分∠ECF ,∴∠PCG =∠PCF +∠FCG =12∠QCF +12∠FCE =12∠ECQ =40°;(2)∵AB ∥CD∴∠QCG =∠EGC ,∠QCG +∠ECG =∠ECQ =80°,∴∠EGC +∠ECG =80°,又∵∠EGC -∠ECG =30°,∴∠EGC =55°,∠ECG =25°,∴∠ECG =∠GCF =25°,∠PCF =∠PCQ =12(80°-50°)=15°,∵PQ ∥CE ,∴∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF=∠FCD =4x -3x =x ,①当点G 、F 在点E 的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.5.(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+解析:(1)65°;(2)3606α︒-︒;(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF +∠CDF =130°,从而得到∠BFD 的度数,再根据角平分线的定义和三角形外角的性质可求∠M 的度数;(2)先由已知得到∠ABE =6∠ABM ,∠CDE =6∠CDM ,由(1)得∠ABE +∠CDE =360°-∠BED ,∠M =∠ABM +∠CDM ,等量代换即可求解;(3)由(2)的方法可得到2n ∠M +∠BED =360°.【详解】解:(1)如图1,作//EG AB ,//FH AB ,连结MF ,//AB CD ,//////EG AB FH CD ∴,ABF BFH ∴∠=∠,CDF DFH ∠=∠,180ABE BEG ∠+∠=︒,180GED CDE ∠+∠=︒, 360ABE BEG GED CDE ∴∠+∠+∠+∠=︒,100BED BEG DEG ∠=∠+∠=︒,260ABE CDE ∴∠+∠=︒,ABE ∠和CDE ∠的角平分线相交于E ,130ABF CDF ∴∠+∠=︒,130BFD BFH DFH ∴∠=∠+∠=︒, BM 、DM 分别是ABF ∠和CDF ∠的角平分线,12MBF ABF ∴∠=∠,12MDF CDF ∠=∠, 65MBF MDF ∴∠+∠=︒,1306565BMD ∴∠=︒-︒=︒;(2)如图1,13ABM ABF ∠=∠,13CDM CDF ∠=∠, 3ABF ABM ∴∠=∠,3CDF CDM ∠=∠,ABE ∠与CDE ∠两个角的角平分线相交于点F ,6ABE ABM ∴∠=∠,6CDE CDM ∠=∠,66360ABM CDM BED ∴∠+∠+∠=︒,BMD ABM CDM ∠=∠+∠,6360BMD BED ∴∠+∠=︒,3606BMD α︒-︒∴∠=; (3)由(2)结论可得,22360n ABM n CDM E ∠+∠+∠=︒,M ABM CDM ∠=∠+∠, 则2360n M BED ∠+∠=︒.【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.二、解答题6.(1)见解析;(2)见解析;(3)见解析;.【分析】(1)过点C 作,得到,再根据,,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据(2)结论得到∠D解析:(1)见解析;(2)见解析;(3)见解析;2α.【分析】(1)过点C 作//CG DF ,得到DFE FCG ∠=∠,再根据90BCF ∠=︒,90∠+∠=︒ABC DFE ,得到ABC BCG ∠=∠,进而得到//CG AB ,最后证明//DF AB ;(2)先证明90ACB DEF ∠+∠=︒,再证明90ACB ACE ∠+∠=︒,得到DEF ACE ∠=∠,问题得证;(3)根据题意得到DFE DEF α∠=∠=,根据(2)结论得到∠DEF =∠ECA =α,进而得到=90BC AC A B α=∠︒-∠,根据三角形内角和即可求解.【详解】解:(1)过点C 作//CG DF ,DFE FCG ∴∠=∠,BC MN ⊥,90BCF ∴∠=︒,90BCG FCG ∴∠+∠=︒,90BCG DFE ∴∠+∠=︒,90ABC DFE ∠+∠=︒,ABC BCG ∴∠=∠,//CG AB ∴,//DF AB ∴;(2)解:ABC ACB ∠=∠,DEF DFE ∠=∠,又90ABC DFE ∠+∠=︒,90ACB DEF ∴∠+∠=︒,BC MN ⊥,90BCM ∴∠=︒,90ACB ACE ∴∠+∠=︒,DEF ACE ∴∠=∠,//DE AC ∴;(3)如图三角形DEF 即为所求作三角形.∵DFE α∠=,∴DFE DEF α∠=∠=,由(2)得,DE ∥AC ,∴∠DEF =∠ECA =α,∵90ACB ACE ∠+∠=︒,∴∠ACB =90α︒-,∴ =90BC AC A B α=∠︒-∠,∴∠A =180°-A ABC CB -∠∠=2α.故答案为为:2α.【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.7.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P 作PQ ∥DF ,依据平行线的性质可得∠β=∠QPA ,∠α=∠QPE ,即可得到∠APE =∠APQ -∠EPQ =∠β-∠α.【详解】解:(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠B +∠BPG =180°,∠C +∠CPG =180°,又∵∠PBA =125°,∠PCD =155°,∴∠BPC =360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P 作FD 的平行线PQ ,则DF ∥PQ ∥AC ,∴∠α=∠EPQ ,∠β=∠APQ ,∴∠APE =∠EPQ +∠APQ =∠α+∠β,∠APE 与∠α,∠β之间的数量关系为∠APE =∠α+∠β;②如图3,∠APE 与∠α,∠β之间的数量关系为∠APE =∠β-∠α;理由:过P 作PQ ∥DF ,∵DF ∥CG ,∴PQ ∥CG ,∴∠β=∠QPA ,∠α=∠QPE ,∴∠APE =∠APQ -∠EPQ =∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.8.(1)①,证明见解析,②,(2)或.【分析】(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.【分析】(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.【详解】(1)①//MN PQ ,证明:∵//AB CD ,∴NPM QMP ∠=∠,∵,NMP QMP NPM QPM ∠=∠∠=∠,∴NMP QPM ∠=∠,∴//MN PQ ;②过点Q 作QF ∥CD ,∵//AB CD ,∴////AB CD QF ,∴1BMQ ∠=∠,2QPD ∠=∠,∴DPQ BM MQP Q ∠=∠∠+,∵70MNP MQP ∠=∠=︒,∴70DPQ BMQ ∠∠+=︒;(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,∵PQ CD ⊥,∴90NPQ ∠=︒,∴90FQP ∠=︒,∵70MND PQM ∠=∠=︒,∴20FQM ∠=︒,∴20BMQ ∠=︒,如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF , 同理可得,90FQP ∠=︒,∵70MND ∠=︒,∴110MNP PQM ∠=∠=︒,∴20FQM ∠=︒,∵//AB QF ,∴180BM FQM Q ∠=∠+︒,∴160BMQ ∠=︒;综上,BMQ ∠的度数为160︒或20︒.【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.9.(1);(2)①或;②秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间解析:(1)30;(2)①2803︒或403︒;②185秒或5411或9011秒【分析】(1)通过延长PG 作辅助线,根据平行线的性质,得到90∠=︒PGE ,再根据外角的性质可计算得到结果;(2)①当20MEP ∠=︒时,分两种情况,Ⅰ当ME 在AE 和EP 之间,Ⅱ当ME 在EP 和EB 之间,由20MEP ∠=︒,计算出EM 的运动时间t ,根据运动时间可计算出FPN ∠,由已知120FPE ∠=︒可计算出EPN ∠的度数;②根据题意可知,当//EM PN 时,分三种情况,Ⅰ射线PN 由PF 逆时针转动,//EM PN ,根据题意可知15AEM t ∠=︒,40FPN t ∠=︒,再平行线的性质可得AEM AHP ∠=∠,再根据三角形外角和定理可列等量关系,求解即可得出结论;Ⅱ射线PN 垂直AB 时,再顺时针向PF 运动时,//EM PN ,根据题意可知,15AEM t ∠=︒,//ME PN ,15GHP t ∠=︒,可计算射线PN 的转动度数1809015t ︒+︒-︒,再根据PN 转动可列等量关系,即可求出答案;Ⅲ射线PN 垂直AB 时,再顺时针向PF 运动时,//EM PN ,根据题意可知,15AEM t ∠=︒,940()2GPN t ∠=-︒,根据(1)中结论,30PEG ∠=︒,60PGE ∠=,可计算出PEM ∠与EPN ∠代数式,再根据平行线的性质,可列等量关系,求解可得出结论.【详解】解:(1)延长FP 与AB 相交于点G ,如图1,PF CD ⊥,90PFD PGE ∴∠=∠=︒,EPF PGE AEP ∠=∠+∠,1209030AEP EPF PGE ∴∠=∠-∠=︒-︒=︒;(2)①Ⅰ如图2,30AEP ∠=︒,20MEP ∠=︒,10AEM ∴∠=︒,∴射线ME 运动的时间102153t ==(秒), ∴射线PN 旋转的角度2804033FPN ︒∠=⨯︒=, 又120EPF ∠=︒,8028012033EPN EPF EPN ︒︒∴∠=∠-∠=︒-=;Ⅱ如图3所示, 30AEP ∠=︒,20MEP ∠=︒, 50AEM ∴∠=︒, ∴射线ME 运动的时间5010153t ==(秒), ∴射线PN 旋转的角度104004033FPN ︒∠=⨯︒=, 又120EPF ∠=︒,4004012033EPN FPN EPF ︒︒∴∠=∠-∠=-︒=; EPN ∴∠的度数为2803︒或403︒;②Ⅰ当PN 由PF 运动如图4时//EM PN , PN 与AB 相交于点H , 根据题意可知,经过t 秒, 15AEM t ∠=︒,40FPN t ∠=︒, //EM PN ,15AEM AHP t ∴∠=∠=︒, 又=FPN PGH PHA ∠∠+∠, 409015t t ∴︒=︒+︒, 解得185t =(秒);Ⅱ当PN 运动到PG ,再由PG 运动到如图5时//EM PN ,PN 与AB 相交于点H ,根据题意可知,经过t 秒,15AEM t ∠=︒,//EM PN ,15GHP t ∴∠=︒,9015GPH t ∠=︒-︒,PN ∴运动的度数可得,18040GPH t ︒+∠=︒, 解得5411t =;Ⅲ当PN 由PG 运动如图6时,//EM PN ,根据题意可知,经过t 秒,15AEM t ∠=︒,40180GPN t ∠=-︒,30AEP ∠=︒,60EPG ∠=︒,1530PEM t ∴∠=︒-︒,24040EPN t ∠=︒-,又//EM PN ,180PEM EPN ∴∠+∠=︒,153040240180t t ∴︒-︒+-︒=︒,解得9011t =(秒), 当t 的值为185秒或5411或9011秒时,//EM PN .【点睛】本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键.10.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.三、解答题11.(1)36°或18°;(2)△AOB 、△AOC 都是“梦想三角形”,证明详见解析;(3)∠B =36°或∠B =.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°, 解析:(1)36°或18°;(2)△AOB 、△AOC 都是“梦想三角形”,证明详见解析;(3)∠B =36°或∠B =5407︒(). 【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO 、∠OAC 的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC =∠ADC ,根据平行线的性质得到∠DEF =∠ADE ,推出DE ∥BC ,得到∠CDE =∠BCD ,根据角平分线的定义得到∠ADE =∠CDE ,求得∠B =∠BCD ,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB 、△AOC 都是“梦想三角形”证明:∵AB ⊥OM ,∴∠OAB =90°,∴∠ABO =90°﹣∠MON =30°,∴∠OAB=3∠ABO,∴△AOB为“梦想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“梦想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“梦想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=5407().【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.12.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β13.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.14.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP =12(180°﹣∠3),∠6=12∠FDQ =12(180°﹣∠5),∴∠BFD +∠BGD =∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD ,整理得:2∠BGD +∠BFD =360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.15.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论;(2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45EDF ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45EDF ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.。

解析版安徽省淮北市濉溪县2014 2015七年级下期末数学试卷

解析版安徽省淮北市濉溪县2014 2015七年级下期末数学试卷

安徽省淮北市濉溪县2014-2015学年七年级下学期期末数学试卷一、选择题,每小题3分,共30分.请将每小题给出的4个选项中唯一正确的答案代号选出,填入题后的括号内..估计在()1A.0~1之间B.1~2之间C.2~3之间D.3~4之间2.下列说法不正确的是()A.﹣1的立方根是﹣1 B.﹣1的平方是1C.﹣1的平方根是﹣1 D.1的平方根是±1.化简的结果是()3A.﹣4 B.4 C.±4 D.无意义4.面积为6的长方形,长是宽的2倍,则宽为()A.小数B.分数C.无理数D.不能确定5.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4 B.x<2 C.2<x<4 D.x>2,则下列不等式的变形正确的是()a<b,6.ab都是实数,且>C.3a<3bD.B A.a+x>b+x.﹣a+1<﹣b+17.下列运算正确的是()32533236633 x=x÷xD2x﹣x.=1 C.x?x =xA .x+x =x B.8.下列各式中能用完全平方公式进行因式分解的是()2222﹣x6x+9D. A .x+x+1 B.x﹣+2x1 C.x1 ﹣x的取值范围是()9.若使分式有意义,则A.x≠2 B.x≠﹣2 C.x>﹣2 D.x<2 10.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()13/ 1A.30°B.25°C.20°D.15°二、填空题(共1030分)小题,每小题3分,满分1的解集的公共部分是.x﹣111)<.不等式和x+3(12.不等式2x+9≥3(x+2)的正整数解是.22.2a =13.22﹣1,则b﹣a)a的值是.x14.若代数式﹣6x+b可化为(x﹣2b=.a﹣3)互为相反数,则15.已知|a+2|与(b.若分式的值为0,则16x的值等于..化简17的结果是.18.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D=°.19.甲图向上平移2个单位得到乙图,乙图向左平移2个单位得到丙图,丙图向下平移2个单位得到丁图,那么丁图向平移个单位可以得到甲图.b=,若2⊕(2x﹣1)=1、20.对于非零的两个实数ab,规定a⊕,则x的值为.43小题,每小题分,共12分.三、本题共102015﹣).﹣()﹣(+21.计算:﹣(﹣1)+2π322.b+aba﹣2a 22.分解因式:22+2a+2015的值.2a 23.若a+a=0,求四、本题共2小题,每小题6分,共12分.13/ 2x=2+.,其中.先化简,再求值:24.观察下列各式及验证过程:25===,验证;===,验证;= ==,验证…= ==)按照上述三个等式及其验证过程中的基本思想,猜想的变形结果并进行验证.1 ((2)针对上述各式反映的规律,写出用n(n为自然数,且n≥1)表示的等式,不需要证明.五、本题共2题,每题8分,共16分.26.已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分线相交于点P,求∠P.27.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?安徽省淮北市濉溪县2014-2015学年七年级下学期期末数学试卷一、选择题,每小题3分,共30分.请将每小题给出的4个选项中唯一正确的答案代号选出,填入题后的括号内..估计在()1A.0~1之间B.1~2之间C.2~3之间D.3~4之间考点:估算无理数的大小.13/ 3专题:计算题.2,可得答案.,即:分析:根据二次根式的性质得出∵,解答:解:2,即:∴在2到3之间.故选:C.和之间.本题考查了估算无理数的大小和二次根式的性质,解此题的关键是知道在点评:2.下列说法不正确的是()A.﹣1的立方根是﹣1 B.﹣1的平方是1C.﹣1的平方根是﹣1 D.1的平方根是±1考点:立方根;平方根.分析:A、根据立方根的定义即可判定;B、根据平方运算法则计算即可判定;C、根据平方根的定义即可判定;D、根据平方根的定义即可判定.解答:解:A、﹣1的立方根是﹣1,故选项正确;B、﹣1的平方是1,故选项正确;C、不对.1没有平方根,故选项错误;D、1的平方根是±1,故选项正确.故选C.点评:本题主要考查了平方根和立方根的概念,要掌握其中的几个特殊数字(0,±1)的特殊性质..化简的结果是()3D.无意义A.﹣4 B. 4 C.±4考点:算术平方根.专题:探究型.分析:根据算术平方根的定义直接进行计算即可.==4,解答:解:∵的算术平方根等于4∴.故选B.化为的形式是解答此题的关键.点评:本题考查的是算术平方根的定义,把4.面积为6的长方形,长是宽的2倍,则宽为()A.小数B.分数C.无理数D.不能确定考点:无理数.分析:根据题意,可以设宽是x,则长是2x,利用长方形的面积公式可算出宽,再利用无理数的定义判断即可.解答:解:设宽是x,则长是2x,13/ 42=6,2x 依题意得方程x=,是一个无理数.解得:故选C.点评:此题主要主要考查了无理数的定义,无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4 B.x<2 C.2<x<4 D.x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.a,b都是实数,且a<b,则下列不等式的变形正确的是()>.3a<3b D.>b+x B.﹣a+1<﹣b+1 C A.a+x考点:不等式的性质.分析:根据不等式的性质1,可判断A,根据不等式的性质3、1可判断B,根据不等式的性质2,可判断C、D.解答:解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.点评:本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变.7.下列运算正确的是()32533236633 x÷x=x=x D.xA .x+x =x B.2x﹣xC=1 .x?考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据同底数幂的乘法,可判断A、C;根据合并同类项,可判断B;根据同底数幂的除法,可判断D.解答:解:A、不是同底数幂的乘法,指数不能相加,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、同底数幂的乘法,底数不变指数相加,故C错误;D、同底数幂的除法底数不变指数相见,故D正确;13/ 5故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.8.下列各式中能用完全平方公式进行因式分解的是()2222﹣x6x+9 ﹣1 D﹣+2x1 C.x A.x.+x+1 B.x考点:因式分解-运用公式法.分析:根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.2+x+1不符合完全平方公式法分解因式的式子特点,故Ax错误;A解答:解:、2+2x﹣1不符合完全平方公式法分解因式的式子特点,故B错误;B、x2﹣1不符合完全平方公式法分解因式的式子特点,故C错误;C、x22,故D)正确.﹣6x+9=(x﹣xD、3故选:D.点评:本题考查了用公式法进行因式分解,能用公式法进行因式分解的式子的特点需熟记..若使分式有意义,则x的取值范围是()9 A.x≠2 B.x≠﹣2 C.x>﹣2 D.x<2考点:分式有意义的条件.分析:本题主要考查分式有意义的条件:分母不等于0,根据题意解得答案.解答:解:∵x﹣2≠0,∴x≠2.故选A.点评:本题考查的是分式有意义的条件.当分母不为0时,分式有意义.10.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°平行线的性质.考点:本题主要利用两直线平行,同位角相等作答.分析:解:根据题解答:意可知,两直线平行,同位角相等,∴∠1=∠3,,2=45°3+∵∠∠°1+∴∠∠2=45 ∵∠1=20,°.°∠∴2=25 故选:.B13/ 6本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰点评:直角三角板的锐角是45°的利用.二、填空题(共10小题,每小题3分,满分30分))<.x1<的解集的公共部分是111.不等式和x+3(x﹣1解一元一次不等式组.考点:先解两个不等式,再用口诀法求解集.分析:,x<4解答:解:解不等式,得<1,﹣1)<1,得x解不等式x+3(x <1.所以它们解集的公共部分是x <1.故答案为x本题考查一元一次不等式组的解法,求一元一次不等式组解集的口诀:同大取大,同小取小,点评:大小小大中间找,大大小小找不到(无解)..,3x+2)的正整数解是1,212.不等式2x+9≥3(一元一次不等式的整数解.考点:计算题.专题:先解不等式,求出其解集,再根据解集判断其正整数解.分析:),≥3(x+2解答:解:2x+9 3x+6,去括号得,2x+9≥9,≥6﹣移项得,2x﹣3x 3,x≥﹣合并同类项得,﹣,x≤3系数化为1得,.2,3故其正整数解为1,.,3故答案为:1,2 本题考查了一元一次不等式的整数解,会解不等式是解题的关键.点评:22 =13.2a.幂的乘方与积的乘方.考点:根据幂的乘方的逆运算解答即可.分析:22()解答:解:2a.=故答案为:此题考查幂的乘方,关键是根据幂的乘方的逆运算分析.点评:22.的值是b﹣a5,则)﹣可化为(x14.若代数式﹣6x+bxa﹣1配方法的应用.考点:13/ 7分析:的值.a、b 先将代数式配成完全平方式,然后再判断2222 1)x﹣a解:x,﹣6x+b=x6x+9﹣﹣9+b=(x﹣3)﹣+b﹣9=(解答:a=5.b=8,故b﹣,∴a=3,b﹣9=﹣1,即a=3 5.故答案为:能够熟练运用完全平方公式,是解答此类题的关键.点评:b2 =8﹣15.已知|a+2|与(b﹣3).互为相反数,则a 非负数的性质:偶次方;相反数;非负数的性质:绝对值.考点:,,…a,a分析:根据非负数的性质解答.有限个非负数的和为零,那么每一个加数也必为零,即若21=0,则必有a=a=……+a=a=0.aa为非负数,且+a+n12n21n2互为相反数,﹣3)解:∵|a+2|与(b解答:2)3(b﹣∴|a+2|+=0,则a+2=0,a=﹣2;b﹣3=0,b=3.b3=﹣8.=(﹣2)故a点评:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.16.若分式的值为0,则x的值等于8.考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件:分子=0,分母≠0,可以求出x的值.解答:解:x﹣8=0,x=8,故答案为:8.点评:此题主要考查了分式的值为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.17.化简的结果是1﹣x.考点:分式的乘除法.分析:本题考查的是分式的除法运算,做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:原式=.点评:分式的除法计算首先要转化为乘法运算,然后对式子进行化简,化简的方法就是把分子、分母进行分解因式,然后进行约分.分式的乘除运算实际就是分式的约分.18.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D=35°.13/ 8平行线的性质;角平分线的定义.考点:计算题.专题:的度D根据平行线的性质先求得∠ABC的度数,再根据角平分线的性质及平行线的性质求得∠分析:数.BC,∠A=110°,解答:解:∵AD∥﹣∠A=70°;ABC=180∴∠BD平分∠ABC,又∵∴;∠DBC=35°,AD∥BC∵.∠DBC=35°∴∠D= .为:35故答案此题考查了角平分线的性质及平行线的性质,比较简单.点评:个单位得到丁个单位得到丙图,丙图向下平移2219.甲图向上平移个单位得到乙图,乙图向左平移2 2个单位可以得到甲图.图,那么丁图向右平移平移的性质.考点:数形结合.专题:根据平移的性质,画出图形,得到丁图与甲图的位置关系,即可求解.分析:个单位可以得到甲图.解:根据题意,丁图位于甲图左侧两个单位,因此,有丁图右平移解答:2根据平移的性质作出草图来,由图形可以直接得答案.注意结合图形解题的思想.点评:的值为x.1)=1,则,规定ba⊕b=,若2⊕(2x﹣.对于非零的两个实数20a、解分式方程.考点:新定义.专题:先根据规定运算把方程转化为一般形式,然后把分式方程转化为整式方程求解,再进行检验即分析:可得解.=1﹣,﹣1)=1可化为解答:解:2⊕(2x ,﹣2x1)(=212x212x2方程两边都乘以(﹣)得,﹣(﹣),x=解得13/ 9=≠01),1)=2(2 ×﹣检验:当2xx=时,2(﹣x=是原分式方程的解,所以,的值为.即x故答案为:.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.三、本题共3小题,每小题4分,共12分.102015﹣﹣(2﹣π))21..计算:﹣+(﹣1)+(考点:实数的运算;零指数幂;负整数指数幂.分析:根据立方根、有理数的乘方、零指数幂的性质和负整数指数幂的性质计算计算即可.解答:解:原式=﹣3﹣2+1﹣3=﹣6.点评:本题主要考查的是立方根、有理数的乘方、零指数幂的性质和负整数指数幂的性质,掌握相关性质是解题的关键.322..分解因式:ab+ab﹣2a22考点:提公因式法与公式法的综合运用.222.)(aa,再根据完全平方公式进行二次分解.完全平方公式:a﹣﹣2ab+bb=先提取公因式分析:332 b+ab﹣2a解答:解:a22)﹣﹣(提取公因式)a﹣2ab+b=a(2.﹣﹣(完全平方公式)﹣b)=a(a点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.22+2a+2015的值.2a.若a +a=0,求23考点:因式分解-提公因式法.专题:计算题.分析:原式前两项提取2,把已知等式代入计算即可求出值.2+a=0,∵a 解答:解:2a(原式=2∴+a)+2015=2015.点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.四、本题共2小题,每小题6分,共12分.x=2+.24 .先化简,再求值:,其中考点:分式的化简求值.13/ 10分析:先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.再把x的值代入求值.= 解答:解:原式==,=.x=2+时,原式当点评:此题主要考查分式的通分、化简、分解因式等知识.25.观察下列各式及验证过程:=;= ==,验证==;==,验证=…==,验证=)按照上述三个等式及其验证过程中的基本思想,猜想的变形结果并进行验证.(1(2)针对上述各式反映的规律,写出用n(n为自然数,且n≥1)表示的等式,不需要证明.考点:二次根式的性质与化简.专题:规律型.=;= 1分析:(=)按照所给等式的验证过程得到=(n≥1(2)根据所给等式可得到第n个等式为的整数),验证过1)一样.程与(1解答:解:(=).===;验证:(n≥)(2=1的整数).13/ 11本题考查了二次根式的性质与化简:=|a|.点评:五、本题共2题,每题8分,共16分.26.已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分线相交于点P,求∠P.考点:平行线的性质.分析:由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得∠P=90度.解答:解:∵AB∥CD∴∠BEF+∠DFE=180°又∵∠BEF的平分线与∠DFE的平分线相交于点PPFE=∠∠DFE PEF=∠BEF,∴∠PFE=(∠BEF+∠DFE)=90∴∠PEF+∠°∵∠PEF+∠PFE+∠P=180°∴∠P=90°.点评:本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握这些定理是解题的关键.27.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?考点:分式方程的应用.专题:应用题.分析:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.解答:解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,=,由题意,得:解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.点评:本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km 与特快列车行驶(360﹣135)km所用的时间相同.13/ 1213/ 13。

宿州市七年级下学期数学期末试卷

宿州市七年级下学期数学期末试卷

宿州市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、精心选一选 (共10题;共32分)1. (2分)下列运动属于平移的是()A . 旋转的电风扇B . 摆动的钟摆C . 用黑板擦沿直线擦黑板D . 游乐场正在荡秋千的人2. (2分) (2019八上·驿城期中) 在平面直角坐标系中,点(3,-4)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (4分)要调查城区九年级8000名学生了解禁毒知识的情况,下列调查方式最合适的是()A . 在某校九年级选取50名女生B . 在某校九年级选取50名男生C . 在某校九年级选取50名学生D . 在城区8000名九年级学生中随机选取50名学生4. (4分)在数轴上表示不等式3x≥x+2的解集,正确的是()A .B .C .D .5. (2分)(2017·台湾) 如图的数轴上有O,A,B三点,其中O为原点,A点所表示的数为106 ,根据图中数轴上这三点之间的实际距离进行估计,下列何者最接近B点所表示的数()A . 2×106B . 4×106C . 2×1076. (2分)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到吴江儿童福利院看望孤儿.如果分给每位儿童4盒牛奶,那么剩下28盒牛奶;如果分给每位儿童5盒牛奶,那么最后一位儿童分不到5盒,但至少能有2盒.则这个儿童福利院的儿童最少有()A . 28人B . 29人C . 30人D . 31人7. (4分)如图所示,∠1和∠2是对顶角的是()A .B .C .D .8. (4分)某人只带2元和5元两种人民币,他要买一件23元的商品,而商店没有零钱,那么他付款的方式有()A . 1种B . 2种C . 3种D . 4种9. (4分) (2019八下·廉江期末) 平行四边形所具有的性质是()A . 对角线相等B . 邻边互相垂直C . 每条对角线平分一组对角D . 两组对边分别相等10. (4分)小明购买文具一共要付32元,小明钱包里只有2元和5元两种面值若干张钱,他一共有几种不同的付款方案()A . 3种C . 5种D . 6种二、精心填一填 (共6题;共22分)11. (4分) (2019七下·天台期末) 实数3的算术平方根是________.12. (4分) (2018八上·阜宁期末) 点P 在平面直角坐标系的y轴上,则点P的坐标是________.13. (4分)为了解所在小区236户家庭对创建卫生城市工作是否满意,小明利用周末调查了其中的50户家庭,有32户表示满意,在这一抽样调查中,样本容量为________14. (2分) (2019七下·封开期末) 一个两位数的数字之和是7,这个两位数减去27,它的十位和个位上的数字就交换了位置,则这个两位数是________.15. (4分)若a<b,则﹣5a________﹣5b(填“>”“<”或“=”).16. (4分)点P(2,4)与点Q(-3,4)之间的距离是________.三、耐心做一做 (共9题;共80分)17. (8分)(2020·湖南模拟) 计算:2sin30°+(π﹣3.14)0+|1﹣ |+(﹣1)﹣201818. (8分)解不等式组.19. (2分)(2016·盐城) 如图,已知△ABC中,∠ABC=90°(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①作线段AC的垂直平分线l,交AC于点O;②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;③连接DA、DC(2)判断四边形ABCD的形状,并说明理由.20. (8分) (2020八下·惠东期中) 若关于的方程组的解满足,求的取值范围.21. (8分) (2017七下·阜阳期末) 如图,已知:AC//FG ,∠1=∠2,判断DE与FG的位置关系,并说明理由.22. (10.0分) (2018九上·荆州期末) 随着科技的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了________名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为________;(2)将条形统计图补充完整;(3)该校共有2500名学生,请估计该校最喜欢用“微信”进行沟通的学生数有________名;(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.23. (10分)(2017·东城模拟) 在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2﹣m+1(1)当抛物线的顶点在x轴上时,求该抛物线的解析式;(2)不论m取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;(3)若有两点A(﹣1,0),B(1,0),且该抛物线与线段AB始终有交点,请直接写出m的取值范围.24. (12分)(2020·满洲里模拟) 如图,在四边形ABCD中,对角线AC , BD相交于点O , AO=CO , BO =DO ,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC ,求∠BDF的度数.25. (14分) (2019七下·封开期末) 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC向下平移4个单位长度得到的△A1B1C1; (2)求△A1B1C1的面积.参考答案一、精心选一选 (共10题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、精心填一填 (共6题;共22分)11-1、12-1、13-1、14-1、15-1、16-1、三、耐心做一做 (共9题;共80分)17-1、18-1、19-1、19-2、20-1、21-1、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、25-1、25-2、。

安徽宿州市初中数学七年级下期末习题(含答案解析)

安徽宿州市初中数学七年级下期末习题(含答案解析)

一、选择题1.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°2.不等式x+1≥2的解集在数轴上表示正确的是( ) A . B . C .D .3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y == 4.计算2535-+-的值是( ) A .-1B .1C .525-D .255-5.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°6.已知关于x 的不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤7.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180° 8.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-29.不等式组3(1)112123x x x x -->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .10.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .911.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度 12.已知4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <613.若0a <,则下列不等式不成立的是( ) A .56a a +<+B .56a a -<-C .56a a <D .65a a< 14.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②15.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( )A .8B .6C .4D .2 二、填空题16.如果a 的平方根是3±,则a =_________17.如图,边长为10cm 的正方形ABCD 先向上平移4cm ,再向右平移2cm ,得到正方形A'B'C'D',则阴影部分面积为___________________.18.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.19.若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x ay b =⎧⎨=⎩,则a ﹣b=______.20.已知1a -+5b -=0,则(a ﹣b )2的平方根是_____.21.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;22.如果方程组23759x y x y +=⎧⎨-=⎩,的解是方程716x my +=的一个解,则m 的值为____________.23.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____. 参赛者答对题数答错题数得分A 19 1 112B 18 2 104C 17 3 96 D10104024.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________.25. 5-的绝对值是______.三、解答题26.如图,已知∠A=∠AGE ,∠D=∠DGC . (1)试说明AB ∥CD ;(2)若∠1+∠2=180°,且∠BEC=2∠B+60°,求∠C 的度数.27.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .28.已知//AB CD ,点M 为平面内一点.(1)如图1,ABM ∠和DCM ∠互余,小明说过M 作//MP AB ,很容易说明BM CM ⊥。

宿州市七年级下学期数学期末考试试卷

宿州市七年级下学期数学期末考试试卷

宿州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共28分)1. (3分) (2019七下·江阴月考) 同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了左图鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A .B .C .D .2. (2分)(2017·微山模拟) 今年某县有1万名初中和小学生参加全国义务教育质量抽测,为了了解1万名学生的抽测成绩,从中抽取500名学生抽测成绩进行统计分析,在这个问题中数据500是()A . 总体B . 个体C . 一个样本D . 样本容量3. (3分) (2019七下·台安期中) 在平面直角坐标系中,点P(–2,–3)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (3分) (2016七上·乳山期末) 通过估算比较大小,下列结论不正确的是()A .B . ﹣>C .D .5. (3分) (2017八上·上城期中) 若y轴上的点A到x轴的距离为3,则点A的坐标为()A . (3,0)B . (3,0)或(-3,0)C . (0,3)D . (0,3)或(0,-3)6. (3分) (2019七下·北京期中) 若a>b ,则下列不等式中错误的是().A . a-1>b-1B . a+1>b+1C . 2a>2bD . -2a>-2b7. (3分) (2017七上·南京期末) 若,则的取值范围是()A .B .C .D .8. (2分)在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于EF长为半径作弧,两弧交于点M;③作射线BM交AC于点D,则∠BDC的度数为()A . 100°B . 65°C . 75°D . 105°9. (3分)估计的值().A . 在1到2之间B . 在2到3之间C . 在3到4之间D . 在4到5之间10. (3分) (2020八上·历下期末) 三个连续正整数的和小于14,这样的正整数有()A . 2组B . 3组C . 4组D . 5组二、填空题 (共5题;共15分)11. (3分)一个数的立方根是4,这个数的平方根是________ .12. (3分) (2016七下·罗山期中) 点A(x,y)在第二象限,则点B(﹣x,﹣y)在第________象限.13. (3分)在二元一次方程2y+x=8中,若x=0,则y=________;若x=2,则y=________.14. (3分)如图,在△ABC中,∠B=∠C,∠BAD=34°,且∠ADE=∠AED,则∠CDE=________度.15. (3分) (2017七下·靖江期中) 若是方程组的解,则 + =________三、解答题(本大题有9小题,共102分) (共9题;共97分)16. (10分)(2018八上·长春期末) 已知的积不含项与项,求的值是多少?17. (10分) (2018九上·洛阳期末) 如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,1)、B(4,0)、C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转得到90°得到△A2B2C2;(2)求点C从开始到点C2的过程中所经过的路径长.18. (10分) (2019八下·淮安月考) 某校对八年级学生上学的4种方式:骑车、步行、乘车、接送,进行抽样调查,结果如图(1)、图(2).(1)该抽样调查中样本容量是________,其中,步行人数占样本容量的________%,骑车人数占样本容量的________%,乘车人数占样本容量的________%.(2)请把条形统计图补充完整;(3)根据调查结果,你估计该校八年级500名学生中,大约有多少名学生是由家长接送上学的?19. (10分)大学毕业生小李选择自主创业,在家乡承包果树若干亩,今年投资13800元,收获水果总产量为18000千克.此水果在果园直接销售每千克售b元,在市场上每千克售a元(b<a).将水果拉到市场出售平均每天出售1000千克,需2人帮忙,每人每天付工资100元,运费及其他各项税费平均每天200元.(1)分别用含a,b的代数式表示两种方式出售水果的总收入;(2)若a=4.5元,b=4元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好;(3)小李今年采用了(2)中较好的出售方式出售,并打算努力学习技术,加强果园管理,力争明年纯收入达到72000元,那么纯收入的增长率将是多少(纯收入=总收入-总支出)?20. (10分)如图,(1)∠ABP=90°,则直线________⊥直线________;(2)∠ABP=90°,直线AC外一点P与直线上各点连接的所有线段中,________最短.21. (10分) (2019七下·江城期末) 如图1,若AB∥CD,则∠B+∠D=∠BED理由:如图,过点E作EF∥AB,则∠B=∠BEF.(依据)因为A B∥CD,所以EF∥CD,所以∠D=∠DEF所以∠BED=∠BEF+∠DEF=∠B+∠D(1)上述证明过程中的依据是指________。

安徽省宿州市七年级下学期期末测试数学试题

安徽省宿州市七年级下学期期末测试数学试题

安徽省宿州市七年级下学期期末测试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八下·鹿角镇期中) 下面计算正确的是()A .B .C .D .2. (2分)-64的立方根是A . -8B . ±8C . ±4D . -43. (2分) (2017七下·东城期末) 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A . (﹣3,3)B . (0,3)C . (3,2)D . (1,3)4. (2分) (2019八上·皇姑期末) 下列命题为真命题的是()A . 三角形的一个外角大于任何一个和它不相邻的内角B . 两直线被第三条直线所截,同位角相等C . 垂直于同一直线的两直线互相垂直D . 三角形的外角和为5. (2分) (2017七下·长春期末) 下列四组数中,是方程4x﹣y=10的解的是()A .B .C .D .6. (2分) (2017七下·海安期中) 若a>b ,则下列不等式变形错误的是()A . a-1>b-1B .C . 3a>2bD .7. (2分)(2019·三门模拟) 为迎接中考体育加试,小明和小亮分别统计了自己最近l0次的游泳成绩,下列统计量中,能反映两人游泳成绩稳定性的是()A . 平均数B . 中位数C . 众数D . 方差8. (2分)下列实数中是无理数的是()A .B .C . 0.101001D .9. (2分)下列语句中,不是命题的是()A . 若两角之和为90º,则这两个角互补B . 同角的余角相等C . 作线段的垂直平分线D . 相等的角是对顶角10. (2分) (2017七下·巢湖期末) 如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC= ∠BAC.其中正确的结论有()A . 5个B . 4个C . 3个D . 2个二、填空题 (共6题;共11分)11. (2分) (2019七上·海港期中) 平方等于4的数是________立方等于-8的数是________.12. (5分) (2019七下·同安期中) 填空:① 的平方根是________;②-8的立方根是________;③ =________;④ ________;⑤比较大小: ________ -3.13. (1分) (2020八上·遂宁期末) 如图,在△ABC中,∠ABC<∠BCA<∠BAC,∠BAC和∠ABC的外角平分线AE、BD分别与BC、CA的延长线交于E、D.若AB=AE,BD=BA.则∠BCA的度数为________.14. (1分) (2019八下·番禺期末) 如图,正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 ,…按如图所示的方式放置.点A1 , A2 , A3 ,…和点C1 , C2 , C3 ,…分别在直线(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是________.15. (1分)(2018·济宁模拟) 因式分解2x2﹣4x+2=________.16. (1分)(2018·广州) 如图,数轴上点A表示的数为a,化简: =________三、解答题 (共9题;共115分)17. (5分) (2016九上·顺义期末) 计算:cos60°+tan30°•sin60°﹣(cos45°﹣)° .18. (15分)(2013·嘉兴) 小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC 的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.19. (15分)(2018·金华模拟) 如图,在平面直角坐标系xOy中,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点D、E、F、G分别为边OA、AB、BC、CO的中点,连结DE、EF、FG、GD.(1)若点C在y轴的正半轴上,当点B的坐标为(2,4)时,判断四边形DEFG的形状,并说明理由.(2)若点C在第二象限运动,且四边形DEFG为菱形时,求点四边形OABC对角线OB长度的取值范围.(3)若在点C的运动过程中,四边形DEFG始终为正方形,当点C从X轴负半轴经过Y轴正半轴,运动至X 轴正半轴时,直接写出点B的运动路径长.20. (15分) (2019七下·番禺期中) 解方程:(1)(x-1)2=9;【答案】解:x-1=±3x1=4,x2=-2.(1) 8(x+2)3=-27;(2);(3)21. (5分) (2015七下·唐河期中) 解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.22. (20分)为了了解某校八年级女生的身体情况,从中抽取了60名女生的身高进行了测量,结果如下(单位:cm):167 154 159 166 169 159 156 166 162 158 159 156 166 160 164 160 157 156 157 161158 158 153 158 164 158 163 158 153 157 162 162 159 154 165 166 157 151 146 151158 160 165 158 163 163 162 161 154 165 162 162 159 157 159 149 164 168 159 153(1)计算这组数据的极差,这个极差说明什么问题?(2)根据分组原则“数据在50~100之间时分8~12组较合适”,请将本题数据适当分组;(3)绘制频数分布直方图;(4)根据图文信息,请你估计并说出你有何结论.23. (10分) (2017七下·博兴期末) 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?24. (10分) (2018七下·紫金月考) 如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1) CD与EF平行吗?为什么?(2)如果∠1=∠2,试判断DG与BC的位置关系,并说明理由.25. (20分) (2018八上·深圳期末) 如图,已知y=3x+3与x轴交于点B,与y轴交于点A,与函数y=x的图象交于点P(1)在该坐标系中画出函数y= 的图象,并说明点P也在函数y= 的图象上;(2)设直线y= 与x轴交于点C,与y轴交于点D,求证:PO平分∠APC;(3)连接AC,求△APC的面积;(4)在y轴上,是否存在点M,使△ACM为等腰三角形?若存在,请直接写出符合条件的所有点M的坐标;若不存在,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年安徽省宿州市七年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)下列运算正确的是()A.a4+a5=a9 B.a3•a3•a3=3a3 C.2a4•3a5=6a9D.(﹣a3)4=a72.(3分)水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m,把0.0000000001用科学记数法表示为()A.1×109B.1×1010C.1×10﹣9D.1×10﹣103.(3分)下列标志中,不是轴对称的有()A.2个 B.3个 C.4个 D.5个4.(3分)若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b5.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.16.(3分)下列说法正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形7.(3分)在下面的四组全等的三角形中,可以看作把△ABC经过翻折(轴对称)而得到△DEF的是()A.B.C.D.8.(3分)由下列长度的三条线段能构成三角形的是()A.3cm、4cm、5cm B.6cm、2cm、3cm C.1cm、2cm、3cm D.1cm、4cm、2cm9.(3分)定义:f(a,b)=(b,a),g(m,n)=(﹣m,﹣n).例如f(2,3)=(3,2),g(﹣1,﹣4)=(1,4).则g[f(﹣5,6)]等于()A.(﹣6,5)B.(﹣5,﹣6)C.(6,﹣5)D.(﹣5,6)10.(3分)赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.二、填空题(每小题3分,共24分)11.(3分)计算:﹣82015×0.1252015=.12.(3分)设4x2+mx+121是一个完全平方式,则m=.13.(3分)一个角与它的补角之差是20°,则这个角的大小是.14.(3分)如图,AB∥CD,∠CFE=112°,ED平分∠BEF,交CD于D,则∠EDF=度.15.(3分)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.16.(3分)定义新运算:规定运算:a*b=ab﹣a+b+1,求(﹣3)*4的值.17.(3分)若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是.18.(3分)观察下面一组图形,根据其变化规律,可得到第n个图形中三角形的个数为.三、解答题(本题共5小题,共46分)19.(6分)先化简,再求值:[(﹣x+y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.5.20.(10分)如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.(1)完成下面的证明:∵MG平分∠BMN∴∠GMN=∠BMN同理∠GNM=∠DNM.∵AB∥CD,∴∠BMN+∠DNM=∴∠GMN+∠GNM=∵∠GMN+∠GNM+∠G=∴∠G=∴MG与NG的位置关系是(2)把上面的题设和结论,用文字语言概括为一个命题:.21.(10分)如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.22.(10分)一游泳池长90米,甲乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲、乙两人在整个游泳过程中,谁曾休息过?休息过几次?(3)甲游了多长时间?游泳的速度是多少?(4)在整个游泳过程中,甲、乙两人相遇了几次?23.(10分)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=.②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=.③根据②求出:1+2+22+…+234+235的结果.2014-2015学年安徽省宿州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)下列运算正确的是()A.a4+a5=a9 B.a3•a3•a3=3a3 C.2a4•3a5=6a9D.(﹣a3)4=a7【解答】解:A、a4+a5=a4+a5,不是同类项不能相加;B、a3•a3•a3=a9,底数不变,指数相加;C、正确;D、(﹣a3)4=a12.底数取正值,指数相乘.故选:C.2.(3分)水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m,把0.0000000001用科学记数法表示为()A.1×109B.1×1010C.1×10﹣9D.1×10﹣10【解答】解:0.0000000001=1×10﹣10,故选:D.3.(3分)下列标志中,不是轴对称的有()A.2个 B.3个 C.4个 D.5个【解答】解:第1个图形,既是旋转对称图形,也是轴对称图形,第2个图形,是旋转对称图形,不是轴对称图形,第3个图形,不是旋转对称图形,是轴对称图形,第4个图形,既是旋转对称图形,也是轴对称图形,第5个图形,是旋转对称图形,不是轴对称图形.所以,是旋转对称图形但不是轴对称图形的有:第2个,第5个共2个.故选:A.4.(3分)若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b【解答】解:a=0.32=0.09,b=﹣3﹣2=﹣()2=﹣;c=(﹣)﹣2=(﹣3)2=9,d=(﹣)0=1,∵﹣<0.09<1<9,∴b<a<d<c,故选:B.5.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.6.(3分)下列说法正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形【解答】解:A、一个钝角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;B、一个等腰三角形不一定是锐角三角形,或直角三角形,故本选项错误;C、一个直角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;D、一个等边三角形一定不是钝角三角形,也不是直角三角形,故本选项正确;故选:D.7.(3分)在下面的四组全等的三角形中,可以看作把△ABC经过翻折(轴对称)而得到△DEF的是()A.B.C.D.【解答】解:A、△ABC经过平移得到△DEF,故此选项错误;B、△ABC经过旋转180°得到△DEF,故此选项错误;C、△ABC经过旋转得到△DEF,故此选项错误;D、△ABC经过翻折(轴对称)而得到△DEF,故此选项正确;故选:D.8.(3分)由下列长度的三条线段能构成三角形的是()A.3cm、4cm、5cm B.6cm、2cm、3cm C.1cm、2cm、3cm D.1cm、4cm、2cm【解答】解:A中,3+4>5,能构成三角形;B中,3+2<6,不能构成三角形;C中,1+2=3,不能构成三角形;D中,1+2<4,不能构成三角形.故选:A.9.(3分)定义:f(a,b)=(b,a),g(m,n)=(﹣m,﹣n).例如f(2,3)=(3,2),g(﹣1,﹣4)=(1,4).则g[f(﹣5,6)]等于()A.(﹣6,5)B.(﹣5,﹣6)C.(6,﹣5)D.(﹣5,6)【解答】解:根据定义,f(﹣5,6)=(6,﹣5),所以,g[f(﹣5,6)]=g(6,﹣5)=(﹣6,5).故选:A.10.(3分)赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.【解答】解:由于先匀速再停止后加速行驶,故其行驶距离先匀速增加再不变后匀速增加.故选:B.二、填空题(每小题3分,共24分)11.(3分)计算:﹣82015×0.1252015=﹣1.【解答】解:﹣82015×0.1252015=(﹣8×0.125)2015=﹣1.故答案为:﹣1.12.(3分)设4x2+mx+121是一个完全平方式,则m=±44.【解答】解:∵4x2+mx+121是一个完全平方式,∴mx=±2×11•2x,∴m=±44.故答案为:±44.13.(3分)一个角与它的补角之差是20°,则这个角的大小是100°.【解答】解:设这个角为α,则它的补角180°﹣α,根据题意得,α﹣(180°﹣α)=20°,解得:α=100°,故答案为:100°.14.(3分)如图,AB∥CD,∠CFE=112°,ED平分∠BEF,交CD于D,则∠EDF= 56度.【解答】解:∵AB∥CD,∴∠BEF=∠CFE=112°,∵ED平分∠BEF,∴∠BED=112°×=56°,又∵AB∥CD,∴∠EDF=∠BED=56°.15.(3分)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.【解答】解:因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故答案为:.16.(3分)定义新运算:规定运算:a*b=ab﹣a+b+1,求(﹣3)*4的值﹣4.【解答】解:∵a*b=ab﹣a+b+1,∴(﹣3)*4=(﹣3)×4﹣(﹣3)+4+1=﹣12+3+4+1=﹣4.故答案为:﹣4.17.(3分)若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是18或15.【解答】解:当7为底时,其它两边都为4,7、4、4可以构成三角形,周长为15;当7为腰时,其它两边为4和7,4、7、7可以构成三角形,周长为18,所以答案是18或15.18.(3分)观察下面一组图形,根据其变化规律,可得到第n个图形中三角形的个数为4n﹣3.【解答】解:(1)结合图形不难发现:后一个图形中三角形的个数总比前一个三角形的个数多4,从而完成表格;(2)根据(1)中的发现,运用字母表示即可.故在第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3.三、解答题(本题共5小题,共46分)19.(6分)先化简,再求值:[(﹣x+y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.5.【解答】解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,当x=3,y=1.5时,原式=3﹣1.5=1.5.20.(10分)如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.(1)完成下面的证明:∵MG平分∠BMN已知∴∠GMN=∠BMN角平分线的定义同理∠GNM=∠DNM.∵AB∥CD已知,∴∠BMN+∠DNM=180°∴∠GMN+∠GNM=90°∵∠GMN+∠GNM+∠G=180°∴∠G=90°∴MG与NG的位置关系是MG⊥NG(2)把上面的题设和结论,用文字语言概括为一个命题:两平行直线被第三条直线所截,同旁内角的角平分线互相垂直.【解答】解:∵MG平分∠BMN(已知)∴∠GMN=∠BMN(角平分线的定义),同理∠GNM=∠DNM.∵AB∥CD(已知),∴∠BMN+∠DNM=180°,∴∠GMN+∠GNM=90°,∵∠GMN+∠GNM+∠G=180°,∴∠G=90°,∴MG与NG的位置关系是MG⊥NG;故答案为:已知;角平分线的定义;已知;180°;90°;180°;90°;MG⊥NG;(2)两平行直线被第三条直线所截,同旁内角的角平分线互相垂直.21.(10分)如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.【解答】解:∵AB=AC,AE平分∠BAC,∴AE⊥BC(等腰三角形三线合一),∵∠ADC=125°,∴∠CDE=55°,∴∠DCE=90°﹣∠CDE=35°,又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°.又∵AB=AC,∴∠B=∠ACB=70°,∴∠BAC=180﹣(∠B+∠ACB)=40°.22.(10分)一游泳池长90米,甲乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲、乙两人在整个游泳过程中,谁曾休息过?休息过几次?(3)甲游了多长时间?游泳的速度是多少?(4)在整个游泳过程中,甲、乙两人相遇了几次?【解答】解:(1)甲游了3个来回,乙游了2个来回;(2)乙曾休息了两次;(3)甲游了180秒,游泳的速度是90×6÷180=3米/秒;(4)甲、乙相遇了5次.23.(10分)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1.②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1.③根据②求出:1+2+22+…+234+235的结果.【解答】解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②根据题意得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为:①x7﹣1;②x n+1﹣1;③236﹣1。

相关文档
最新文档