六年级奥数:列方程解应用题 2013

合集下载

(完整版)六年级奥数列方程解应用题

(完整版)六年级奥数列方程解应用题

列方程解应用题列方程解应用题,就是用代数算法解应用题。

它以布列方程为前提,先不考虑求得数,只把所求未知数设x。

一般所求问题与已知条件的数量关系明显者,采取设直接未知数的办法,即求什么就设什么为x;而所求问题与已知条件的数量关系隐蔽者,则采取设间接未知数的办法,即设一个跟所求问题与已知条件相关联的未知数为x。

但是,无论设哪种未知数为x,均将其放在与已知数同等的地位,一起参加数量关系的分析和运算。

列方程解应用题,一般分四步进行:①弄清题意,用x表示未知数;②找出数量间的等量关系,列出方程式;③解方程;④检验并作答。

正确的方程式,应符合下列条件:①等号两边的意义的相同;②等号两边的数量相等;③等号两边的单位一致。

例1.光明小学买回一批图书,如果每班发15本,则少20本,如果每班发12本,则剩下16本,这个学校一共有多少个班?买回图书多少本?我能行:1、一批游客过一条河,如果每只船坐10个人,还剩4人,如果每船坐12个人,那么多出1只船,你知道这批游客有多少人?有多少只船?2、小明每天同一时间从家出发去学校,如果每分钟行60米,则可提前1分钟到校,如果每分钟行50米,则迟到2分钟,小明家离学校多少米?3、某班班主任给同学们分巧克力,如果每个人分10块,则剩下8块,如果每个人分12块,有6个同学分不到。

这个班有多少个学生?例2.一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大4倍,个位上的数字减去2,那么所得的两位数比原来大58,求原来的两位数是多少?解析:这道题用算术方法解答有一定的难度,换成方程来解答,思路就比较简洁。

设个位上的数字为x人,则十位上的数字是x -1我能行:1、有一个两位数,它的十位数字和个位数字和是14,如果把十位上的数字和个位上的数字位置交换后,所得的两位数比原来的两位数大36,求原来的两位数?2、甲数是乙数的3倍,甲数减去85,乙数减去5,则两数相等,甲乙两数各是多少?3、一个三位数,十位数字是0,其余两位数字之和是12,如果个位数字减2,百位数字加1,那么所得的新数比原数的百位数字与个位数字互换位置后的数小100,求原三位数。

小学六年级奥数列方程解应用题

小学六年级奥数列方程解应用题

【导语】⽅程(equation)是指含有未知数的等式。

是表⽰两个数学式(如两个数、函数、量、运算)之间相等关系的⼀种等式,使等式成⽴的未知数的值称为解或根。

以下是⽆忧考整理的《⼩学六年级奥数列⽅程解应⽤题》相关资料,希望帮助到您。

1.⼩学六年级奥数列⽅程解应⽤题 1、⾷堂买进⾯粉175千克,⽐⽟⽶⾯的3倍还多25千克,⾷堂买进⽟⽶⾯多少千克? 2、师傅⽐徒弟多加⼯162个零件,已知师傅加⼯零件的个数是徒弟的4倍,师徒⼆⼈各加⼯多少个零件? 3、⽀钢笔⽐15⽀圆珠笔贵7.6元。

每⽀圆珠笔的价钱是2.8元,每⽀钢笔多少元? 4、⼀个三⾓形的⾯积是18平⽅厘⽶,它的底边长是12厘⽶,⾼是多少厘⽶? 5、选择适当的⽅法解答下⾯两题。

(1)学校科技组有18名⼥⽣,⽐男⽣⼈数的1/3少2⼈。

学校科技组有多少名男⽣? (2)学校科技组有36名⼥⽣,男⽣⼈数⽐⼥⽣⼈数的3倍还多6⼈。

学校科技组有多少名男⽣?2.⼩学六年级奥数列⽅程解应⽤题 1、某果园向市场运⼀批⽔果,原计划每车装1.6吨,实际每车装2吨,结果少了4吨,⼀共有多少辆车? 2、某班42个同学参加植树,男⽣平均每⼈种3棵,⼥⽣平均每⼈种2棵,已知男⽣⽐⼥⽣多种56棵,男、⼥⽣各有多少⼈? 3、学校买来科技书的册数是⽂艺书册数的1.4倍,如果再买12册⽂艺书,两种书的册数相等。

学校买来两种书各有多少册? 4、学校买6张办公桌和15把椅⼦共⽤去660元。

已知每张办公桌与3把椅⼦的价钱相等,求多少元? 5、东⽅⼩学五年级举⾏数学竞赛,共10个赛题每做对⼀题得8分,错⼀题倒扣5分,张华全部解答,但只得41分,他做对多少题? 6、松⿏妈妈采松⼦,晴天每天可采24个,⾬天每天可采16个,他⼀连⼏天⼀共采了168个松⼦,平均每天采21个,这⼏天中⼀共有多少是天晴天? 7、甲⼄两个仓库共有⼤⾖138吨,若从甲仓库运⾛30吨,从⼄仓库运⾛35吨,这时⼄仓库⽐甲仓库的⼀半还多4吨,求两个仓库原来各有⼤⾖多少吨? 8、甲、⼄、丙、丁四⼈共做零件270个,如果甲多做10个,⼄少做10个,丙做的个数乘以2,丁做的个数除以2,那么四⼈做的零件数恰好相等,丙实际做了多少个? 9、某仓库运出四批原料,第⼀批运出的占全部库存的⼀半,第⼆批运出的占余下的⼀半,以后每⼀批都运出前⼀批剩下的⼀半。

六年级小学列方程解应用题(精选5篇)

六年级小学列方程解应用题(精选5篇)

六年级小学列方程解应用题(精选5篇)第一篇:六年级小学列方程解应用题列方程解应用题列方程解应用题的意义★ 用方程式去解答应用题求得应用题的未知量的方法。

2 列方程解答应用题的步骤★ 弄清题意,确定未知数并用x表示;★ 找出题中的数量之间的相等关系;★ 列方程,解方程;★ 检查或验算,写出答案。

3列方程解应用题的方法★ 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

★ 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4列方程解应用题的范围a一般应用题;b和倍、差倍问题;c几何形体的周长、面积、体积计算; d 分数、百分数应用题; e 比和比例应用题。

5.常见的一般应用题一、以总量为等量关系建立方程练一练① 降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?② 甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?③ 两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?④ 两地相距249千米,一列火车从甲地开往乙地,每小时行55。

5千米,行了多少小时还离乙地有27千米?⑤ 买5个本子和3支铅笔一共用去10.4元,已知铅笔每支0.9元,每本子多少元?⑥ 服装厂要做984套衣服,已经做了120套,剩下的要在12天内完成平均每天做多少套?⑦ 某生产小组9个工人要生产1926个零件,每人每小时可生产20个,工作5.5小时后,要求剩下的任务必须在4小时内完成,每人每小时必须生产多少?⑧ 电机厂计划生产1980台电动机,已经生产了4天,每天生产45台,由于改进了技术,以后每天比原来增产15台,实际完成任务需几天?二、以总量为等量关系建立方程练一练① 学校买来乒乓球和蓝球一共135个,买来的乒乓球是蓝球的8倍,两种球各多少个?② 有一个上下两层的书架一共放了240书,上层放的书是下层的2倍,两层书架各放书多少本?③ 图书馆买来文艺科技书共235本,文艺书的本数比科技书的2倍多25本,两种书各买了多少本?④ 甲、乙、丙三人为灾区捐款共270元,甲捐的是乙捐的3倍,乙是丙的两倍,三人各捐多少元?⑤A、B两个码头相距379.4千米,甲船比乙船每小时快3.6千米,两船同时在这两个码头相向而行,出发后经过三小时两船还相距48.2千米,求两船的速度各是多少?三、以相差数为等量关系建立方程练一练:① 新华书店发售甲种书90包,乙种书68包,甲种书比乙种书多1100本,每包有多少本?② 一篮苹果比一篮梨子重30千克,苹果的千克数是梨子的2.5倍,求苹果和梨子各多少千克?③ 两块正方形的地,第一块地的边长比第二块地的边长的2倍多2米,而它们的周长相差56厘米,两块地边长是多少?④ 小亮购买每支0.5元和每支1.2元的笔共20支,付20元找回404元,两种笔各买了多少支?⑤ 甲、乙两数之差为100,甲数比乙数的3倍还多4,求甲、乙两数?⑥ 两个水池共贮水60吨,甲池用去6吨,乙池又注入8吨水后,乙池的水比甲池的水少4吨,原来两池各贮水多少吨?⑦ 师徒两人共同加工一批零件,徒弟每天做30个,师傅因有事只做了6天,比徒弟少做了3天还比徒弟多做12个零件,师傅每天做几个?8食堂买的白菜比萝卜的3倍少20千克,萝卜比白菜少70千克,白菜、萝卜食堂各买了多少千克?四、以题中的等量为等量关系建立方程练一练:① 甲厂有钢材148吨,乙厂有112吨,如果甲厂每天用18吨,乙厂每天用12吨,多少天后两厂剩下的钢材相等?② 一个两层的书架,上层放的书是下层的3倍,如果把上层的书放90本到下层,则两层的书相等,原来上下层各有书多少本?③ 甲车间有54人,乙车间有48人,在式作时,为了使两车间人数相等,甲车间应调多少人去乙车间?④ 超市存有大米的袋数是面粉的3倍,大米买掉180袋,面粉买掉50袋后,大米、面粉剩下的袋数相等,大米、面粉原各多少袋?⑤ 某校有苦于人住校。

六年级奥数题及答案(二)

六年级奥数题及答案(二)

(一)小学六年级奥数试题及答案:列方程解应用题1.甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍.甲、乙原来各有存款多少元?考点:列方程解含有两个未知数的应用题.分析:根据“如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍”,可找出数量之间的相等关系式为:(甲原来的存款-110)×3=乙原来的存款+110,再根据“原来甲的存款是乙的4倍”,设原来乙的存款为x元,那么甲的存款就是4x元,据此列出方程并解方程即可.解答:解:设原来乙的存款为x元,那么甲的存款就是4x元,由题意得:(4x-110)×3=x+110,12x-330=x+110,12x-x=110+330,11x=440,x=40,甲的存款:4×40=160(元);答:甲原有存款160元,乙原有存款40元.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.(二)六年级奥数题及答案:组合图形的面积2.长方形ABCD的边上有两点E.F,线段AF、BF、CE、BE把长方形分成若干块,其中三个小木块的面积标注在图上,阴影部分的面积是多少平方米?考点:组合图形的面积.分析:所求的影阴部分,恰好是三角形ABF与三角形CBE的公共部分,而S1,S2,S3这三块是长方形中没有被三角形ABF与三角形CBE盖住的部分.因此,△ABF面积+△CBE 面积+(S1+S2+S3)=长方形面积+阴影部分面积.而△ABF的底是长方形的长,高是长方形的宽;△CBE的底是长方形的宽,高是长方形的长.因此,三角形ABF面积与三角形CBE面积,都是长方形面积的一半.解答:解:设长方形的面积为S,则S△CBE=S△ABF=(1/2)S,由图形可知,S+S阴影=S△CBE+S△ABF+15+46+36,S阴影=(1/2)S+(1/2)S+15+46+36-S=97(平方米),答:阴影部分的面积是97平方米.点评:本题考查长方形面积、三角形面积的计算.本题明白所求的影阴部分,恰好是三角形ABC与三角形CDE的公共部分,而面积为15、46、36这三块是长方形中没有被三角形ABC与三角形CDE盖住的部分是解决本题的关键,从而根据S+S阴影=S△CBE+S△ABF+15+46+36建立等量关系求解.(三)六年级奥数题及答案:四边形面积3.在平行四边形ABCD中,三角形AOD的面积为12平方厘米,三角形BOC的面积是平行四边形面积的1/5,求平行四边形的面积.考点:平行四边形的面积.分析:根据题意可知,三角形BOC和三角形AOD的高等于平行四边形ABCD的高,三角形的面积等于与它等底等高的平行四边形的面积的一半,所以可用1/2平行四边形的面积减去1/5平行四边形的面积等于三角形AOD的面积,列式解答即可得到答案.解答:解:设平行四边形ABCD的面积为x平方厘米,答:平行四边的面积是40平方厘米.点评:解答此题的关键是根据三角形BOC和三角形AOD的高等于平行四边形ABCD的高确定三角形BOC和三角形AOD的面积等于平行四边形ABCD的面积的一半,然后再列式计算即可.。

(完整)六年级列方程解应用题

(完整)六年级列方程解应用题

(完整)六年级列方程解应用题名优教育教育成就梦想,名优引领飞翔!列方程解应用题1列方程解应用题的意义★用方程式去解答应用题求得应用题的未知量的方法。

2列方程解答应用题的步骤★弄清题意,确定未知数并用x表示;★找出题中的数量之间的相等关系;★列方程,解方程;★检查或验算,写出答案。

3列方程解应用题的方法★综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

★分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4列方程解使用题的范围a一般应用题;b和倍、差倍问题;c几何形体的周长、面积、体积计算;d分数、百分数使用题;e比和比例应用题。

5、知识回顾我们在小学阶段研究过许多数量关系:(1)行程问题中路程、速度、时间之间的关系:相遇问题、追及问题、水流问题、过桥问题等;(2)溶液中浓度、溶液、溶质的关系;工程题目中工程量、工作效率、工作工夫之间的关系;(3)年龄、数字题目(4)其它6、方法总结.列方程解应用题的步骤是:(1)审题:弄清题意,肯定已知量、未知量及它们的关系;(2)设元:选择适当未知数,用字母表示;(3)列代数式:根据条件,用含所设未知数的代数式表示其他未知量;(4)列方程:利用列代数式时未用过的等量关系,列出方程;(5)解方程:正确运用等式的性质,求出方程的解;(6)检验并答题。

一、“鸡兔同笼题目”例1、苹果和梨共14筐,总重520千克,个中苹果每筐重35千克,梨每筐重40千克,问梨和苹果各几筐?练:1、鸡兔共36个头,118只脚,问鸡兔各多少只?名优教育教育成绩梦想,名优引领翱翔!2、某人给农作物除草,下雨天每天除草12亩,晴天每天除20亩,他连续除草8天,平均每天除草14亩,那么这几天中,晴天有几天?3、工人搬运100只玻璃杯,搬运一只得3角,破坏一只赔5角,搬运完共获得26元。

六年级奥数列方程解应用题含答案

六年级奥数列方程解应用题含答案

列方程解应用题知识框架方程,是一种顺向的“程序”,即设出未知数之后,完全可以根据题目叙述,把各个量翻译出来,找出等量关系划等号即可.一、列方程解应用题的要点(1)设出用哪个未知量表示题目中提到的其他量比较方便,就选择哪个未知量作为未知数.如果只设一个不能进行有效的表达,就再设一两个.(2)翻译用设出的未知数,逐个对应地翻译题目中提到的其他各个量.(3)等量按照题目所述,找出并构建等量关系.等量中很容易忽视的是“不变量”和“相同量”,一定要敏感.【提示】有时虽然设出未知数之后等式列出来了,但方程不好解. 此时,可考虑重设未知数、重列方程或采取其他方法,甚至可以考虑先把问题的目标表达式找出来,“设而不求”——不占而屈人之兵.二、列方程解应用题的优势和局限性关系比较复杂的问题,使用方程,通常可以达到事半功倍的效果.但需要注意的是,方程“单飞”有时无力,需要结合线段图、列表法等,能够发挥更加明显的作用.重难点(1)重点:未知数的选设,其他量的表达,等量关系的寻找(2)难点:未知数的选设,等量关系的寻找,不定方程和不定方程组解的讨论例题精讲一、列一般方程解应用题【例 1】已知足球、篮球、排球三种球平均每个35元.篮球比排球每个贵10元,足球比排球每个贵8元.问:每个篮球多少元?【考点】列方程解应用题【难度】1星【题型】解答【解析】设每个排球x元,则每个篮球为x+10元,每个足球x+8元,由已知列方程:15x+x+8+x+10=35×3, 解得x=29.所以每个篮球x+10=29+10=39元.【答案】29【巩固】 有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设开始共有x 人,5x+10=4×1.5x-2, 解得x=12,所以这些糖共有12×5+10=70块.【答案】70【例 2】 一个分数 ,分子与分母的和是122,如果分子、分母郡减去19,得到的分数约简后是 .那么原来的分数是多少?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 方法一:设这个分数为122aa-,则分子、分母都减去19为19191==(122)191035a a a a -----,即5-95=103-a a ,解得33a =,则122-33=89.所以原来的分数是3389方法二:设这个分数为变化后为5a a ,那么原来这个分数为19519a a ++,并且有(19)(519)a a +++=122, ,解得.=14.所以原来的分数是3389. 【答案】3389【巩固】 如下左图中的短除式所示,一个自然数被8除余1,所得的商被8除余1,再把第二次所得的商被8除后余7,最后得到的一个商是a .如下右图中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的一个商是a 的2倍.求这个自然数.【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 由题意知()()878181172174,a a +⨯+⨯+=+++⎡⎤⎣⎦整理得512a+457=578a+259,即66a=198,a=3.于是,[(80+1)×8+1]× 8+1=1993.【答案】1993【例 3】 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1.某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时.问:甲、乙两港相距多少千米?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两港相距x 千米,原来水流速度为a 千米/时根据题意可知,逆水速度与顺水速度的比为2∶1,即(8-a )∶(8+a )=1∶2,于是有8+a=2(8-a),解得a=38再根据暴雨天水流速度变为2a 千米/时,则有92828=-++axa x把a=38代入,得938283828=⨯-+⨯+x x解得x=20.【答案】20【巩固】 如图,沿着边长为90米的正方形,按逆时针方向,甲从A 出发,每分钟走65米,乙从B 出发,每分钟走72米.当乙第一次追上甲时在 正方形的哪一条边上?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设追上甲时乙走了x 分.依题意,甲在乙前方3×90=270(米),故有72x =65x+270.解得7270=x .在这段时间内乙走了712777727072=⨯(米).由于正方形边长为90米,共四条边,故由,可以推算出这时甲和乙应在正方形的DA 边上. 【答案】DA 边上二、 列一般方程组解应用题【例 4】 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设用x 张铁皮制盒身,y 张铁皮制盒底.⎩⎨⎧=⨯=+y x y x 43216150解得x y ==⎧⎨⎩8664 所以86张铁皮制盒身,64张铁皮制盒底.【答案】86;64【巩固】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设乙车运x 箱,每箱装y 个苹果,列表如下:车别 甲 乙 丙 箱数 x +4 x x -4 每箱苹果数y -3yy +5(x+4)(y-3)-xy=3 xy-(x-4)(y+5)=5化简为: 4y-3x=15, ①5x-4y=15,②①+②,得:2x=30,于是x=15. 将x=15代人①或②,可得:y=15.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个. 三车苹果的总数是:12×19+15×15+20×11=673(个).【答案】673【例 5】 有甲、乙、丙、丁4人,每3个人的平均年龄加上余下一人的年龄分别为29,23,2l 和17.这4人中最大年龄与最小年龄的差是多少?【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 设这些人中的年龄从大到小依次为x 、y 、z 、w ,⎧⎨⎩①+②+③十④得:2(x +y+z+w )=90, 则3x y z w+++=15…………………………………………⑤①-⑤得:2143x = , x =21; ④-⑤得:223z =, z=3; 所以最大年龄与最小年龄的差为x w - =21—3=18(岁) 【答案】18三、 列不定方程或不定方程组解应用题【例 6】 新发行的一套邮票共3枚,面值分别为20分、40分和50分,小明花5.00元买了15张.问:其中三种面值的邮票各多少张?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 根据题意,设面值20分的x 张,面值40分的y 张,面值50分的z 张,可列方程得152********x y z x y z ++=⎧⎨++=⎩解得672x y z =⎧⎪=⎨⎪=⎩所以20分的6张,40分的7张,50分的2张【答案】6;7;2【巩固】 某次数学竞赛准备了22支铅笔作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发6支,二等奖每人发3支,三等奖每人发2支.后来又改为一等奖每人发9支,二等奖每人发4支,三等奖每人发1支.问:获一、二、三等奖的学生各几人?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 根据题意,设一等奖x 人,二等奖y 人,三等奖z 人,可列方程得632229422x y z x y z ++=⎧⎨++=⎩解得125x y z =⎧⎪=⎨⎪=⎩所以,一等奖1人,二等奖2人,三等奖5人.【答案】1;2;5【例 7】 工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子.问:可以有多少种不同取法?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 根据题意,设3米管子x 根,5米管子y 根,可列方程得3578x y +=解得260x y =⎧⎨=⎩或213x y =⎧⎨=⎩或166x y =⎧⎨=⎩或119x y =⎧⎨=⎩或612x y =⎧⎨=⎩或115x y =⎧⎨=⎩所以共有6种取法.【答案】6【巩固】 用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法? 【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 根据题意,设5分有x 个,2分有y 个,1分有z 个,可列方程得52100x y z ++=5分取20个,有1种.5分取19个,2分有3种取法(2个、1个、0个),共3种. 5分取18个,共6种.(同上) 5分取17个,共8种. 5分取16个,共11种. ......根据规律不难求出共有1+3+6+8+11+13+16+18+21+23+26+28+31+33+36+38+41+43+46+48+51 =18+58+98+138+178+51 =490+51 =541【答案】541【例 8】 某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设男职工x 人,孩子y 人,则女职工3y -x 人(注意,为何设孩子数为y 人,而不是设女工为y 人),那么有()131036x y x y +-+=216,化简为336x y +=216,即12x y +=72.有122436486054321x x x x x y y y y y ⎧=⎧====⎧⎧⎧⎪⎨⎨⎨⎨⎨=====⎩⎩⎩⎪⎩⎩.但是,女职工人数为3y x -必须是自然数,所以只有125x y =⎧⎨=⎩时,33y x -=满足.那么男职工数只能为12名.【答案】12【巩固】 一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设0.7米,0.8米两种木条分别x ,y 根,则0.7x +0.8y =3.4,3.6……,即7x +8y =34,36,37,38,39. 将系数,常数对7取模,有y ≡6,l ,2,3,4(mod 7),于是y 最小分别取6,1,2,3,4.但是当y 取6时,8×6=48超过34,x 无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.【答案】3.4【例 9】 某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人.如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设汽车站每隔x 分发一班车,某人的速度是v1,汽车的速度为v2,依题意得由①、②,得将③代入①,得x =4.8所以汽车站每隔4.8分钟发一班车 【答案】4.8【巩固】 某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收5角;若超过50千瓦时,则超出部分按每千瓦时8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少千瓦时电?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意可知,因为3元3角既不是5角的整数倍,也不是8角的整数倍.所以甲用的电超过50千瓦时,乙用的电没有超过50千瓦时,设甲用的电超过50千瓦时的部分为x 千瓦时电,乙用的电与50千瓦时相差y 千瓦时电,可列方程得8533x y +=解得15x y =⎧⎨=⎩所以甲用了50+1=51(千瓦时)的电,乙用了50-5=45(千万时)的电.【答案】51;45【例 10】 某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设每班有a(30<a≤45)名学生,每人平均捐款x 元(x 是整数),依题意有:x(14a+35)=1995.于是14a+35|1995.又3l <a≤45,所以469<14a+35≤665,而1995=3×5×7×19,在469与665之间它的约数仅有665,故14a+35=665,x=3,平均每人捐款3元.【答案】3【巩固】 一次数学竞赛中共有A 、B 、C 三道题,25名参赛者每人至少答对了一题.在所有没有答对A 的学生中,答对B 的人数是答对C 的人数的两倍,只答对问题A 的人数比既答对A 又至少答对其他一题的人数多1.又已知在所有恰好答对一题的参赛者中,有一半没有答对A .请问有多少学生只答对B?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设不只答对A 的为x 人,仅答对B 的为y 人,没有答对A 但答对B 与C 的为z 人.解得:253233x y z x-⎧=⎪⎨⎪=-⎩,,6,y z x ≥≥x =7时,y 、z 都是正整数,所以7,6,2x y z ===. 故只答对B 的有6人. 【答案】6课堂检测【随练1】 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?【考点】经济问题 【难度】2星 【题型】解答 【解析】 设通讯员从末尾赶到排头用了x 秒,依题意得2.6x-1.4x=2.6(650-x )+1.4(650-x )解得x =500所以队伍长为(2.6-1.4)×500=600(米)【答案】600【随练2】 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推).男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分.如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设该班有x 个男生和y 个女生,于是有4x+3.25y=3.6(x+y ),化简后得8x=7y.从而全班共有学生在大于30小于50的自然数中,只有45可被15整除,所以推知x =21,y=24. 【答案】21;24【随练3】 (1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,则这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,则这个最大的质数是多少?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 (1)首先确定这10个质数或其中的几个质数可以相等,不然10个互不相等的质数和最小为2+3+5+7+11+13+17+19+23+29,显然大于50. 所以,其中一定可以有某几个质数相等. 欲使最大的质数尽可能大,那么应使最小的质数尽可能小,最小的质数为2,且最多可有9个2,那么最大质数不超过50—2×9=32,而不超过32的最大质数为31. 又有82502222331=++++++个,所以满足条件的最大质数为31.(2)最大的质数必大于5,否则10个质数的之和将不大于50. 所以最大的质数最小为7,为使和为60,所以尽可能的含有多个7. 60÷7=8……4,8760=7+7+7++7+4个,而4=2+2,恰好有8760=7+7+7++7+2+2个.即8个7与2个2的和为60,显然其中最大的质数最小为7.【答案】31;7【随练4】在同一路线上有4个人:第一个人坐汽车,第二个人开摩托车,第三个人乘助力车,第四个人骑自行车,各种车的速度是固定的,坐汽车的12时追上乘助力车的,14时遇到骑自行车的,而开摩托车的相遇是16时.开摩托车的遇到乘助力车的是17时,并在18时追上了骑自行车的,问骑自行车的几时遇见乘助车的?【考点】经济问题【难度】4星【题型】解答【解析】设汽车、摩托车、助力车、自行车的速度分别为a,b,c,d,设在12时骑自行车的与坐汽车的距离为x,骑自行车的与开摩托车的之间的距离为y.有(①+③)×2一(②+④),得310()x c d=+,即10()3x c d =+设骑自行车的在t时遇见骑助力车的,则(12)(), x t c d=-⨯+即10123t-=,所以1153t=.所以骑自行车的在15时20分遇见骑助力车的.【答案】15时20分家庭作业【作业1】甲、乙、丙、丁四人今年分别是16、12、11、9岁.问:多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?【考点】列方程解应用题【难度】2星【题型】解答【解析】设x年前,甲乙的年龄和是丙、丁年龄和的2倍.16+12-2x=2×(11+9-2x),解得x=6.所以,6年前,甲、乙的年龄和是丙、丁年龄和的2倍.【答案】6【作业2】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【考点】列方程解应用题【难度】2星【题型】解答【解析】设这列火车的速度是x米/秒,依题意列方程,得(x-1)×22=(x-3)×26.解得x=14.所以火车的车身长为(14-1)×22=286(米).【答案】286【作业3】 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设套中小鸡x 次,套中小猴y 次,则套中小狗(10-x-y )次.根据得61分可列方程9x+5y+2(10-x-y )=61,化简后得7x=41-3y.显然y 越小,x 越大.将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5.【答案】5【作业4】 袋子里有三种球,分别标有数字2,3和5,小明从中摸出几个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设摸出标有数字2的x 个,摸出标有数字3的y 个,摸出标有数字5的z 个,可列方程得23543x y z ++=,x 最大为所求.解得2010x y z =⎧⎪=⎨⎪=⎩所以,摸出标有数字2的最多为20个.【答案】20【作业5】 小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设白天见面的次数为x ,晚上见面的次数为y ,可列方程得3561x y +=白天见面最多时,波斯猫叫声最少.即x 最大为所求.解得125x y =⎧⎨=⎩所以,波斯猫至少叫125327+⨯=(声). 【答案】27【作业6】 小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?【考点】列方程解应用题【难度】3星【题型】解答【解析】如下表先枚举出所有可能的单价如表1.再依次考虑:首先,不能出现35的约数.否则只买这种笔就可以刚好用完35元,所以含有7,5,1的组合不可能.然后,也不能出现35—17=18的约数.否则先各买一支需17元,那么再买这种笔就可以花去18元,一共花35元.所以含有9,6,3,2的组合也不可能.所以,只有13+4的组合可能,经检验13x+4y=35这个不定方程确实无自然数解.所以红笔的单价为13元.【答案】13。

列方程解应用题(A)六年级奥数题之专题串讲试题(附答案)2013

列方程解应用题(A)六年级奥数题之专题串讲试题(附答案)2013

九 列方程解应用题(1)年级 班 姓名 得分一、填空题1.一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克. 6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.二、解答题11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100⨯i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里?———————————————答 案—————————————————————— 1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克).6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ⨯40%+(300-x )⨯10%=300⨯30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3⨯(2x )+4⨯(3x )=10(工时).即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6⨯(1998-x )-18⨯x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20⨯30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵. 13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,骑马行x 千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

六年级方程解决问题奥数题

六年级方程解决问题奥数题

六年级方程解决问题奥数题
方程是数学中常见的问题解决方法之一。

在六年级的奥数题中,也经常涉及到方程的解决。

本文将介绍一些六年级方程解决问题的
奥数题例子。

题目1
小明有一些苹果,小华比小明多收集了6个苹果,小红比小明
少收集了4个苹果,小华、小明和小红三个人总共收集了54个苹果。

请问小明收集了多少个苹果?
解答1
使用方程来解决这个问题。

设小明收集的苹果数为x。

由题意可知:
* 小华收集的苹果数为x + 6
* 小红收集的苹果数为x - 4
根据题目所给的条件,得到方程:x + (x + 6) + (x - 4) = 54
化简得到:3x + 2 = 54
解方程得到:x = 16
所以,小明收集了16个苹果。

题目2
小明在一家商店买了一些文具,其中有8个铅笔和若干个橡皮。

已知每个铅笔的价格是2元,文具的总价格是18元。

请问小明买
了多少个橡皮?
解答2
使用方程解决这个问题。

设小明买的橡皮个数为y。

由题意可知:
* 铅笔的总价格是8 * 2 = 16元
* 橡皮的总价格是y个橡皮 * 每个橡皮的价格(设为p元)
根据题目所给的条件,得到方程:16 + y * p = 18
根据题目所给的信息,可以得到y * p = 2
由于题目中没有具体给出橡皮的价格p,无法解出橡皮的个数y。

所以,无法确定小明买了多少个橡皮。

以上是六年级方程解决问题的奥数题例子。

方程是解决数学问题的重要工具,通过掌握方程的解题方法,能够更好地解决各种数学问题。

六年级奥数列方程解应用题含答案

六年级奥数列方程解应用题含答案

列方程解应用题知识框架方程,是一种顺向的“程序”,即设出未知数之后,完全可以根据题目叙述,把各个量翻译出来,找出等量关系划等号即可.一、列方程解应用题的要点(1)设出用哪个未知量表示题目中提到的其他量比较方便,就选择哪个未知量作为未知数.如果只设一个不能进行有效的表达,就再设一两个.(2)翻译用设出的未知数,逐个对应地翻译题目中提到的其他各个量.(3)等量按照题目所述,找出并构建等量关系.等量中很容易忽视的是“不变量”和“相同量”,一定要敏感.【提示】有时虽然设出未知数之后等式列出来了,但方程不好解. 此时,可考虑重设未知数、重列方程或采取其他方法,甚至可以考虑先把问题的目标表达式找出来,“设而不求”——不占而屈人之兵.二、列方程解应用题的优势和局限性关系比较复杂的问题,使用方程,通常可以达到事半功倍的效果.但需要注意的是,方程“单飞”有时无力,需要结合线段图、列表法等,能够发挥更加明显的作用.重难点(1)重点:未知数的选设,其他量的表达,等量关系的寻找(2)难点:未知数的选设,等量关系的寻找,不定方程和不定方程组解的讨论例题精讲一、列一般方程解应用题【例 1】已知足球、篮球、排球三种球平均每个35元.篮球比排球每个贵10元,足球比排球每个贵8元.问:每个篮球多少元?【考点】列方程解应用题【难度】1星【题型】解答【解析】设每个排球x元,则每个篮球为x+10元,每个足球x+8元,由已知列方程:15x+x+8+x+10=35×3, 解得x=29.所以每个篮球x+10=29+10=39元.【答案】29【巩固】 有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设开始共有x 人,5x+10=4×1.5x-2, 解得x=12,所以这些糖共有12×5+10=70块.【答案】70【例 2】 一个分数 ,分子与分母的和是122,如果分子、分母郡减去19,得到的分数约简后是 .那么原来的分数是多少?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 方法一:设这个分数为122aa-,则分子、分母都减去19为19191==(122)191035a a a a -----,即5-95=103-a a ,解得33a =,则122-33=89.所以原来的分数是3389方法二:设这个分数为变化后为5a a ,那么原来这个分数为19519a a ++,并且有(19)(519)a a +++=122, ,解得.=14.所以原来的分数是3389. 【答案】3389【巩固】 如下左图中的短除式所示,一个自然数被8除余1,所得的商被8除余1,再把第二次所得的商被8除后余7,最后得到的一个商是a .如下右图中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的一个商是a 的2倍.求这个自然数.【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 由题意知()()878181172174,a a +⨯+⨯+=+++⎡⎤⎣⎦整理得512a+457=578a+259,即66a=198,a=3.于是,[(80+1)×8+1]× 8+1=1993.【答案】1993【例 3】 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1.某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时.问:甲、乙两港相距多少千米?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两港相距x 千米,原来水流速度为a 千米/时根据题意可知,逆水速度与顺水速度的比为2∶1,即(8-a )∶(8+a )=1∶2,于是有8+a=2(8-a),解得a=38再根据暴雨天水流速度变为2a 千米/时,则有92828=-++axa x把a=38代入,得938283828=⨯-+⨯+x x解得x=20.【答案】20【巩固】 如图,沿着边长为90米的正方形,按逆时针方向,甲从A 出发,每分钟走65米,乙从B 出发,每分钟走72米.当乙第一次追上甲时在 正方形的哪一条边上?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设追上甲时乙走了x 分.依题意,甲在乙前方3×90=270(米),故有72x =65x+270.解得7270=x .在这段时间内乙走了712777727072=⨯(米).由于正方形边长为90米,共四条边,故由,可以推算出这时甲和乙应在正方形的DA 边上. 【答案】DA 边上二、 列一般方程组解应用题【例 4】 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设用x 张铁皮制盒身,y 张铁皮制盒底.⎩⎨⎧=⨯=+y x y x 43216150解得x y ==⎧⎨⎩8664 所以86张铁皮制盒身,64张铁皮制盒底.【答案】86;64【巩固】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设乙车运x 箱,每箱装y 个苹果,列表如下:车别 甲 乙 丙 箱数 x +4 x x -4 每箱苹果数y -3yy +5(x+4)(y-3)-xy=3 xy-(x-4)(y+5)=5化简为: 4y-3x=15, ①5x-4y=15,②①+②,得:2x=30,于是x=15. 将x=15代人①或②,可得:y=15.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个. 三车苹果的总数是:12×19+15×15+20×11=673(个).【答案】673【例 5】 有甲、乙、丙、丁4人,每3个人的平均年龄加上余下一人的年龄分别为29,23,2l 和17.这4人中最大年龄与最小年龄的差是多少?【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 设这些人中的年龄从大到小依次为x 、y 、z 、w ,⎧⎨⎩①+②+③十④得:2(x +y+z+w )=90, 则3x y z w+++=15…………………………………………⑤①-⑤得:2143x = , x =21; ④-⑤得:223z =, z=3; 所以最大年龄与最小年龄的差为x w - =21—3=18(岁) 【答案】18三、 列不定方程或不定方程组解应用题【例 6】 新发行的一套邮票共3枚,面值分别为20分、40分和50分,小明花5.00元买了15张.问:其中三种面值的邮票各多少张?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 根据题意,设面值20分的x 张,面值40分的y 张,面值50分的z 张,可列方程得152********x y z x y z ++=⎧⎨++=⎩解得672x y z =⎧⎪=⎨⎪=⎩所以20分的6张,40分的7张,50分的2张【答案】6;7;2【巩固】 某次数学竞赛准备了22支铅笔作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发6支,二等奖每人发3支,三等奖每人发2支.后来又改为一等奖每人发9支,二等奖每人发4支,三等奖每人发1支.问:获一、二、三等奖的学生各几人?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 根据题意,设一等奖x 人,二等奖y 人,三等奖z 人,可列方程得632229422x y z x y z ++=⎧⎨++=⎩解得125x y z =⎧⎪=⎨⎪=⎩所以,一等奖1人,二等奖2人,三等奖5人.【答案】1;2;5【例 7】 工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子.问:可以有多少种不同取法?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 根据题意,设3米管子x 根,5米管子y 根,可列方程得3578x y +=解得260x y =⎧⎨=⎩或213x y =⎧⎨=⎩或166x y =⎧⎨=⎩或119x y =⎧⎨=⎩或612x y =⎧⎨=⎩或115x y =⎧⎨=⎩所以共有6种取法.【答案】6【巩固】 用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法? 【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 根据题意,设5分有x 个,2分有y 个,1分有z 个,可列方程得52100x y z ++=5分取20个,有1种.5分取19个,2分有3种取法(2个、1个、0个),共3种. 5分取18个,共6种.(同上) 5分取17个,共8种. 5分取16个,共11种. ......根据规律不难求出共有1+3+6+8+11+13+16+18+21+23+26+28+31+33+36+38+41+43+46+48+51 =18+58+98+138+178+51 =490+51 =541【答案】541【例 8】 某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设男职工x 人,孩子y 人,则女职工3y -x 人(注意,为何设孩子数为y 人,而不是设女工为y 人),那么有()131036x y x y +-+=216,化简为336x y +=216,即12x y +=72.有122436486054321x x x x x y y y y y ⎧=⎧====⎧⎧⎧⎪⎨⎨⎨⎨⎨=====⎩⎩⎩⎪⎩⎩.但是,女职工人数为3y x -必须是自然数,所以只有125x y =⎧⎨=⎩时,33y x -=满足.那么男职工数只能为12名.【答案】12【巩固】 一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设0.7米,0.8米两种木条分别x ,y 根,则0.7x +0.8y =3.4,3.6……,即7x +8y =34,36,37,38,39. 将系数,常数对7取模,有y ≡6,l ,2,3,4(mod 7),于是y 最小分别取6,1,2,3,4.但是当y 取6时,8×6=48超过34,x 无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.【答案】3.4【例 9】 某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人.如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设汽车站每隔x 分发一班车,某人的速度是v1,汽车的速度为v2,依题意得由①、②,得将③代入①,得x =4.8所以汽车站每隔4.8分钟发一班车 【答案】4.8【巩固】 某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收5角;若超过50千瓦时,则超出部分按每千瓦时8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少千瓦时电?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意可知,因为3元3角既不是5角的整数倍,也不是8角的整数倍.所以甲用的电超过50千瓦时,乙用的电没有超过50千瓦时,设甲用的电超过50千瓦时的部分为x 千瓦时电,乙用的电与50千瓦时相差y 千瓦时电,可列方程得8533x y +=解得15x y =⎧⎨=⎩所以甲用了50+1=51(千瓦时)的电,乙用了50-5=45(千万时)的电.【答案】51;45【例 10】 某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设每班有a(30<a≤45)名学生,每人平均捐款x 元(x 是整数),依题意有:x(14a+35)=1995.于是14a+35|1995.又3l <a≤45,所以469<14a+35≤665,而1995=3×5×7×19,在469与665之间它的约数仅有665,故14a+35=665,x=3,平均每人捐款3元.【答案】3【巩固】 一次数学竞赛中共有A 、B 、C 三道题,25名参赛者每人至少答对了一题.在所有没有答对A 的学生中,答对B 的人数是答对C 的人数的两倍,只答对问题A 的人数比既答对A 又至少答对其他一题的人数多1.又已知在所有恰好答对一题的参赛者中,有一半没有答对A .请问有多少学生只答对B?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设不只答对A 的为x 人,仅答对B 的为y 人,没有答对A 但答对B 与C 的为z 人.解得:253233x y z x-⎧=⎪⎨⎪=-⎩,,6,y z x ≥≥x =7时,y 、z 都是正整数,所以7,6,2x y z ===. 故只答对B 的有6人. 【答案】6课堂检测【随练1】 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?【考点】经济问题 【难度】2星 【题型】解答 【解析】 设通讯员从末尾赶到排头用了x 秒,依题意得2.6x-1.4x=2.6(650-x )+1.4(650-x )解得x =500所以队伍长为(2.6-1.4)×500=600(米)【答案】600【随练2】 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推).男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分.如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设该班有x 个男生和y 个女生,于是有4x+3.25y=3.6(x+y ),化简后得8x=7y.从而全班共有学生在大于30小于50的自然数中,只有45可被15整除,所以推知x =21,y=24. 【答案】21;24【随练3】 (1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,则这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,则这个最大的质数是多少?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 (1)首先确定这10个质数或其中的几个质数可以相等,不然10个互不相等的质数和最小为2+3+5+7+11+13+17+19+23+29,显然大于50. 所以,其中一定可以有某几个质数相等. 欲使最大的质数尽可能大,那么应使最小的质数尽可能小,最小的质数为2,且最多可有9个2,那么最大质数不超过50—2×9=32,而不超过32的最大质数为31. 又有82502222331=++++++个,所以满足条件的最大质数为31.(2)最大的质数必大于5,否则10个质数的之和将不大于50. 所以最大的质数最小为7,为使和为60,所以尽可能的含有多个7. 60÷7=8……4,8760=7+7+7++7+4个,而4=2+2,恰好有8760=7+7+7++7+2+2个.即8个7与2个2的和为60,显然其中最大的质数最小为7.【答案】31;7【随练4】在同一路线上有4个人:第一个人坐汽车,第二个人开摩托车,第三个人乘助力车,第四个人骑自行车,各种车的速度是固定的,坐汽车的12时追上乘助力车的,14时遇到骑自行车的,而开摩托车的相遇是16时.开摩托车的遇到乘助力车的是17时,并在18时追上了骑自行车的,问骑自行车的几时遇见乘助车的?【考点】经济问题【难度】4星【题型】解答【解析】设汽车、摩托车、助力车、自行车的速度分别为a,b,c,d,设在12时骑自行车的与坐汽车的距离为x,骑自行车的与开摩托车的之间的距离为y.有(①+③)×2一(②+④),得310()x c d=+,即10()3x c d =+设骑自行车的在t时遇见骑助力车的,则(12)(), x t c d=-⨯+即10123t-=,所以1153t=.所以骑自行车的在15时20分遇见骑助力车的.【答案】15时20分家庭作业【作业1】甲、乙、丙、丁四人今年分别是16、12、11、9岁.问:多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?【考点】列方程解应用题【难度】2星【题型】解答【解析】设x年前,甲乙的年龄和是丙、丁年龄和的2倍.16+12-2x=2×(11+9-2x),解得x=6.所以,6年前,甲、乙的年龄和是丙、丁年龄和的2倍.【答案】6【作业2】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【考点】列方程解应用题【难度】2星【题型】解答【解析】设这列火车的速度是x米/秒,依题意列方程,得(x-1)×22=(x-3)×26.解得x=14.所以火车的车身长为(14-1)×22=286(米).【答案】286【作业3】 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设套中小鸡x 次,套中小猴y 次,则套中小狗(10-x-y )次.根据得61分可列方程9x+5y+2(10-x-y )=61,化简后得7x=41-3y.显然y 越小,x 越大.将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5.【答案】5【作业4】 袋子里有三种球,分别标有数字2,3和5,小明从中摸出几个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设摸出标有数字2的x 个,摸出标有数字3的y 个,摸出标有数字5的z 个,可列方程得23543x y z ++=,x 最大为所求.解得2010x y z =⎧⎪=⎨⎪=⎩所以,摸出标有数字2的最多为20个.【答案】20【作业5】 小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设白天见面的次数为x ,晚上见面的次数为y ,可列方程得3561x y +=白天见面最多时,波斯猫叫声最少.即x 最大为所求.解得125x y =⎧⎨=⎩所以,波斯猫至少叫125327+⨯=(声). 【答案】27【作业6】 小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?【考点】列方程解应用题【难度】3星【题型】解答【解析】如下表先枚举出所有可能的单价如表1.再依次考虑:首先,不能出现35的约数.否则只买这种笔就可以刚好用完35元,所以含有7,5,1的组合不可能.然后,也不能出现35—17=18的约数.否则先各买一支需17元,那么再买这种笔就可以花去18元,一共花35元.所以含有9,6,3,2的组合也不可能.所以,只有13+4的组合可能,经检验13x+4y=35这个不定方程确实无自然数解.所以红笔的单价为13元.【答案】13。

六年级奥数讲义列方程解应用题

六年级奥数讲义列方程解应用题

列方程解应用题【内容概述】#一些基本概念:① 像4x+2=9这样的的等式,只含有一个未知数x ,而且未知数x 的指数为1的方程叫做一元 一次方程;② 像2x+y=8这样的的等式,含有两个未知数x 、y ,而且未知数的指数都为1的方程叫做二元 一次方程;把两个二元一次方程用“﹛”写在一起,就组成了一个二元一次方程组;③ 如果有两个未知数,一般需要两个方程才能求出唯一解,如果有三个未知数,一般需要三个 方程才能求出唯一解.#列方程解应用题的一般步骤是:①审清题意,弄清楚题目意思以及数量之间的关系,;②合理设未知数x ,设未知数的方法有两种:问什么设什么(直接设未知数),间接设未知数; ③依题意确定等量关系,根据等量关系列出方程;④解方程;⑤将结果代入原题检验。

概括成五个字就是:“审、设、列、解、验”.列方程解应用题的关键是找到正确的等量关系。

寻找等量关系的常用方法是:根据题中“不变量”找等量关系。

类型一:列简易方程解应用题【例1】 解下列方程:(1)12(3)7x x +-=+ (2)132(23)5(2)x x --=--(3)5118()2352x x ⎡⎤⨯⨯-=⎢⎥⎣⎦ (4)1123x x +-= (1)16277730.x x x x +-=+-==,, (2)13465219471974123 4.x x x x x x x x -+=-+-=--==,,-=,,(3)511154104101104()410.35236333333x x x x x x x x x x ⎡⎤⎡⎤⨯⨯-=⨯-=-=-===⎢⎥⎢⎥⎣⎦⎣⎦,,,,, (4)312633263.x x x x x +=+-==()-,,【例2】 汽车以每小时72公里的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回音,听到回音时汽车离山谷多远?(声音的速度以340米/秒计算)设听到回音时汽车离山谷x 米,根据题意可得:340×4=2x+2×4,解得x=676(米).【例3】 用绳子测井深,绳子两折时,余60厘米,绳子三折时,差40厘米,求绳长和井深?分析:设井深是x 厘米,则有:2x+60×2=3x-40×3 ,井深x=240(厘米),绳长600厘米;【例4】 箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球,15个红球.如果经过若干次以后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?分析:设取球的次数为x 次.那么原有的白球数为(3+7x ),红球数为(53+15x ).再根据题中的第一个条件:53+15x=3×(3+7x )+2,解得x=7,所以原有红球158个,原有白球52个,红球比白球多106个. 类型二:引入参数列方程解应用题【例5】 六年级二班数学考试的平均分数是85分,其中32的人得80分以上(含80分),他们的平均分数是90分。

六年级奥数题:列方程解应用题(含答案)

六年级奥数题:列方程解应用题(含答案)

列方程解应用题(1)年级 班 姓名 得分2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克.6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.二、解答题11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100 i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.问这批树苗有多少棵?有几个班?每班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里?———————————————答 案————————————————— 1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克).6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ⨯40%+(300-x )⨯10%=300⨯30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3⨯(2x )+4⨯(3x )=10(工时).即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6⨯(1998-x )-18⨯x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20⨯30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵. 13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,骑马行x 千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

小学奥数列方程解应用题100题附详解

小学奥数列方程解应用题100题附详解

小学奥数列方程解应用题100题附详解(1)小红从家到火车站赶乘火车,每小时行4千米,火车开时她还离车站1千米;每小时行5千米,她就早到车站12分钟。

小红家离火车站多少千米?(2)有两组数,第一组9个数的和是63,第二组的平均数是11,两组中所有数的平均数是8。

问:第二组有多少个数?(3)某文体商店用2200元进了一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球增加20%,这批球售完后共得利润1020元,足球和篮球各有多少个?(4)甲、乙两个仓库共有510吨货物,从甲仓运走14,从乙仓运走13后,两仓库剩下的货物正好相等,甲、乙两个仓库原有货物各多少吨?(5)甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1。

问:乙数是多少?(6)孙悟空采到一堆桃子,平均分给花果山的小猴子吃。

每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完。

问:孙悟空采到多少个桃子?小猴子有多少只?(7)阅览室看书的学生中,男生比女生多10人,后来男生减少14,女生减少16,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书?(8)西红柿和黄瓜共有180千克,西红柿的3倍比黄瓜的2倍少10千克,西红柿和黄瓜各多少千克?(9)小华到商店买红、蓝两种笔共66支,红笔每支定价5元,蓝笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,蓝笔按定价80%付钱.如果她付的钱比按定价少付了18%,那么她买了红笔多少支?(10)一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。

在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。

问:男孩、女孩各有多少人?(11)大毛、二毛从相距1000米的学校和图书馆同时出发相向而行,8分钟后两人相遇,已知大毛的速度是二毛的4倍,求大毛每分钟走多少米?二毛每分钟走多少米?(12)苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?(13)两个集镇之间的公路除了上坡就是下坡,没有平路,客车上坡的速度保持为每小时15千米,下坡则保持为每小时30千米.现知客车在两地之间往返一次,需在路上行驶6小时,求两地之间的距离(14) 两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?(15) 王老板承接了建筑公司一项运输1200块玻璃的业务,并签了合同。

六年级数学(上)奥数思维拓展《列方程解应用题问题》测试题(含答案)

六年级数学(上)奥数思维拓展《列方程解应用题问题》测试题(含答案)

六年级数学(上)奥数思维拓展《列方程解应用题问题》测试题(含答案)一.选择题(共8小题)1.“学校图书馆有故事书420本,____。

科技书有多少本?”为了解决这个问题,小智补充了一条信息后,设科技书有x本,列出的方程是(1+)x=420。

小智补充的信息是()A.故事书比科技书少B.故事书比科技书多C.科技书比故事书多2.施工队修一座桥,原计划每天工作7小时,11天可以完成。

但因天气原因,按原计划工作6天后,每天只能工作5小时。

如果工作效率不变,求还需要多少天可以完成。

下面列式不正确的是()。

(如用方程解,设还需要x天可以完成。

)A.5x=11×7﹣6×7B.5×(6+x)=7×11C.[7×(11﹣6 )]÷5D.5x+6×7=11×73.水果店运进苹果150千克,比运进的梨的少24千克。

水果店运进梨多少千克。

解设运进梨x千克。

列出方程中,错误的是()A.x+24=150B.x﹣24=150C.x=150+24D.x﹣150=24 4.笑笑正在读一本故事书,第一周读了96页,还剩下这本书的没有读。

这本故事书一共有多少页?如果用方程解,设这本书共有x页,下面列式正确的是()A.x=96B.=96C.=965.某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是()A.30x﹣8=31x+26B.30x﹣8=31x﹣26C.30x+8=31x+26D.30x+8=31x﹣266.学校图书馆里的科技书和故事书一共有160本,科技书的数量是故事书的。

如果设故事书的数量为x本,下列方程中符合题意的()A.x﹣x=160B.(1+)x=160C.x=160D.(1﹣)x=1607.李伟和赵强一起去旅游。

李伟共花3150元,李伟所花钱数比赵强多5%,如果赵强花的钱设为x元。

六年级奥数第5讲:列方程解应用题-课件

六年级奥数第5讲:列方程解应用题-课件
2. 要求多个量时,先设一个未知量为x,再用 x来表示另外的量。
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡开丹放花;,源自而选有择的在
孩春
➢ He who falls today may rise tomorrow.
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
开花
放,




我们,还在路上……
乙车的速度是45千米/小时。
例题五(选讲)
将20%的盐水与5%的盐水混合,配成15%的盐水
600克,需要20%的盐水和5%的盐水各多少克?
溶剂
溶液=溶质+溶剂 浓度= 溶质 ×100% 溶液
溶质
解:设20%的盐水的质量为x克, 则5%的盐水的质量为(600-x)克,
溶液
20% x+5%(600-x)=600×15% x=400
2
x+3 x+1+1 x-1=180 2 x=40
第二车间的人数: 3×40+1=121(人) 第三车间的人数:1 ×40-1=19(人)
2
答:第一车间有40人,第二车间有121人, 第三车间有19人。
练习三
甲、乙、丙三种货物共有167吨,甲种货物比乙种
货物的2倍少5吨,丙种货物比甲种货物的1 多3吨,求甲、
27=3 x
x=9
答:今年米德9岁。
练习一
妈妈今年的年龄是女儿的3倍,5年前的年龄 是女儿的4倍。今年妈妈、女儿各是多少岁?
解:设今年女儿x岁,那么妈妈就是3 x岁,

六年级奥数题列方程解应用题

六年级奥数题列方程解应用题

3 11.一个分数约分后将是 4 5列方程解应用题训练,如果将这个分数的分子减少 124,分母减少 11,所得的新分数约分后将 是 4 9 .那么原分数是 .2.八个自然数排成一行 ,从第三个数开始 ,每个数都等于它前面两个数的和 .已知第一个数是 3, 第八个数是 180,那么第二个数是 .3, □ □ □ □ □ 1803.一个长方形的长与宽之比是 14:5,如果长减少 13 厘米,宽增加 13 厘米,则面积增加 182 平方厘 米.原长方形的面积是 平方厘米.4.某商品按每个 5 元利润卖出 11 个的价钱,与按每个 11 元的利润卖出 10 个价钱一样多.这个商 品的成本是 元.5.粮店中的大米占粮食总量的 ,卖出 600 千克大米后,大米占粮食总量的 .这个粮店原来共有 7 3粮食 千克.6.从家里骑摩托车到火车站赶乘火车.如果每小时行 30 千米,那么早到 15 分钟;如果每小时行 20 千米,则迟到 5 分钟.如果打算提前 5 分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度 40%与 10%的食盐水,倒在一起后混合食盐水浓度为 30%.若再加入 300 克 20%的食盐水,则浓度变为 25%.那么原有 40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为 1:2:3.他用十个工时能做成 2 件衬衣、3 条裤子和 4 件上衣.那么他要做成 14 件衬衣、10 条裤子和 2 件上衣,共需 工时.9.一个运输队包运 1998 套玻璃具.运输合同规定:每套运费以 1.6 元计算,每损坏一套,不仅不得 运费,还要从总费中扣除赔偿费 18 元.结果这个运输队实际得运费 3059.6 元,那么,在运输过程中共损 坏 套茶具.10.摄制组从 A 市到 B 市有一天的路程,计划上午比下午多走 100 千米到 C 市吃午饭.由于道路堵 车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了 400 千米,傍晚才停下来休 息.司机说,再走从 C 市到这里的二分之一,就到达目的地了.那么 A ,B 两市相距 千米.1 200 棵又取走剩下树苗的 .第三班取走 300 棵又取走剩下树苗的 ,照此类推,第 i 班取走树苗 100 i 1 1 1 1 11.A 、B 两地相距 30 千米.甲骑自行车从 A 到 B ,开始速度为每小时 20 千米,一段时间后减速为 每小时 15 千米.甲出发 1 小时后,乙驾驶摩托车以每小时 48 千米的速度也由 A 到 B ,中途因加油耽误 了 10.5 分钟.结果甲乙两人同时到达 B 地.甲出发后多少分钟开始减速的?12.一批树苗 ,按下列原则分给各班栽种 ;第一班取走 100 棵又取走剩下树苗的 ,第二班取走 10 1 1 10 10棵又取走剩下树苗的 .直到取完为止.最后各班所得树苗都相等 .试问这批树苗有多少棵 ?有几个班? 10每个班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时 40 千米,在下坡路上行驶的速度是每小时 50 千米,在平路上行驶的速度是每小时 45 千米.某日这辆汽车从甲地开往乙地 ,先是用了 的时间走上坡路, 3然后用了 的时间走下坡路,最后用了 的时间走平路.已知汽车从乙地按原路返回甲地时 ,比从甲地 3 3开往乙地所用的时间多 15 分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程 51 千米.马每小时行 12 千米,但只能由一个人骑.哥哥每小时步行 5 千米,弟弟每小时步行 4 千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时 间忽略不计 ),然后独自步行 .而步行者到达此地 ,再上马前进 .如果他们早晨六点动身 ,何时能同时到 达城里?4x 4 x - 124 4 4 ⨯ 67 268 设原来有粮食 x 千克,根据现有大米可列方程 x ⨯ - 600 = ( x - 600) ⨯ , 解得 x =4200(千克). 设离火车开车时刻还有 x 分钟,根据从家到火车站的距离,可列方程 ⨯ ( x - 15) = ⨯ ( x + 5) ,解 设 BC =x 千米,则 AC =(x +1)千米,依题意,得 (100 + x) + 400 + x = ( x + 1) + x 20⨯ + 15 ⨯ ( ⨯ 60 + 10.5 + 60 - x) ⨯ 13. 设这批树苗有 x 棵,则第一班取走树苗(100+ ) 棵,第二班取走 1. 268. 335 设原分数是 ,由题意有 = ,解得 x =67,所以原分数是 = 5x 5x - 11 9 5 ⨯ 67 335. 2. 12设第二个数是 x ,则这八个数可写为 3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由 24+13x =180,解得 x =12.3. 630设原长方形的长是 14a 厘米,则宽是 5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得 a =3,所以原长方形的面积为 14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是 x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得 x =55(元).5. 42003 1 7 36. 4230 20 60 60得 x =55(分钟),所求速度应是 30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为 30%与 20%的食盐水混合成 25%的食盐水,则 30%与 20%的食盐水的质量应相同,所以 40%与 10%的食盐水混合成 30%的食盐水有 300 克.设原有 40%的食盐水 x 克,则 10%的食盐水有 300-x (克).由 x ⨯40%+(300-x )⨯10%=300⨯30%,解得 x =200(克).8. 20设缝纫师做一件衬衣的时间为 x ,则一条裤子的时间为 2x ,做一件上衣用时为 3x .由于十个工时完成 2 件衬衣、3 条裤子、4 件上衣,即 2x +3⨯(2x )+4⨯(3x )=10(工时). 即 20x =10(工时),则完成 2 件上衣、10 条裤子、14 件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏 x 套茶具,依题意,得 1.6⨯(1998-x )-18⨯x =3059.6,解得 x =7.10. 6001 1 3 3解得 x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后 x 分钟开始减速的,依题意,得 x 30 1 60 48 60= 30 .解得 x =36(分钟).答:甲出发后 36 分钟开始减速.12.x - 100 10x - 100 棵.依题意,得100 + = 200 + x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为100 + = 900 ,参加栽树的班数 为 = 9 ,所以这批树苗有 8100 棵,共有 9 个班,每个班取走的树苗都是 900 棵. 千米,依题意,得 + = + ,解得 x =30(千米).所以两人用的时间同为 + = 6 + = 7 (小时)=7 小时 45 分.早晨 6 点动身,下午 1 点 45 分到达.树苗 200 + x - 10 x - 100 x - 200 - (100 + ) x - 200 - (100 + ) 10 10 10 10 10,解得 8100 - 100 108100 90013. 设汽车从甲到乙所用时间为 3x 小时,依题意,得 45x 50 x 40 x 15 + + = 3x + 45 40 50 60,解得 x =5,故甲、 乙两地的距离为 40x +50x +45x =135x =675(千米).14. 设哥哥步行了 x 千米,则骑马行了 51-x 千米.而弟弟正好相反,步行了 51-x 千米,骑马行 xx 51 - x 51 - x x 5 12 4 1230 51 - 30 7 3 5 12 4 4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档