平面几何问题中最值问题的解法

合集下载

平面几何的最值问题及求法

平面几何的最值问题及求法
5 一
数 学教 学
21 年第 5 00 期
平 面几何 的最值 问题 及 求法
55 21 3 0广东 省东莞市常 学( 部 平中 高中 )陈 洪波


利用三角形的性质
利用三 角形 “ 两边之和大 于第三边, 两边之
设正 △AB 的边长为 2 M 是 J 边上的中点, , E ; j是边B [ ) 上的任意一点, +P 的最大值 P M 和最小值分别记为s , 和t 则求 s 一t的值. 解: 如图 2 . P ≤ ,’ ,F ≤ M, ’ J ) PA+ PM ≤ CA+ CM = 2+ 、3 /. /
所 以P P = xOp 2 / ' +O " P
例2 ( 0 年全国初中数学联合竞赛试题) 2 0 0
21 年第 5 00 期
=  ̄ OP2+ OP2= 1 v - / 0 / 2

数 学教 学
52 —5
解: 以点 为旋转 中心, ABC 将 E按顺时针 方向旋转 6 。 ABG 连结 EF, AB 0到 F, 则 EF为
A1

‘ \ ,

、 \\ M 、1 ^

3 。 0 .
j、 、 ‘ , N
图4
设 正方 形 边 长 为 , BG = , 则 GH = - , 4 x
B 日 : 日 :
( ) + .
由G H 十 日 =AG , 得
1 2 +
分析: 因河宽一定的, 以桥 M Ⅳ 的长度一 所 定, 只须使 M +BⅣ 最短即可. 可平移 M ( 或
于 B. ’Rc . △DD G中, DG. 。DD . DD > . .

M 连结 CM 则 . , M = 9 。 所以 0, M xA +C = / C2 = 、7 . = 、 . /,’ / .£ / / 7 从而 8 一t =( 十 ) 一7 4 . 。 。 2 。 =4 5 二、 利用对称变换 例3 (00 20 年黄 冈初 中数学竞赛试题) 如图 3 , (B = 4 。 二 ) 5 角内有一 点P, PO = 1, 0 在 角的两条 边上有两点 Q 均不 同于点 D, 、 求 AP R的周长的最小值. Q

几何中的最值问题

几何中的最值问题

几何中的最值问题作为一门重要的数学学科,几何中有许多重要的概念和方法,其中最值问题是一个广泛研究的内容。

在几何中,最值问题是指在某些条件下,某个几何量(如长度、面积、体积等)的最大值或最小值问题。

本文将从不同角度介绍几何中的最值问题及其应用。

一、最值问题的基础概念在几何问题中,最值问题最常见的便是一些面积、长度和体积的最值问题。

最常见的方法是使用微积分的极值定理,通过计算导数为0的点来找到函数的最大值和最小值。

此外,还有最大和最小的边界问题。

这些问题需要考虑的是给定条件下的最大可行解或最小可行解。

例如,给定一个面积固定的矩形,我们需要求出其长度和宽度的最大或最小值。

这些问题与微积分密切相关,但在解决这些问题时需要更多的几何知识和直觉。

二、平面几何中的最值问题在平面几何中,最值问题通常涉及三角形、四边形和圆形等形状。

这些形状的特性可以用来求解最值问题,通常需要使用各种几何知识和技巧。

例如,对于一个给定面积的三角形,在其周长恒定的情况下,需要求出该三角形的最大或最小长度。

为解决这类问题,我们可以利用三角形的海涅定理或余弦定理,通过微积分的极值定理得到最优解。

对于圆形,最值问题可能涉及到面积和周长问题,这些需要用到圆相关的特点和公式,如半径、直径、周长和面积等,通常需要通过微积分的方法求解。

另一方面,对于四边形最值问题,我们需要利用它们的对角线和相邻边的关系来解决,这通常需要将四边形划分为三角形或矩形来计算。

三、空间几何中的最值问题在空间几何中,最值问题通常涉及立体体积,包括长方体、正方体、棱锥和棱柱等。

这些问题需要利用空间几何的特点和公式来求解,常用的方法包括微积分的极值定理和立体几何的体积计算公式。

例如,对于一个矩形长方体,在其表面积固定的情况下,需要求出其有最大或最小的体积。

如果我们设该矩形长方体的长、宽和高分别为x、y和z,那么该矩形长方体的体积可以表示为V(x,y,z)=xyz。

通过微积分的方法,可以证明只有当x=y=z时,该方体的体积最大。

九年级数学竞赛 第18讲 平面几何中的最值问题

九年级数学竞赛 第18讲 平面几何中的最值问题

九年级数学竞赛第十八讲平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例.例1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry,所以所以求u的最大值,只须求-x2+2Rx+2R2最大值即可.-x2+2Rx+2R2=3R2-(x-R)2≤3R2,上式只有当x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60°和120°.例2 如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.例3 已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大(图3-93)?分析与解因为P点是半圆上的动点,当P近于A或B时,显然PA+PB 渐小,在极限状况(P与A重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.设P为半圆弧中点,连PB,PA,延长AP到C,使PC=PA,连CB,则CB是切线.为了证PA+PB最大,我们在半圆弧上另取一点P′,连P′A,P′B,延长AP′到C′,使P′C′=BP′,连C′B,CC′,则∠P′C′B=∠P′BC=∠PCB=45°,所以A,B,C′,C四点共圆,所以∠CC′A=∠CBA=90°,所以在△ACC′中,AC>AC′,即PA+PB>P′A+P′B.例4 如图3-94,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC≥2S△AKL.证连结AM,BM,DM,AN,DN,CN.因为在△ABC中,∠A=90°,AD ⊥BC于D,所以∠ABD=∠DAC,∠ADB=∠ADC=90°.因为M,N分别是△ABD和△ACD的内心,所以∠1=∠2=45°,∠3=∠4,所以△ADN∽△BDM,又因为∠MDN=90°=∠ADB,所以△MDN∽△BDA,所以∠BAD=∠MND.由于∠BAD=∠LCD,所以∠MND=∠LCD,所以D,C,L,N四点共圆,所以∠ALK=∠NDC=45°.同理,∠AKL=∠1=45°,所以AK=AL.因为△AKM≌△ADM,所以AK=AD=AL.而而从而所以 S△ABC≥S△AKL.例5 如图3-95.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.证设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ ≤P1Q1.因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.若∠AQ1P1≥90°,则PQ≤P1Q1≤AP1≤AB;若∠P1Q1C≥90°,则PQ≤P1Q1≤P1C.同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则P1C≤BC=AB.对于P,Q两点的其他位置也可作类似的讨论,因此,PQ≤AB.例6 设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C 到l的距离设为d1,d2,求d1+d2的最大值(1992年上海初中赛题).解如图3-96,延长BA到B′,使AB′=AB,连B′C,则过顶点A 的直线l或者与BC相交,或者与B′C相交.以下分两种情况讨论.(1)若l与BC相交于D,则所以只有当l⊥BC时,取等号.(2)若l′与B′C相交于D′,则所以上式只有l′⊥B′C时,等号成立.例7 如图3-97.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD 面积的最小值.解设⊙O与AB相切于E,有OE=1,从而即AB≥2.当AO=BO时,AB有最小值2.从而所以,当AO=OB时,四边形ABCD面积的最小值为练习十八1.设M为圆O外一定点,P为圆O上一动点.试求MP的最大值和最小值.2.设AB是圆O的动切线,直线OA,OB保持互相垂直.如果圆O的半径为r,试求OA+OB的最小值.3.一直角三角形的周长为10厘米(cm),则其面积的最大值是多少厘米?4.已知l1∥l2,A,B是直线l1上的两个定点,且AB=10,l1,l2的距离为8,P为直线l2上的一个动点,试求△ABP周长的最小值.5.如果矩形ABCD的周长为40厘米,那么这个矩形面积的最大值是多少平方厘米?。

例析平面向量的最值问题的几种解法

例析平面向量的最值问题的几种解法

ʏ刘长柏平面向量融合了代数㊁几何及三角函数等知识,在求其最值时,解题方法呈现出多样性㊂下面对平面向量的最值问题的几种解法进行归纳,意在抛砖引玉㊂一㊁基底法例1 已知点A ,B ,C 在圆x 2+y 2=1上运动,且A B ʅB C ,若点P 的坐标为(2,0),则|P A ң+P B ң+P C ң|的最大值为㊂解:设原点为O ㊂因为A B ʅB C ,所以A C 是圆O 的直径,所以|P A ң+P B ң+P C ң|=|2P O ң+P B ң|=|3P O ң+O B ң|ɤ3|P O ң|+|O B ң|=7,当且仅当P O ң,O B ң同向时等号成立㊂故所求的最大值为7㊂本题通过选择合适的基底向量,把三个动向量转化为只有一个动向量(O B ң),从而使问题得到解决㊂利用基底法解决问题时,首先需要考虑的是如何选择基底㊂二㊁坐标系法例2 已知矩形A B C D 的边长A B =2,A D =1,点P ,Q 分别在B C ,C D 上,且øP A Q =45ʎ,则A P ң㊃A Q ң的最小值是㊂解:以矩形A B C D 的顶点A 为原点,A B ,A D 所在的直线分别为x 轴,y 轴,建立平面直角坐标系x A y (图略)㊂易得A (0,0),B (2,0),C (2,1),D (0,1)㊂设P (2,y ),Q (x ,1)(0ɤx ɤ2,0ɤy ɤ1)㊂因为øP A Q =45ʎ,所以t a n 45ʎ=1x -y21+1x ㊃y 2,即y =2-2x 1+x ㊂因为A P ң㊃A Q ң=2x +y =2x +2-2x 1+x =2(1+x )+41+x -4ȡ42-4,当且仅当2(1+x )=41+x ,即x =2-1时等号成立㊂故A P ң㊃A Q ң的最小值为42-4㊂ 合理建立坐标系,由点的坐标转化为向量坐标的代数运算是坐标法解决向量问题的关键㊂三㊁构造函数法例3 等边三角形A B C 的边长为2,点P 为线段A B 上一点,且A P ң=λA B ң(0ɤλɤ1),则A P ң㊃C P 的最小值是,最大值是㊂解:A P ң㊃C P ң=A P ң㊃(A P ң-A C ң)=λA B ң㊃(λA B ң-A C ң)=4λ2-2λ=4λ-14()2-14㊂因为0ɤλɤ1,所以A P ң㊃C P ң的最小值为-14,最大值为2㊂本题主要是借助边长,将数量积转化为二次函数,利用二次函数的最值求解的㊂四㊁利用平面几何知识例4 已知向量a ,b ,c 满足|a |=4,|b |=22,a 与b 的夹角为π4,(c -a )㊃(c -b )=-1,则|c -a |的最大值为㊂解:设O A ң=a ,O B ң=b ,O C ң=c ㊂以O A所在的直线为x 轴,O 为坐标原点,建立平面直角坐标系x O y (图略)㊂由|a |=4,|b |=22,a 与b 的夹角为π4,可得A (4,0),B (2,2)㊂设C (x ,y ),由(c -a )㊃(c -b )=-1,可得(x -3)2+(y -1)2=1,此方程表示以(3,1)为圆心,1为半径的圆㊂|c -a |表示点A 与点C 的距离,即圆上的点与点A (4,0)的距离㊂因为圆心(3,1)到点A (4,0)的距离为2,所以|c -a |的最大值为2+1㊂解答这类问题,要熟练掌握与平面向量有关的三角形㊁平行四边形㊁圆㊁直线等平面几何知识㊂作者单位:江苏省盐城市时杨中学(责任编辑 郭正华)3数学部分㊃知识结构与拓展高一使用 2022年2月Copyright ©博看网. All Rights Reserved.。

几何最值问题解法探讨

几何最值问题解法探讨

几何最值问题解法探讨在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

下面通过近年全国各地中考的实例探讨其解法。

一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例1. (2012山东济南3分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】A1B C5D.52【答案】A。

【分析】如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,AB=1。

∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12。

故选A。

DE=OD4,∠ABC=45°,BD平分∠ABC,M、N分别例2.(2012湖北鄂州3分)在锐角三角形ABC中,BC=2是BD、BC上的动点,则CM+MN的最小值是▲ 。

【答案】4。

【分析】如图,在BA上截取BE=BN,连接EM。

∵∠ABC的平分线交AC于点D,∴∠EBM=∠NBM。

在△AME与△AMN中,∵BE=BN,∠EBM=∠NBM,BM=BM,∴△BME≌△BMN(SAS)。

∴ME=MN。

∴CM+MN=CM+ME≥CE。

又∵CM+MN有最小值,∴当CE是点C到直线AB的距离时,CE取最小值。

∵BC=ABC=45°,∴CE的最小值为450=4。

∴CM+MN的最小值是4。

π,点A、B分别是圆柱两底面圆例3.(2011四川凉山5分)如图,圆柱底面半径为2cm,高为9cm周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲ cm。

平面直角坐标系最值问题

平面直角坐标系最值问题

平面直角坐标系中的最值问题解决方法
平面直角坐标系中的最值问题是一个非常重要的问题,通常涉及到求函数在给定区域内的最大值和最小值。

下面是一些解决最值问题的方法:
1. 观察函数图像:通过观察函数的图像,可以直观地看到函数在哪些区域内的值较大或较小。

这种方法适用于一些简单函数的图像。

2. 利用导数:对于一些可导函数,可以利用导数来判断函数的单调性,从而确定函数的最大值和最小值。

3. 利用极坐标:将平面直角坐标系转化为极坐标系,可以将问题转化为求极径的最大值和最小值。

这种方法适用于一些具有圆形边界的问题。

4. 利用几何意义:对于一些具有几何意义的函数,可以利用几何意义来求解最值。

例如,对于圆上的点到原点的距离,可以利用圆的半径和圆心位置来求解最值。

解决平面直角坐标系中的最值问题需要综合考虑多种方法,根据具体问题选择合适的方法进行求解。

解析几何中最值问题的九种解题策略

解析几何中最值问题的九种解题策略

解析几何中最值问题的九种解题策略(广东省封开县江口中学 526500) 黎伟初解析几何中涉及最值问题常有求夹角、面积、距离最值或与之相关的一些问题;求直线与圆锥曲线(圆)中几何元素的最值或与之相关的一些问题。

这些问题的处理有九种解题策略。

一.代数策略 解析几何沟通了数学内数与形、代数与几何等最基本对象之间的关系。

是一门用代数方法研究几何问题及用几何意义直观反映代数关系的学科。

因此在处理解析几何中最值问题时,若目标与条件具有明确的互动函数关系时,不妨可考虑建立目标函数,通过函数的单调性、均值不等式、判别式、二次函数的图象等知识点来解决。

1.二次函数法 利用二次函数求最值要注意自变量的 取值范围及对称轴位置,当对称轴位置不确定时,必须进行分类讨论。

例1.若椭圆14922=+y x 上点P 到定 点A (a ,0)(0<a <3)的距离最短是1 ,则实数a 的值是 分析:设椭圆上一点P (3cos θ,2sin θ),()()220sin 2cos 3)(-+-==θθθa f PA ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2254453cos 5a a θ① 当350≤<a 时,因为1530≤<a ,所以 当a 53cos =θ时, 有f (θ)= 1544)53(arccos 2=-=a a f ,得)(35215)(215舍或舍>=-=a a 。

② 当335<<a 时,因为59531<<a ,所以当cos θ=1时,)0()(min min f f =θ1544)531(522=-+-=a a ,得a =2 或a = 4(舍), 综上得a = 2. 2.单调性 若所构造的函数在指定区间上具有单调性时,求最值可用单调性解决,但要注意自变量的取值范围。

例2.已知圆C :(x + 4)2 + y 2= 4, 圆D 的圆心D 在y 轴上且与圆C 相外切,圆D 与y 轴交于A 、B 点,点P 为(–3,0),当点D 在y 轴上移动时,求∠APB 的最大值。

高中数学:几何最值问题求法

高中数学:几何最值问题求法

高中数学:几何最值问题求法最值问题是平面解析几何中的一个既典型又综合的问题.求最值常见的方法有两种:代数法和几何法.若题目条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.若题目条件和结论能明显体现某种函数关系,则可先建立目标函数,再求函数的最值,这就是代数法.一、几何法利用平面几何性质求解最值问题,这种解法若运用得当,往往显得非常简洁明快.例1、已知P(x,y)是圆上的一点,求的最大值与最小值。

分析:,于是问题就可以转化为在以A(2,0)为圆心,以为半径的圆上求点P,使它与原点连线的斜率为最大或最小。

由示意图可知,当OP与此圆相切时,其斜率达到最大值或最小值。

由OA=2,AP1=AP2=,且AP1⊥OP1,AP2⊥OP2,OP1=OP2=1,且∠AOP1=∠AOP2=60°,得。

二、代数法用代数法求最值常用的方法有以下几种:1、利用判别式法求最值、利用此法求最值时,必须同时求得变量的范围,因为方程有解,Δ≥0所指的是在()范围内方程有解,这一点应切记.例2、(同例1)分析:设,将y=kx代入圆方程得。

x为实数,方程有解,,解得,故。

即。

2、利用二次函数性质求最值.用此法求最值时,必须注意变量的取值范围.例3、已知椭圆及点P(0,5),求点P到椭圆上点的距离的最大值与最小值.分析:以(0,5)为圆心,若内切于椭圆的圆半径为r1,则r1为点P到椭圆上点的距离的最小值;若外切于椭圆的圆半径为r2,则r2为点P到椭圆上点的距离的最大值.因,故点P(0,5)在椭圆内部.设以(0,5)为圆心的圆方程为,与椭圆方程联立消去x2,得。

当时,,即;当y=7时,,即。

注:这里将距离的最大值、最小值的探求转化为半径r的函数,利用函数的性质求得定义域内的最大值、最小值.值得注意的是因为r的定义域的限制,这里不适合利用判别式法.3、利用基本不等式求最值.利用基本不等式求最值时,必须注意应用基本不等式的条件,特别要注意等号的条件以及“和”(或“积”)是不是常数,若连续应用不等式,那么要特别注意同时取等号的条件是否存在.若存在,有最值;若不存在,无最值.例4、过点A(1,4)作一直线,它在两坐标轴上的截距都为正数,且其和为最小,求这条直线的方程.分析:可用截距式设所求直线方程为。

初中数学-平面几何的最值问题

初中数学-平面几何的最值问题

平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.ADMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值.PDA BQ解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBA路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1分米,高AB 为5分米”继续按前面的路线进行计算.请你帮小明完成下面的计算: 路线1:l 12=AC 2= ;路线2:l 22=(AB +BC )2= .∵ l 12 l 22,∴l 1 l 2 ( 填“>”或“<”),所以应选择路线 (填“1”或“2”)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率.NMEDAB解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △P AB 的最小值.1ABD解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △P AB ,得到PCPACD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △P AB ,整理后得到y ≥4,即可求出答案.。

几何中的最值

几何中的最值

几何中的最值几何中的最值问题是指在一定的条件下,求平面几何图形中某个量(如线段长度、角度大小、图形周长或面积)等的最大值或最小值。

求几何最值问题的基本方法有:1、几何定理(公理)法;2、临界状态(特殊位置与极端位置法);解决几何最值问题的通常思路(分析定点、动点,寻找定量)①模型解题:若属于常见模型,调用模型解决问题;②定理解题:若不属于常见模型,寻找定量,借助基本定理解决问题. ③轨迹解题:一般用于压轴题转化原则:尽量减少变量,向定点、定线段、定图形靠拢.一.几何定理:(画出模型)1.线段公理——两点之间,线段最短;2.直线外一点与直线的所有连线中垂线段最短3.三角形三边关系(两边之和大于第三边,两边之差小于第三边)4.两平行线间距离最短;5.过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦二、常见模型㈠.过河问题llB线段求其和, AB 河两侧,线段求其差, AB 河同侧,㈡、角平分线模型P A +PB 最小,需要点在异侧 |P A -PB |最大, 需要点在同侧蜂蜜蚂蚁C㈢梯子靠墙模型O A ⊥OB,AB=a ,⊿ABP 是等腰直角三角形。

求OP 的最大值 解法一:根据直角三角形斜边上的中线等于斜边的一半,可知a AB OE 2121==是定值,与OP 构造三角形OEP.解法二:根据等腰直角三角形ABP 斜边上的中线等于斜边的一半,可知解法三:A,B,O 三点在以AB 为直径的圆上,即二.常见临界状态(有待补充):三、观察动点的运动轨迹在武汉中考题的压轴题中求最值问题时,仅依靠定理或模型解决不了问题时,需要我们尝试去思考动的运动轨迹是什么,从而帮助我们解题。

一、过河模型1、在直线l 上找一点P ,使得其到直线同侧两点A 、B 的距离之和最小。

2、直线12l l 、交于O 、P 是两直线间的一点,在直线12l l 、上分别找一点A 、B ,使得△PAB的周长最短。

3、如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .AB2第2题图4、如图,当四边形P ABN 的周长最小时,a = .5、如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PA PB -的最大值等于 .6、点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP OQ ⋅= .(1)如图1,若点C (x ,0)且-1<x <3,BC ⊥AC ,求y 与x 之间的函数关系式; (2)如图2,当点B 的坐标为(-1,1)时,在x 轴上另取两点E ,F ,且EF =1.线段EF 在x 轴上平移,线段EF 平移至何处时,四边形ABEF 的周长最小?求出此时点E 的坐标.B (-图1 图28、在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.(1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(2)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.1. (2011湖北荆门3分)分,高为5cm .若一只蚂蚁从P 点开始经过4 】A.13cmB.12cmC.10cmD.8cm2.(2011四川广安3分)如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】A 、6(4)π+㎝ B 、5cm C 、㎝ D 、7cm3.(2011广西贵港2分)如图所示,在边长为2P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 19、已知:抛物线2(0)y ax bx c a =++≠的对称轴为C ,其中(3,0)A -,(0,2)C -。

几何最值的解题方法

几何最值的解题方法

几何最值的解题方法1. 引言几何最值问题是数学中常见的一类问题,它涉及到在给定的几何形状或空间中寻找某个特定量的最大值或最小值。

在解决这类问题时,我们需要运用几何知识和数学分析方法,结合具体情境进行推理和计算。

本文将介绍几何最值问题的解题方法,并通过实例进行说明。

2. 几何最值问题的分类几何最值问题可以分为两类:平面几何中的最值问题和立体几何中的最值问题。

2.1 平面几何中的最值问题在平面几何中,我们常常需要求解线段、角度、面积等量的最大值或最小值。

例如,求一个给定周长的矩形的面积最大,或者求一个给定半径的圆形内接三角形的面积最大。

为了解决这类问题,我们可以使用以下方法:2.1.1 导数法当需要求解平面图形上某个量(如面积)取得极大或极小值时,我们可以通过对该量进行微分,并令导数等于零来求得临界点。

通过判断临界点处导数符号变化来确定极大或极小值。

例如,对于矩形的面积最大问题,我们可以设矩形的长为x,宽为y,则矩形的面积为S=xy。

根据周长固定的条件,可以得到2x+2y=常数。

将这个条件代入面积公式S=xy中,可以得到只含有一个变量x的函数表达式S(x),然后对S(x)求导,并令导数等于零,即可求得临界点。

2.1.2 直观法直观法是一种通过观察和推理来解决几何最值问题的方法。

在解决一些简单的几何最值问题时,我们可以通过直观地找出一些特殊情况或者利用几何图形的性质来确定最值。

例如,在求解一个给定周长的矩形面积最大问题时,我们可以发现正方形是具有相同周长下面积最大的矩形,因而答案是正方形。

2.2 立体几何中的最值问题在立体几何中,我们常常需要求解体积、表面积等量的最大值或最小值。

例如,求一个给定表面积的圆柱体体积最大,或者求一个给定体积的圆柱体表面积最小。

为了解决这类问题,我们可以使用以下方法:2.2.1 导数法与平面几何中的导数法类似,我们可以通过对体积或表面积进行微分,并令导数等于零来求得临界点。

一道平面几何最值问题的三种解法及多个变式

一道平面几何最值问题的三种解法及多个变式

9-262019年第9期一道平面几何最值问题的三种解法及多个变式杨春波(河南省郑州中原一中实验中学,河南郑州450000)题目如图1,线段MB的长为4,C为上一动点,分别以4C、BC为斜边在4B的同侧作等腰直角MCD和等腰直角43(/,那么DE 长的最小值是________•图1分析:当点C在线段上运动时,点D和E随之运动,DE的长度不断变化.根据图形的对称性,大胆猜想:当C为的中点时,DE的长度最小猜想是否正确?且看下面三种解法.1—题多解解法1:(代数视角,转化为二次函数的最值问题)设AC=x(0<x<4),BC=4-x,由△ACD和5BCE为等腰直角三角形知,CD=—=—,CE=—=^—^,1.厶DCE=180°-血匹72J245°-45°=90°.在RtACDE中,由勾股定理得DE2=CD2+CE2=—x2~4x+8—(x—2)2+4,当x=2时,£>矿取得最小值4,则DE长的最小值为2.解法2:(几何视角,构造直角梯形)如图2,分别过点D、E作AB的垂线,垂足分别为点M、N.由44(70和为等腰直角三角形知,M为AC的中点,"为BC的中点,则MN=MC+CN=—AC+—BC=—AB=2.222在直角梯形DMNE中,有DEM MN=2;当C为4B的中点时,直角梯形DM/VE退化为矩形,有DE=MN=2.于是,DE长的最小值为2.解法3:(几何视角,构造矩形和等腰直角三角形)如图3,延长4D、BE交于点F,连结FC,作FH丄AB于点H.由HkCD和△BCE为等腰直角三角形知,ZOCE=180o-45o-45°= 90°,则四边形DCEF为矩形,△FAB也为等腰直角三角形•于是DE=FC M FH=—AB=2,2当点C与H重合(为4B中点)时,DE=FC= FH=2.所以,DE长的最小值为2.图3点评:解法1是代数解法,选取4C的长度为自变量%,将表达为%的二次函数,最值可求.解法2、3均为几何解法,但构图略有不同一一解法2是构造直角梯形,发现其直角腰2019年第9期欽学款学9-27长为定值,从而斜腰长不小于直角腰长,获得最小值;解法3则构造一个矩形和一个更大的等腰直角三角形,利用矩形对角线相等的性质将DE转化为FC,其最小值为点F到AB的距离.以上三种解法各有千秋——代数法以函数思想为指引,只要按部就班运算即可;几何法则需重新构图,转化线段,辅助线一旦作出也算方便、快捷.2—题多变上面展示了用不同解法求解同一道题目,称为一题多解.解题完毕,我们还可考虑试题的多种变式,同样可以从不同的视角对原问题进行改编.2.1改变图形结构将等腰直角三角形变为等边三角形,即得:变式1如图4,线段AB的长为4,C为4B 上一动点,分别以AC、BC为边在佃的同侧作等边AACD和等边那么DE长的最小值是________•分析:原解法1在ADCE中求解DE2用勾股定理,而这里厶DCE=60。

初中几何最值问题的常用解法

初中几何最值问题的常用解法

初中几何最值问题的常用解法
初中几何最值问题的常用解法有以下几种:
1. 利用图形的性质和特点:根据所给的几何图形,利用其性质和特点推导出最值问题的解答。

例如,利用等腰三角形的性质,可以求解最短路径问题;利用圆的性质,可以求出最大面积问题等。

2. 利用相似三角形:当给定的几何图形不易直接求解时,可以通过构建相似三角形来求解最值问题。

通过建立相似三角形的比较关系,可以求得所需的未知数,并得到最值问题的解答。

3. 利用变量法:将所给的几何图形进行变量代换,将问题转化为代数问题。

通过对新的代数表达式进行求导或求极值的方法,可以求解最值问题。

4. 利用平面几何基本定理:平面几何基本定理是初中几何学中的核心理论,其中包括了如角等分线定理、平行线性质定理、正弦定理、余弦定理等。

利用这些定理,可以有效地解决几何最值问题。

总之,初中几何最值问题的解决方法需要深入理解几何图形的性质和运用几何定理,同时也需要灵活运用代数方法和应用数学思维来解决问题。

如何求解平面向量最值问题

如何求解平面向量最值问题

有些平面向量问题采用常规方法求解较为困难, 我们可以根据题意建立合适的平面直角坐标系,给各 个向量赋予坐标,根据平面向量坐标运算法则进行运 算,进而求得最值.通过向量坐标运算,可将平面向量 最值问题转化为坐标运算问题,有利于快速求得最值.
仍以上述例题为例.
解 设:O建A 立= a如=图(1,20所) ,示c =的O平C面= (直x,角y)坐,标系,
学会从不同的角度寻找解题的途径.
(作者单位:江苏省东台市唐洋中学) 35
Copyright©博看网 . All Rights Reserved.
∵ ∴
Oa∙Bb==b0=,(∴0, 1a)⊥,b
,
由 |c - a - b| = 1 可得
(x - 1)2 + (y - 1)2 = 1 ,
∴点 C 在以 (1,1) 为
圆心,1 为半径的圆上,
图2
∴ |c| 的最大值为 1 + 2 .
这里根据 a ⊥ b 分别以 OA、OB 为 x、y 轴建立平面 直角坐标系,然后给各个向量赋予坐标,通过向量坐
解 答 本 题 ,主 要 运 用 了 绝 对 值 不 等 式 的 性 质
||a| - |b|| ≤ |a ± b| ≤ |a| ± |b| 、a + b≥ |a + b| 来建立新的不 等式,然后通过解不等式求得 |c| 的最大值.
二、借助平面几何知识求解
平面向量是连接“数”与“形”的纽带.在求解平面
解:∵ a∙b= 0 ,a ,b 是单位向量,∴ |a + b| = 2 ,
∵ a + b≥ |a + b| ,
∴ |c - a - b| = |c -(a + b)| ≥ ||c| - |a + b|| = ||c| - 2| ,

几何最值问题解法

几何最值问题解法

几何最值问题解法在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

下面通过近年全国各地中考的实例探讨其解法。

应用两点间线段最短的公理(含应用三角形的三边关系)求最值典型例题:例1.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】A1B C D.5 2例2.在锐角三角形ABC中,BC=24,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是。

例3.如图,圆柱底面半径为2cm,高为9cmπ,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为cm。

例4. 在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 .练习题:1. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开 始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】A.13cmB.12cmC.10cmD.8cm2.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】A 、6(4)π+㎝ B 、5cm C 、㎝ D 、7cm3.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .二、应用垂线段最短的性质求最值: 典型例题:例1. 在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 .例2.如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【 】A . 1 BC . 2D +1例3. 如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短 时,点B 的坐标为【 】A.(0,0)B.(21-,21-) C.(22,22-) D.(22-,22-)例4.如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE 是等腰直角三角形; ②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的改变而发生变化; ④点C 到线段EF 的最大距离为.其中正确结论的个数是【】A.1个B.2个C.3个D.4个例5.如图,△ABC中,∠BAC=60°,∠ABC=45°,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.例6.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.练习题:1. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为【】A、1B、2C、3D、43.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点, PQ 切⊙O 于点Q ,则PQ 的最小值为【 】A. B .C.3 D.24.如图,在四边形ABCD 中,∠A=90°,AD=4,连接BD ,BD⊥CD,∠ADB=∠C.若P 是BC 边上一动点,则DP 长的最小值为 .三、应用轴对称的性质求最值: 典型例题:例1. 如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点 C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最 短距离为 ▲ cm .例2. 如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为【 】135A.130° B.120° C.110° D.100°例3. 点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角-的值最大的点,Q是y轴上使得QA十QB的坐标系如图所示.若P是x轴上使得PA PB值最小的点,⋅=.则OP OQ例4. 如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB 的最小值为.例5. 如图,MN为⊙O的直径,A、B是O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN 于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是练习题:1. 如图,已知点A(1,1)、B(3,2),且P为x轴上一动点,则△ABP的周长的最小值为.2. 如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=时,AC+BC的值最小.3.去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A和李村B送水。

(平面几何最值问题的几种求解方法)

(平面几何最值问题的几种求解方法)

平面几何最值问题的几种求解方法曹永启 (深圳清华实验学校 518126)平面几何最值问题在近几年数学竞赛中频频出现。

第十六届希望杯数学全国邀请赛初二2试最后一题就是一例。

此类问题求解方法多,涉及知识面广,这对于初涉平面几何的初中学生来说,处处受限,难度较大。

本文旨在通过实例介绍几种初中生能接受的求解方法。

一,平移法平移法一般是寻求特殊位置的几何图形,结合图形的平移来解决问题。

其基本依据有:两点之间线段最短,(三角形两边之和大于第三边,两边之差小于第三边)。

直角三角形中斜边大于直角边,(从直线外一点到直线的所有线段中垂线段最短等)。

例1,(一个古老的问题)假设河岸为两条平行线,在河岸两侧有A 村和B 村,要在河上架一座垂直河岸的桥,使A 村到B 村路程最短,如何确定架桥的位置? 解:设河岸为L 1、 L 2,则L 1∥L 2,两岸距离为d ,过A 点作AA ′⊥L 1,且AA ′=d,连结BA ′交L 2于D ,过D 作CD ⊥L 2交L 1于C ,则CD 即为架桥的位置。

(如图1)由作法可知,四边形AA ′DC 是平行四边形,(AA ′∥DC 且AA ′=DC )所以AC= A ′D.即AC+BD= A ′B ,而A ′、B 两点以A ′B 最短,故AC+CD+BD 为最短。

例2,在XOY 的边OX 、OY 上分别取一点A 、B ,使OA+OB 为定长L ,试证:当OA=OB 时AB 的长最短。

(如图2)分析:设OA=OB ,OA+OB=L (定长)为了证明AB 的长最短,可在OX 和OY 上分别另取一点A ′、B ′,使O A ′+OB ′=L ,连A ′B ′,则问题变为证明AB <A ′B ′。

证明:把A ′B ′平移到AC ,则A ′B ′CA 为平行四边形 ∵OA+OB=O A ′+OB ′ ∴A A ′=BB ′而A A ′=CB ′∴BB ′=CB ′ ∠B ′BC=∠B ′CB ∴∠ B ′BC=XOY Y CB ∠=∠2121' ∴∠B ′BC+∠OBA=90˙∴∠ABC=90˙ ∴AB <AC=A ′B ′(直角三角形斜边大于直角边) 二,反射法反射法主要可解决以下两个类型问题。

一道平面几何最值问题的多种解法

一道平面几何最值问题的多种解法

一道平面几何最值问题的多种解法一道平面几何最值问题的多种解法冯兴旺(甘肃省陇南市成县第一中学,甘肃㊀陇南㊀742500)ʌ摘要ɔ解三角形中的最值(或取值范围)等问题,场景新颖,知识交汇融合,技巧方法众多,是全面考查学生 四基 与能力的重要题型之一.文章基于一道平面图形翻折的模拟题的创设,以解三角形的最值问题来合理设置,从角参与边参的设置,以及坐标构建等多思维视角切入,巧妙解决相应的解三角形的最值问题,拓展数学思维,提升数学品质,引领并指导数学教学与解题研究.ʌ关键词ɔ解三角形;翻折;函数;导数;不等式引 言解三角形中的最值(或取值范围)等问题,是近几年新高考数学试卷命题的一个热点,问题背景灵活多变,知识考查面广.特别是在新高考数学试卷中,此类问题有时还巧妙融入现实生活㊁数学文化等应用场景,成为一类创新性的综合应用问题,倍受各方关注.对其解题方法与技巧进行探究与总结十分必要.一㊁问题呈现ʌ问题ɔ如图1所示,将矩形纸片ABCD的右下角折起,使得点B落在CD边上点B1处,得到折痕MN.已知AB=5cm,BC=4cm,则当tanøBMN=时,折痕MN最短,其长度的最小值为cm.图1本题是一道以平面图形翻折为背景的平面几何的最值问题,此类问题主要考查正弦定理㊁余弦定理㊁不等式等相关知识,以及平面几何㊁三角函数等知识.在解决此类问题时常用到平面几何㊁三角函数㊁解三角形㊁不等式㊁函数与导数的应用等相关知识,此类题有一定的综合性,并且对代数变形能力要求较高,综合考查直观想象㊁逻辑推理以及数学运算等核心素养.根据该问题的实际应用场景,解题者可以从角参设置与边参设置等不同思维视角切入,合理构建对应的关系式,通过关系式的结构特征,利用函数思维或不等式思维并结合相关知识来分析与解决问题.二㊁问题破解(一)角参设置思维方法1(导数法1)解析㊀依题意,设øBMN=θ,θɪθ0,π4æèçùûúú,其中tanθ0=25,BN=B1N=x,则øB1NC=2θ,如图2所示.图2在әB1NC中,利用三角函数的定义可得cos2θ=CNB1N=4-xx,则有x=41+cos2θ=2cos2θ,在әBMN中,结合三角函数的定义可得MN=BNsinθ=xsinθ=2sinθcos2θ=2sinθ-sin3θ,令sinθ=tɪ22929,22æèçùûúú,则MN=2t-t3,构建函数f(t)=t-t3,tɪ22929,22æèçùûúú,求导可得fᶄ(t)=1-3t2,令fᶄ(t)=0解得t=33,则当22929<t<33时,fᶄ(t)>0,函数f(t)单调递941增;当33<tɤ22时,fᶄ(t)<0,函数f(t)单调递减.因此f(t)max=f33æèçöø÷=33-33æèçöø÷3=239,所以MN=2t-t3ȡ2239=33,当且仅当sinθ=33,cosθ=63时等号成立,即当tanøBMN=tanθ=22时,折痕MN最短,其长度的最小值为33cm.故填22;33.解后反思㊀根据应用场景合理引入变量(主要是角参或边参),通过分析构造所求线段长度的关系式,从不同思维视角巧妙构建对应的函数,回归函数的本质,通过求导处理,利用函数的单调性与极值判断来确定最值问题,从而解决问题.不同视角的函数构建,求导运算与应用也各有差异.方法2(均值不等式法1)解析㊀根据方法1的前几步,可得MN=2sinθcos2θ,θɪθ0,π4æèçùûúú,其中tanθ0=25,通过合理配凑并利用均值不等式,可得MN=2sinθcos2θ=2sin2θcos4θ=2ˑ12(1-cos2θ)ˑ12cos2θˑ12cos2θȡ2ˑ121-cos2θ+12cos2θ+12cos2θ3æèççöø÷÷3=33,当且仅当1-cos2θ=12cos2θ,即cos2θ=23,sin2θ=13,tanθ=22时等号成立,即当tanøBMN=tanθ=22时,折痕MN最短,其长度的最小值为33cm.故填22;33.解后反思㊀根据应用场景所构建的关系式,借助三角函数的平方关系sin2θ+cos2θ=1,合理配凑对应的关系式,进而结合均值不等式合理放缩处理,从而确定对应的最值.关系式的合理配凑,是利用均值不等式放缩处理问题的关键所在,也是解决问题的难点所在,需要较高的敏感度与技巧性.(二)边参设置思维方法3(导数法2)解析㊀设MB=m,NB=n,其中nɪ(2,4],结合平面几何图形的直观,可得[5-(5-m)-n2-(4-n)2]2+42=m2,整理有m2=2n2n-2,所以MN2=m2+n2=2n2n-2+n2=n3n-2,构建函数f(n)=n3n-2,nɪ(2,4],求导可得fᶄ(n)=2n2(n-3)(n-2)2,令fᶄ(n)=0,解得n=3,则当2<n<3时,fᶄ(n)<0,函数f(n)单调递减;当3<nɤ4时,fᶄ(n)>0,函数f(n)单调递增,因此当n=3时,f(n)min=f(3)=27,此时MN的最小值为33,m2=2n2n-2=18,tanøBMN=nm=22,所以当tanøBMN=22时,折痕MN最短,其长度的最小值为33cm.故填22;33.解后反思㊀根据应用场景引入边参来合理构建所求线段长度的关系式,也是解决问题时比较常用的一类技巧.以边参为参数(注意对应的取值范围)所对应的函数,可以通过函数的本质,利用函数与导数的应用来处理与转化,这往往是解决与之相关的最值(或取值范围)等问题中最为常用的思维方法.(三)坐标构建思维方法4(导数法3)解析㊀以A为坐标原点,AB,AD所在直线分别为x轴㊁y轴建立平面直角坐标系,设M(m,0),mɪ[0,1),设直线MN的方程为y=k(x-m),kɪ(0,1),则yN=k(5-m),所以直线MB1的方程为y=2k1-k2(x-m),则xB=2-2k2k+m,051由于MB1=1+2k1-k2æèçöø÷22-2k2k=1+k21-k2㊃2-2k2k=2(1+k2)k=MB=5-m,所以MN=1+k2(5-m)=1+k2㊃2(1+k2)k=2(1+k2)3k2,令k2=tɪ(0,1),构建函数f(t)=(1+t)3t,tɪ(0,1),求导可得fᶄ(t)=(1+t)2(2t-1)t2,令fᶄ(t)=0,解得t=12,则当0<t<12时,fᶄ(t)<0,函数f(t)单调递减;当12<t<1时,fᶄ(t)>0,函数f(t)单调递增,因此f(t)min=f12æèçöø÷=274,所以MN=2(1+k2)3k2ȡ2274=33,当且仅当k2=t=12,即k=tanøBMN=22时等号成立,即当tanøBMN=22时,折痕MN最短,其长度的最小值为33cm.故填22;33.方法5(均值不等式法2)解析㊀根据方法4的前几步,可得MN=2(1+k2)3k2,kɪ(0,1),通过合理配凑并利用均值不等式,可得MN=2(1+k2)3k2=212+12+k2æèçöø÷3k2ȡ23312ˑ12ˑk2æèçöø÷3k2=33,当且仅当k2=12,即k=tanøBMN=22时等号成立,即当tanøBMN=22时,折痕MN最短,其长度的最小值为33cm.故填22;33.解后反思㊀根据平面几何图形的结构特征,将其放置于平面直角坐标系中,通过平面几何与平面解析几何的交汇来综合应用.合理引入点的坐标㊁直线的斜率等参数,巧妙构建所求线段的长度关系式,进而通过函数与导数的应用㊁重要不等式的应用等来确定对应的最值问题,从而实现问题的突破与解决.三㊁教学启示(一)命题设置方式,知识综合交汇综合性的解三角形问题可以很好地考查学生的数学基础知识㊁数学思想方法与数学能力等.而处理解三角形问题往往可以利用平面几何图形来打开思路,这是近年各地高考模拟卷中解三角形问题的一个基本模式,在高考命题也必将占有一席之地.此类解三角形问题求解的方法通常引入合理的角参或边参,结合平面几何图形的特征,综合解三角形的相关定理㊁性质㊁公式等构建关系式,通过对应的函数㊁不等式等知识来分析与解决问题.(二)思路方法归纳,技巧能力提升解决此类解三角形问题的一般思路主要包括以下两种:(1)代数角度,寻找关于角或者边的函数或不等式关系,进而从函数或不等式视角来分析与求解.(2)几何角度,借助平面几何知识,寻找图形中蕴藏的几何关系,从直观想象与数形结合视角来分析与求解.当然,解决此类解三角形问题经常采用的思路是代数与几何的综合,从几何中寻找关系,进而合理构建代数关系,对代数运算与几何推理加以综合应用,分析与解决问题.结 语此类平面几何图形翻折成对应平面几何图形的创新应用问题,要正确把握翻折过程中变与不变的量(涉及边㊁角等),通过合理的参数引入来构建对应的关系式,进而将几何问题代数化,解决此类解三角形问题.ʌ参考文献ɔ[1]朱小成.等腰三角形中不确定性问题的解决[J].中学数学,2023(24):64-65.[2]罗培洲.高中数学中三角函数的解题技巧:以三角函数的图形与性质为例[J].数理化解题研究,2023(30):50-52.[3]王东海.由2023年高考题谈解三角形中三线问题的破解策略[J].中学生理科应试,2023(12):14-16.[4]沈鸿羽,顾予恒.探究 一破二 模型,破解三角形问题:以2023年高考题为例[J].中小学数学(高中版),2023(Z2):15-16.151。

中考数学中的最值问题解法

中考数学中的最值问题解法

中考数学几何最值问题解法在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

下面通过近年全国各地中考的实例探讨其解法。

应用两点间线段最短的公理(含应用三角形的三边关系)求最值典型例题:例1. 如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A .21+B .5C .1455D .52例2.在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。

例3.如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 ▲ cm 。

练习题:1. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】A.13cmB.12cmC.10cmD.8cm2.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】 A 、6(4)π+㎝ B 、5cm C 、35㎝ D 、7cm3.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ .二、应用垂线段最短的性质求最值:典型例题:例1. (2012山东莱芜4分)在△AB C 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 ▲ .例2.如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【 】A . 1B .3C . 2D .3+1例3.已知梯形ABCD ,AD∥BC,AB⊥BC,AD =1,AB =2,BC =3,问题1:如图1,P 为AB 边上的一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ ,DC 的长能否相等,为什么?问题2:如图2,若P 为AB 边上一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题3:若P 为AB 边上任意一点,延长PD 到E ,使DE =PD ,再以PE ,PC 为边作平行四边形PCQE ,请探究对角线PQ 的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题4:如图3,若P 为DC 边上任意一点,延长PA 到E ,使AE =nPA(n 为常数),以PE 、PB 为边作平行四边形PBQE ,请探究对角线PQ 的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.例4. 如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为【 】A.(0,0)B.(21-,21-) C.(22,22-) D.(22-,22-) 例5.如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE 是等腰直角三角形;②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的改变而发生变化;④点C 到线段EF 的最大距离为.其中正确结论的个数是【 】A .1个B .2个C .3个D .4个例6.如图,长方形纸片ABCD 中,AB=8cm ,AD=6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC(余下部分不再使用); 第二步:如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为▲ cm,最大值为▲ cm.例8. 如图,△ABC中,∠BAC=60°,∠ABC=45°,,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为▲ .例9. 如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD 上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.例10.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.例11. 如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)练习题:1. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为【】A、1B、2C、3D、42如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为【】A.13 B.5 C.3 D.24.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为▲ .5.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.三、应用轴对称的性质求最值:典型例题:例1. 如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为▲ cm.例2. 如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为【】A.130° B.120° C.110° D.100°例3. 点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角-的值最大的点,Q是y轴上使得QA十QB的值最小的点,坐标系如图所示.若P是x轴上使得PA PB⋅=▲.则OP OQ例4. 如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为▲ .例5.如图,MN为⊙O的直径,A、B是O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是▲。

求解平面向量最值问题的几个途径

求解平面向量最值问题的几个途径

思路探寻平面向量最值问题通常要求根据给出的条件,求向量的模的最小值、数量积的最大值、夹角的最值等.解答此类问题,需要根据已知条件和向量知识,求得目标式,然后把问题转化为函数问题、几何最值问题.与此同时,由于平面向量具有“数”与“形”的双重身份,所以在解题时要灵活运用数形结合思想.那么求解这类问题有哪些途径呢?下面举例说明.一、根据三角函数的有界性对于一些与向量的数量积、夹角、模有关的最值问题,通常可根据向量的数量积公式,通过向量运算求得目标式.此时目标式为关于某个夹角的三角函数式,那么就可以将问题看作三角函数最值问题.通过三角恒等变换化简目标式,便可利用三角函数的有界性求得最值.在利用三角函数的有界性求最值时,要明确夹角的取值范围,熟悉并灵活运用正弦、余弦、正切函数的单调性和有界性.例1.如图1,若△ABC 中,AB =2,∠ACB =π4,O 是△ABC 外接圆的圆心,则 OC ∙ AB + CA ∙CB 的最大值为______.解:因为∠ACB =π4,O 是△ABC 外接圆的圆心,则∠AOB =2∠ACB =π2,又因为AB =2,所以OA =OB =2,即外接圆的半径r =2.则 OC ∙ AB + CA ∙ CB = OC ∙() OB - OA +()OA - OC ∙()OB - OC= OC ∙ OB - OC ∙ OA + OA ∙ OB - OA ∙ OC - OC ∙ OB + OC 2= OA ∙ OB + OC 2-2 OA ∙ OC ,因为∠AOB =π2,OA ⊥OB ,即 OA ∙ OB =0.故 OC ∙ AB + CA ∙ CB = OC 2-2 OA ∙ OC =|| OC 2-2|| OA ∙||OC cos ∠AOC =2-4cos ∠AOC ,因为A 与C 不重合,所以 OA 与OC 的夹角的范围为(]0,π,故-1≤cos ∠AOC <1,所以当cos ∠AOC =-1,即当O 为AC 的中点时, OC ∙ AB + CA ∙CB 取得最大值2-4×()-1=6.首先根据三角形和圆的性质、向量的数量积公式求得目标式,将所求目标转化为有关∠AOC 的三角函数式;然后确定∠AOC 的取值范围,即可根据余弦函数的有界性确定目标式的最值.图1图2二、利用平面几何图形的性质对于与图形有关的平面向量问题,通常可先根据向量的几何意义画出几何图形,并确定向量所表示的点的轨迹;然后分析图形中点、线、图形之间的位置关系,利用平面几何图形的性质求最值.例2.在矩形ABCD 中,AB =2,BC =3,2 BE =EC ,P 是平面ABCD 内的动点,且 AP ∙ AB =AP 2.若0<t <1,则|| BE +t DE +|| PE +(t -1)DE 的最小值为______.解:由 AP ∙ AB = AP 2知: AP ∙( AB - AP )= AP ∙ PB =0,即 AP ⊥ PB ,所以P 在以AB 为直径的圆上,F 为圆心,于是以B 为原点,以BC 、BA 分别为x 、y 轴建立如图2所示的平面直角坐标系,所以A (0,2),D (3,2),E (1,0),F (0,1),若P (x ,y ),则x 2+(y -1)2=1,则 BE =(1,0), DE =(-2,-2),PE =(1-x ,-y ),所以 BE +tDE =(1-2t ,-2t ), PE +(t -1)DE =(3-x -2t ,2-y -2t ),则|| BE +t DE +|| PE +(t -1)DE 可看作点H (3-2t ,2-2t )到G (2,2)、P (x ,y )的距离之和,又(3-2t ,2-2t )在直线x -y -1=0上,1<x <3,由图2可知G (2,2)关于DE 对称点为G ′(3,1),故(|PH |+|GH |)min =|FG ′|-1=2,此时x =2,y =1,t =12.我们先根据矩形的特征建立平面直角坐标系;然后设P 点的坐标,求得各个向量的坐标以及 BE +tDE 、 PE +(t -1)DE 的表达式,即可根据其几何意义,将求||BE +t DE +|| PE +(t -1) DE 的最小值转化为求点H (3-2t ,2-2t )到G (2,2)、P (x ,y )的距离之和的最小值;最后根据矩形和圆的对称性,确定H 的位置,即可求得最小值.47思路探寻例3.已知非零平面向量a ,b ,c 满足||||a -b =2,且(c -a )∙(c -b )=0,若a 与b 的夹角为θ,且θ∈éëùûπ6,π3,则||c 的最大值是______.解:根据题意,作出如图3所示的图形.令a =OA,b = OB,c = OC,可得:||AB=2,且∠ACB=90°,取AB中点为M,则||CM=12||AB=1,则点C在以AB为直径的圆M上运动.由图可知,当O,M,C三点共线时,|| OC取得最大值,即|| OCmax=|| OM+1;不妨设三角形OAB的外接圆圆心为G,则GM⊥AB,在三角形OAB中,由正弦定理可得:2||OG=ABsinθ,即||OG=1sinθ,θ∈éëùûπ6,π3,故当θ=π6时,||OG max=2,||GM max=||OG2max-1=3;当O,M,G三点共线时,|| OM取得最大值,此时|| OMmax=||OG max+||GM max=2+3.故当θ=π6,且O,M,G,C四点共线时,|| OC max=3+3.根据题意和向量的几何意义作出几何图形,便可根据平面向量的基本定理以及正弦定理,确定||c 取得最大值的情形:O,M,G,C四点共线,即可利用数形结合思想求得最值.图3图4三、利用二次函数的性质在求解向量的最值问题时,可根据题意选取合适的基底,将目标式用基底表示出来,建立关于参数的关系式;也可根据题意建立适当的直角坐标系,通过平面向量的坐标运算,求得各点的坐标、向量的坐标以及目标式.最后将问题转化为函数最值问题,利用二次函数的性质来求最值.例4.已知在菱形ABCD中,AB=6,∠BAD=60°,CE=2EB,CF=2FD,点M在线段EF上,且AM=xAB+12 AD.若点N为线段BD上一个动点,则 AN∙ MN的最小值为______.解:因为CE=2EB,CF=2FD,所以BE=13 BC, DF=13 DC,所以AE=AB+BE=AB+13 AD,AF=AD+DF=13 AB+ AD,因为点M在线段EF上,可设AM=λAE+(1-λ)AF=λ(AB+13 AD)+(1-λ)·(13 AB+ AD)=(13+23λ) AB+(1-23λ) AD,而AM=xAB+12 AD,所以ìíîïïx=13+23λ,1-23λ=12,解得λ=34,x=56,所以 AM=56 AB+12 AD,则|| AM2=æèöø56 AB+12 AD2=2536 AB2+56 AB∙ AD+14 AD2=49,所以|| AM=7,因为点N为线段BD上一个动点,可设AN=μAB+(1-μ)AD,μ∈[]0,1,所以MN=AN-AM=μAB+(1-μ)AD-(56 AB+12 AD)=(μ-56) AB+(12-μ) AD,所以AN∙MN=[μAB+(1-μ)AD]∙[(μ-56) AB+(12-μ)AD]=μ(μ-56) AB2+(-2μ2+73μ-56) AB∙ AD+(1-μ)(12-μ) AD2=36μ2-42μ+3=36æèöøμ-7122-374≥-374,则当μ=712时, AN∙ MN的最小值为-374.由于∠BAD=60∘,AB=6,所以以向量AB,AD为基底,根据平面向量的线性运算法则和数量积公式,求AN∙MN的表达式,最终将问题转化为二次函数的最值问题.通过配方,根据二次函数的单调性即可求得目标式的最值.由此可见,求解平面向量最值问题,关键是运用转化思想和数形结合思想,通过平面直角坐标系、平面向量的坐标运算法则、平面向量基本定理、向量的几何意义,根据目标式的结构特征,将原问题转化为三角函数、平面几何、二次函数最值问题.(作者单位:甘肃省康乐县第一中学)48。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

消去 AQ 得 , _ AF ) +( 一4 AP+8—4 = z ) x

图5 图6
由 ① 、 得 , < 2 ② z ;
例 6 已知 : 图 6 A AB 中 , C = 如 , C 9 。AC = 3 m, B = 4 m, 0, c C c 两个 动 点 P、 Q 分别 从 A 、 C两 点 同 时按 顺 时 针方 向沿 AB C
又 因为 A +AQ = z ③ , ① 、 P! 由 ③
差 的最 大 值 5 .
图3 图4
例 4 如图 4 正方 形 AB D 的边 长 为 , C 2 以点 C为 圆心 ,为 半径 的 圆弧 B , 2 D上有 一
维普资讯
4 8
中学数学杂 志( 中) 2 0 初 0 6年第 3期
动点 E( E不与点B、 点 D重合 )过点 E的切 , 线 尸 分别 交 A AD 于 P、 两 点 . Q B、 Q
维普资讯
中学数学杂志( 中) 20 年 第 3 初 06 期
4 7
平面几何 问题 中最值 问题 的解法
江 苏省 盐城 中学 王 震
平面几何中的最值问题 , 它涉及 的知识 面广 , 综合 性 强 , 法 灵 活 , 而教 学 难度 较 解 因

S, S与 X的 函数关 系式 ; 求 () 尸 的最小 值 . 3求 Q
分析 ( )连结 C C 则 △ C P 1 P、 Q, B △ C P, C Q E △ D 的周 长为 4 ; ( )由( ) 2 1 可知 : 边形 C P 的面 积 五 DQ B △ C Q ,或 运 用 切 线 长 E
例 3 如图 3 点 P是等边三 角形 A C , B 的外接圆0的劣弧B C上任意一点, A交B P C 于点 D, 求 的最大值 .
分析 连结 P P 并延 长 C 到 E, B、C, P
分 析 因为点 D关 于直线 A C的对称 点
为 B 点 , 以 D + MN : B +MN > 所 N N
时 , 园的面积 最 大 . 公
等 于 △ C Q 面 积 的 2倍 . 以 △A Q 的面 P 所 P
积等于 正方 形 AB D 的面 积 与 2个 △ C Q C P
面积 的差 , 以 S = 4—2 所 x.
( )因为 3
AQ > ②,
+AQ +z = 4 ① ,
B , M 当点 N运动到B 与A M C的交点N 时 ,
D +MN 的值最 小 , D +MN 的最 小值 N 即 N
为 B = 1. M 0

使
: P 可证得 /B E是等边三角形 , B, xP
所 以 /AP o C B, 以 P = C 所 以 X Bc △ E 所 , A E,
2 巧 用根 的判 别式
例 1 已知 : 图 1正 方形 彻 C 的边 如 , D 长为 8 M 在 D , C上 , DM : 2 N 是 AC上 且 ,
的一 动 点 ,则 D + MN 的 最 小 值 为 N

. ..... . ,.. ..... ...... ...., ..一
P =P A B+P C ① . 由 I= /2 L 3: 又 , 4= 6 。 可证 得 / P , " C 所 以 0, X AB C 9/ P D,
币 = P B

即 P ・ C = P ・P B P A D ②.
≥ P t
由 ① 、 可知 : B, C是 方程 z 一P ・ ② P P A


t P
z +P ・ D = 0的两个 实数 根 , 以 △ : A P 所 ( P 一 4 A ・P ≥ 0 所 以 P ≤ 一 A) P D , D
图 1
图2
例 2 已知 : 图 2 直 线 l垂直 平 分矩 如 ,
P,:< ≤ ,P的 大 是 A q {即D 最 值 NZ . o 雨
大 . 面介 绍三 种常 用方 法 , 大 家参考 . , 下 供
1 利 用对称 关 系
评注 从 以上例子可 以看 出此类 问题
的一 般 解 法 是 ,利 用 已 知 条 件 中 的对 称 关 系 , 问题 转 化 为 “ 将 已知 直 线 的 同侧 存 在 两 点 , 直 线上 找一 点 , 这点 到两 点 的距 离之 在 使 和最 小 ”的问题 模型 , 求解 所 给 的问题 .
() /A 1 求 x pQ 的周长 ; ( ) 尸 的 长 为 z,x pQ 的 面积 为 2设 Q /A
分析 ( )3 0 ; 垂 设
GM = z, l G = 鬲  ̄M , ~l F FM : 2 z, 以 M 所 AE

●’一
形A C B D的一边A E是B D, C上一点 , A 若 B 2B , C:4 B , E= 1P是直线l , 上一动点 , 则点 P 到 D、 两点距 离 之差 的最大 值 为 E

4‘
分 析 因为点 D关 于直 线 的对称点 为
A点 , 所以点 P到D、 E两点距离之差即为点 P 到 A、 E两 点距 离之 差 , 为 P, —P, 因 A E< A 当 P 运动到 A E, E与直线 l 的交点 P时, P — E=A 这时, P到D、 A P E, 点 E两点距离 之差的值最大 , 所以点 P到D、 E两点距离之
AM =4 z, 公 园 的面积 为 S, S = 0一 设 则
(0 z(o z = 专z l 1 +2 )o— ) 一 (—O + 2 2 )
3 40 6 0


定 理 , P = P QD = QE, 得 △AP 得 B E, 求 Q
由二 次 函数 的 性 质 可 知 , z : 1 当 0
相关文档
最新文档